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ABSTRACT

Recent technical developments have facilitated the collection
and storage of large amounts of time series data for many
condition monitoring and maintenance processes. However,
most of this data is unlabeled, and producing high-quality la-
beled data is expensive, time-consuming, and a lot of times
inaccurate given the uncertainty surrounding the labeling pro-
cess and annotators. Active Learning (AL) has emerged as an
approach that enables cost and time reductions of the label-
ing process. Here, we present an active learning framework
to be used in the classification of time series from industrial
process data, which can be vibration waveforms or control
process data. Previous work has focused on active learning
for image classification problems. Alternatively, when active
learning has focused on time series classification problems, it
has not dealt with the cold start problem, which consists of
a complete absence of labels at the beginning of the training
process. The active learning framework proposed incorpo-
rates a pre-clustering step to create an initial labeled dataset.
Furthermore, we incorporate two strategies for the generation
of features to be used in the AL framework, which are time se-
ries imaging and automatic feature generation. We study the
learning curves of the different feature extraction techniques
and evaluate them in two case studies. The first case is based
on vibration data from a ball bearing experiment with faults
seeded in the bearings. The second case is based on a produc-
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tion dataset from an industrial control process. We discover
that with only having to label up to 10% of the unlabeled in-
stances, after they had been properly queried, it is possible
to achieve accuracy over 90%. An active learning framework
offers a real possibility to achieve high accuracy while reduc-
ing the amount of work that needs to be incorporated into the
labeling process.

1. INTRODUCTION

The condition monitoring, maintenance, and health manage-
ment fields make ample use of time series for diagnostics,
monitoring, and prognostics tasks. These time series origi-
nate from electrical sensors that sample individual measure-
ments (e.g. temperature or pressure) or waveforms, which
are full-time series by themselves, such as vibration. The de-
mand for raw time series waveforms is increasing given the
interest to build data-based models around them. Unfortu-
nately, most of this data, which is becoming widely available,
comes without labels. Labels are an important component to
build these data-based models and describe the conditions to
be identified by such models. However, these labels are a
scarce resource. This is especially true for machine fault de-
tection issues where collecting large amounts of data is easier
than obtaining the corresponding labels, especially when the
faults evolve naturally over time (Zhang et al., 2020). Fur-
thermore, producing high-quality labeled data is expensive,
time-consuming, and a lot of times inaccurate given the un-
certainty surrounding the labeling process and the annotators.

These conditions, where the amount of unlabeled data is rich
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but labeled data is poor, are suitable for a semi-supervised
approach (Zhu, 2005). Active Learning is a machine learn-
ing approach where an external annotator is queried for la-
bels to be given to the unlabeled data. The aim is to improve
the model accuracy by asking for labels from the annotator
until reaching a desired accuracy or model convergence. Ac-
tive learning algorithms are iterative and on each iteration, the
annotator, who is also referred to as the oracle, must label a
number of samples. The benefit of pursuing an active learning
approach is that machine learning models are able to achieve
larger accuracy while having to use a smaller training size
(Settles, 2011). These approaches had produced significant
results in the fields of medical natural language processing
(Rosales et al., 2007), image classification for remote sens-
ing (Haut et al., 2018) and object detection for autonomous
driving (Haussmann et al., 2020).

The use of active learning for time-series problems is still lim-
ited given the high dimension of the data and concerns on
how to present such time-series to the annotator. This limita-
tion is further constrained by the limited availability of fault
data, a common occurrence on condition monitoring or main-
tenance applications, given that most of the machines operate
in healthy operating conditions. Furthermore, there are mul-
tiple challenges that need to be considered when using an ac-
tive learning framework in practical scenarios (Settles, 2009).
One of these challenges is addressed by Shekhar et al. (2021),
who considers the scenario where the learner abstains from
providing a label under certain scenarios at a penalty cost.
Agarwal et al. (2021) considers the challenge where there is
uncertainty around the label provided by the oracle. An ac-
tive learning challenge, which is highly relevant to time-series
problems is how to evaluate the informativeness metrics of
the time-series instances. Peng et al. (2017) addresses this
challenge by proposing a set of informativeness metrics to be
used in multi-class time-series classification problems. Fi-
nally, an active learning challenge that is significant to the
maintenance and condition monitoring fields is the so-called
cold-start problem. Active learning needs an initial labeled
set of samples before asking the oracle to label additional
samples. The cold-start problem is the scenario where there
are no labels at all when starting to train the model. Lughofer
(2012) proposes a solution to this problem, which is applica-
ble to image classification problems.

In this paper, we present an active learning framework for
time-series classification of vibration and industrial-processes
signals. The framework incorporates a pre-clustering step
that considers the scenario where no labels are available at
the beginning of the training stage. Our interest here fo-
cuses on feature extraction alternatives that can facilitate the
presentation of time-series signals to the annotator for label-
ing. We aim to prepare the unlabeled time series through
an automated data pre-processing step that enables subject-
matter experts to incorporate their expertise without knowl-

edge of particular machine learning tools. We consider two
alternatives in this pre-processing step: time series imaging
and automated feature engineering. Z. Wang & Oates (2015)
present multiple techniques for the encoding of time series
as images. We are interested in the use of images because
it enables us to emphasize or capture local patterns that can
be spread over time, which might assist the annotator on his
work (Rodriguez-Garcia et al., 2021). Automated feature en-
gineering enables to automatically calculate a large number
of time series characteristics that the annotator can use as a
starting point. The libraries considered for automatic feature
generation are Time Series Feature Extraction Library (TS-
FEL) (Barandas et al., 2020) and Time Series Feature Extrac-
tion based on Scalable Hypothesis tests (TSFRESH) (Christ
et al., 2018). Using time series imaging and automated fea-
ture engineering in tandem with the active learning frame-
work can enable us to skip the feature selection step given
that we can use the resulting images and features directly for
query and classification. These features are used in the ac-
tive learning framework which intends to find which instances
should be labeled next based on the selection of the instance
that is most useful. Thus, we adopt the uncertainty sampling
active learning strategy, which we use together with the met-
rics proposed by Peng et al. (2017). This entire framework
is evaluated on vibration data from a rolling element bearing
experiment and time series data originated from a production
facility. The work presented here is novel because it describes
an end-to-end active learning framework focused on the typ-
ical data conditions of the condition monitoring and mainte-
nance fields where no labeled data is more common. It further
incorporates an automated pre-processing stage that converts
the time series signals into images or a set of characteristics
that can facilitate the work of annotators. We observe that a
small number of annotations is required before reaching ac-
curacy over 90%. These results indicate that our proposed
active learning framework is useful for the classification of
time series signals.

2. ACTIVE LEARNING FRAMEWORK

Active learning is an area of machine learning where the algo-
rithm is allowed to choose the data from which it learns. This
is a desirable property given that typical supervised learning
approaches require a large number of labeled instances. How-
ever, these labeled instances are not always available, and
generating them is difficult or expensive. On active learning
methods an annotator, also known as oracle provides labels
to a series of queries. The aim is to achieve greater accuracy
with as few labels as possible Settles (2009).

We present our framework by describing the techniques used
in the feature extraction stage, followed by the pre-clustering
step that addresses the cold-start problem, and a description
of the active learning strategy used in our work. Figure 1
shows a diagram of the framework, which presents the stages
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Figure 1. Diagram of our proposed Active Learning framework.

that form it and how each stage is related. The inputs are
the raw time series signals, which can be a vibration signal
or any other time series signal. Each block describes how
their output contributes to the following block. The output
is a trained classification model that is capable to handle to
provide a label to new unseen data.

2.1. Feature extraction

Recent advancements within the Internet-of-Things have en-
abled to collect large amounts of data in the condition mon-
itoring and maintenance fields. Typically, the collected data
is time series data and requires specialists working to identify
suitable features to be used by the machine learning mod-
els. The feature engineering work required to identify these
features, which can vary from application to application, is
extensive, particularly for supervised models and it remains
as a research opportunity for unsupervised models. In our ac-
tive learning framework, we consider two alternatives for the
pre-processing of the data. These alternatives are time series
imaging and automated feature engineering.

In a time series imaging approach, the time series data inputs
are converted into images, which may be easier to label by
an oracle given that it can present a larger amount of infor-
mation in a compressed manner. The time series data can be
a vibration waveform or any sensor data stream, and the re-
sulting image is presented to the oracle and can be used by a
classifier. The imaging techniques consider in this work are
Z. Wang & Oates (2015):

• Gramian Angular Fields - time series are rescaled and
represented in polar coordinates by encoding the magni-
tude as the angular cosine and the timestamp as the ra-
dius. Then, by exploiting this transformation we can use
the trigonometric sum/difference between points to es-
tablish the temporal correlation resulting in the Gramian
Angular Summation Field (GASF) and the Gramian An-
gular Difference Field (GADF).

• Markov Transition Fields (MTF) - time series are en-
coded as a Markov Chain transition matrix, where the

magnitudes are discretized in a fixed number of bins of
uniform width. Temporal information is encoded transi-
tion probabilities between points at specific intervals.

• Recurrence Plots (RP) - time series are encoded as a ma-
trix of recurrences, where the time series is split in a
number of sub-sequences and it is kept track of the num-
ber of times points returns to previously visited states.

We define the initial formulations of these algorithms as
the original formulation. However, these original formula-
tions can be invariant to some signal transformations, par-
ticularly in large datasets. Thus, we also adopt the imaging
encoding formulations proposed by Rodriguez-Garcia et al.
(2021), which we refer to as the modified formulation. Under
this modified formulation, GASF/GADF uses a dataset-wide
rescaling step instead of instance-wide rescaling. Meanwhile,
in MTF, the width of the bins is proportional to the quantiles
of distribution centered in the mean values instead of uniform
width. Likewise, the mean value is considered in the esti-
mation of the transitions for the RP encoding, which is not
considered under the original formulation.

In the automated feature engineering approach, we use the au-
tomatic feature extraction frameworks: Time Series Feature
Extraction based on Scalable Hypothesis tests (TSFRESH)
(Christ et al., 2018) and Time Series Feature Extraction Li-
brary (TSFEL) (Barandas et al., 2020). TSFRESH can pro-
duce up to 111 statistical features, while TSFEL can produce
up to 60 statistical features. Some of these features can result
in NaNs or infinite values, which are replaced by the aver-
age and extreme values respectively. Also, if all the values
for a calculated feature result in infinite, the entire feature is
set to zero. In addition, we implement the pattern discov-
ery strategy described by Peng et al. (2017) on their active
learning framework for time series classification, known as
ACTS. We use this implementation as a benchmark to our
proposed framework. ACTS is based on shapelet discov-
ery, which identifies discriminative patterns in the time series.
The splits generated during pattern discovery are used to es-
timate the data entropy of the pattern, which in turn is used
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to identify the optimal split and pattern. The selected patterns
together with the time series and labels are used to construct
a probabilistic model where the Euclidean norm is used to
measure the distance between the pattern and the time series.
Further details of the ACTS strategy are available in Peng et
al. (2017).

2.2. Cold-start problem

Active learning algorithms have multiple label gathering sce-
narios that define the query process. The most common
scenario, which considers the real-world problem of large
amounts of unlabeled data, is known as pool-based active
learning Settles (2009). Under this scenario, a small set of
labeled data is required before starting to select new samples
to label from the pool of unlabeled data. The cold-start prob-
lem originates from this scenario where there are no labels in
the beginning to train the initial classification model. There-
fore, we solve this problem by introducing a pre-clustering
step. During pre-clustering, we apply an unsupervised clus-
tering algorithm to the unlabeled data and select the points
closest to the centroids of each cluster as the initial instances
of the labeled dataset. This procedure is based on the work
by Souza et al. (2017). The steps in this procedure consist of:

1. Define unsupervised clustering algorithm, such as k-
means, and apply it to the unlabeled data.

2. Select the number of points closest to the centroids of
each cluster.

3. Assign a label to the selected points.
4. Labeled points are the instances that form the initial la-

beled dataset.

The number of clusters to be identified by the clustering al-
gorithm is defined by the number of categories upon which
the data is expected to be classified. Alternatively, the el-
bow method (Marutho et al., 2018) can be used to determine
the optimal number of clusters when this information is not
known. In addition, the number of points to be selected out of
each cluster is defined by a pre-defined threshold, which can
be in the order of 1-2%, that describes the size of the initial
dataset with respect to the size of the unlabeled dataset.

2.3. Active learning

An active learning framework enables data-based models to
perform better with less training given that they can choose
the data from which it can learn. The basic procedure of the
active learning framework consists of the following steps:

Step 1 Algorithm begins with a small labeled training
dataset and a large set of unlabeled data.

Step 2 A classifier algorithm is trained using the labeled
dataset.

Step 3 An active learning technique queries for a data point
from the unlabeled dataset.

Step 4 The oracle gives a label to the previously selected
data point and the labeled and unlabeled datasets are up-
dated.

Step 5 Step 2 to Step 4 are repeated iteratively until reach-
ing a stop condition.

The unlabeled dataset is the vibration or time series signals
of the condition monitoring or maintenance problem at hand.
The small labeled training dataset mentioned in Step 1 is
the product of the pre-clustering step of our framework de-
scribed in Section 2.2. The classifier algorithm in Step 2 that
is used as part of this proposed framework is the Support Vec-
tor Machine algorithm (SVM). SVM is a non-probabilistic
binary linear classifier that identifies a hyperplane separating
the two categories and intends to maximize the width of the
gap between these two categories (L. Wang, 2005). In the
case of multi-class classification problems, the one-versus-all
method is adopted.

Sample query is Step 3 in the active learning framework. In
this step, the data sample from the unlabeled dataset to be
presented to the oracle for labeling is selected. The selection
of the data sample requires evaluating the usefulness of the
unlabeled dataset to select the sample that might contribute
the most to the improvement of the model. The are multiple
query strategies and Kumar & Gupta (2020) presents a re-
view of all of them. The query strategy selected in this work
is uncertainty sampling given its simplicity and straightfor-
ward understanding. Under this strategy, the oracle queries
the instances upon which it is least certain on how to label. In
particular, the framework utilizes the method of classification
uncertainty. Under this method, the uncertainty for each data
point x is defined as

U(x) = 1− P (x̂|x), (1)

where x̂ is the most likely prediction for the specified in-
stance. This can be interpreted as the classification uncer-
tainty been the uncertainty of x̂ having the prediction given
to data point x.

Figure 2 presents an example of the labeling interface used
in Step 4, where the oracle is queried for the label of an un-
labeled time series. In this example, a raw vibration signal
from a rolling element bearing is shown. Alternatively, the
interface can show the spectra of the raw signal or the con-
verted time series image. The annotator needs to provide a
label on the location of the fault via pressing the buttons to
the right of the interface. Please notice that in this example,
just a small subset of raw time series values are shown. The
active learning procedure ends at Step 5, once the model has
reached a stop condition. This stop condition can be defined
by reaching a desired accuracy level in the classifier model or
having carried out a pre-defined number of queries.
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Figure 2. Example of the active learning user interface
employed to query the oracle. The interface shows an

example of the ball bearing dataset along with the four label
alternatives.

3. CASE STUDIES

We are interested in the performance of the time series clas-
sification model with respect to the number of queries carried
out by the active learning framework. We consider two case
studies to evaluate this performance. We analyze vibration
signals from the bearing data center at Case Western Reserve
University (Loparo, 2003) and time series data from a control
problem belonging to one of our customers, henceforth as the
production dataset.

The vibration signals of the ball bearing dataset are gener-
ated by a rotating machine, which consists of an electric mo-
tor, a torque transducer, a dynamometer, and a ball bearing
supporting the motor shaft. Vibration data is recorded via
an accelerometer located at the drive end of the motor with
a sampling rate of 12 kHz. The machine operates with a
varying load between 0 HP and 3 HP, resulting in varying
motor speed between 1800 and 1730 rpm. Faults are manu-
ally introduced at the inner raceway, outer raceway, and balls.
Thus, there are four possible labels that the oracle can as-
sign to each instance corresponding to the three fault location
cases and a case without no faults. Meanwhile, the production
dataset originates from data provided by one of the customers
of Viking Analytics. The time series data belongs to a con-
trol system, where samples were taken with a sampling rate
of 25 Hz. This is a binary classification problem where the
annotator has to classify the presence of a bump in the data.

The initialization of the active learning algorithm requires an
initial labeled dataset, which typically would be the output of
the pre-clustering step. The labels are assigned to each clus-
ter by the oracle after the total number of clusters has been
defined. In these case studies, ten instances form the initial
labeled dataset where we ensure the presence of at least one
instance from each of the categories for both datasets. This
small dataset of ten labeled instances is known as the seed,

while all other instances remain unlabeled. In the case of fea-
tures originated from the imaging techniques, the images are
flattened into a single vector for their use in the classifier al-
gorithm. The selected image resolution is 64× 64 pixels and
each pixel represents a single feature. In the case of the au-
tomated feature engineering framework, each framework pro-
duces a set of features. As described in Section 2.3, we utilize
SVM as the classifier algorithm with four categories for the
bearing dataset and two categories for the production dataset.
The stop condition for the active learning algorithm will be a
specific number of queries to evaluate the performance at that
point.

(a) Original

(b) Modified

Figure 3. Comparison of learning curves for imaging
techniques in the ball bearing dataset. Gray areas represent a

confidence interval of one standard deviation.

3.1. Ball bearing dataset

The vibration signals of the ball bearing dataset are long se-
quence time series sequences recorded for each load and fault
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condition. The normal case vibration signals are approxi-
mately 480k samples long and the vibration signals for in-
duced damages on the bearing are approximately 120k sam-
ples long. Therefore, these long sequences were split on
minibatches of 120 samples long for experimental purposes.
Each minibatch represents a time series instance and these in-
stances are the ones used in the active learning framework. In
practical terms, the size of the batch can be large enough to
contain enough health state information of the bearing.

Active learning frameworks are normally evaluated via learn-
ing curves. A learning curve evaluates a metric of interest,
such as accuracy, as a function of the number of new in-
stances queries (Settles, 2009). Thus, accuracy represent the
fraction of accurate predictions of a trained model that used
the given number of instances queries for training. Figure 3
shows the learning curves for the scenario where an imaging
technique was used to generate the features. In this scenario,
the size of the unlabeled set is 2000 instances with equal parts
of each label case. Figure 3a shows the original imaging im-
plementation, while Figure 3b the imaging implementation
with the modifications proposed by Rodriguez-Garcia et al.
(2021). On both implementations, the performance of the
GADF technique remains similar, although it reaches a steady
accuracy level at a faster pace with the original implementa-
tion. Furthermore, this technique has the widest confidence
interval among all the techniques, which is shown by the
gray area. The performance of all other imaging techniques
improves with the modified implementation. However, the
spread in performance across techniques is wider in the mod-
ified implementation than in the original implementation, es-
pecially at lower percentages of labeled instances. It should
be noted that the recurrence plot (RP) technique has the most
significant improvement by reaching the highest level of ac-
curacy at the fastest pace.

Figure 4. Learning curves for the automatic feature
extraction frameworks and ACTS in the ball bearing dataset.

Figure 4 shows the learning curve for the automatic feature
extraction frameworks and ACTS. Meanwhile, the confidence
intervals are shown in Figure 5. It should be noted that the
size of the unlabeled set is 5000 instances with equal parts of
each label case. The motivation for a larger unlabeled is the
ease to generate the features and the lower computational cost

(a) TSFEL

(b) TSFRESH

Figure 5. Comparison of the confidence intervals of the
learning curves for the automatic feature extraction

frameworks in the ball bearing dataset.

than in the imaging techniques. The confidence interval is the
averaged result of ten time series predictions. It can be seen
in Figure 4 that TSFEL has a higher accuracy level at a faster
rate than TSFRESH and ACTS. This result is reinforced in
Figure 5a, where even the confidence intervals described by
TSFEL reach a faster convergence than TSFRESH. It should
be noted that TSFEL has a lower computational cost given
that it estimates a lower number of statistical features than
TSFRESH.

3.2. Production dataset

The time series data in the production dataset is formed by
instances of different lengths resulting in the need for data
padding to ensure equal data lengths for ease of calculations.
Padding was carried out by extending or clipping the begin-
ning of the time series to the initial stationary value of the se-
ries. An earlier labeling effort of the 2000 available instances
was the ground truth for this dataset.

The performance of the active learning framework in this
dataset is also evaluated using learning curves. Figure 6
shows the learning curves for the imaging scenario where the
production time series data was converted into images. Fig-
ure 6a presents the original imaging implementation, while
Figure 6b presents the modified implementation with the up-
date proposed by Rodriguez-Garcia et al. (2021). It should
be noted that it was not possible to evaluate the production
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(a) Original

(b) Modified

Figure 6. Comparison of learning curves for imaging
techniques in the production dataset. Grey areas represent a

confidence interval of one standard deviation.

dataset using the modified MTF technique because in multi-
ple instances the returned images were black. This situation
might be partially due to the quasi-stationary behavior of the
time series resulting in difficulty to partition the magnitude
values on bins proportional to the quantile distribution. On
this dataset, the accuracy of all imaging techniques on both
implementations remains fairly similar and high. However,
the original implementations tend to reach a higher accuracy
at smaller sizes of the queried dataset. It is worth noting that
the performance of the RP technique remains similar between
the original implementation and the modified implementa-
tion, which contrasts with the results shown in Figure 3. At
the same time, GASF and GADF have improved performance
in the modified implementation with respect to the original
implementation.

Figure 7 shows the learning for the automatic feature extrac-

Figure 7. Learning curves for the automatic feature
extraction frameworks and ACTS in the production dataset.

tion frameworks and ACTS, while the confidence intervals
are shown in Figure 8. Similar to the ball bearing dataset,
the confidence intervals are averaged over ten time series pre-
dictions. It can be seen in Figure 7 that TSFRESH has a
higher accuracy at most of the dataset queries percentages
than TSFEL and ACTS. Similarly, the confidence levels for
accuracy of TSFRESH shown in Figure 8b are higher than
TSFEL. However, both automatic feature extraction frame-
works require a similar amount of queries of approximately
12.5% before they reach convergence. This result differs sig-
nificantly with respect to the ball bearing dataset, which re-
quired a lower number of queries, at approximately 2% be-
fore reaching convergence despite having a larger number of
categories.

4. DISCUSSION

We present an active learning framework that focuses on time
series data, such as vibration or industrial process signals,
belonging to condition monitoring and maintenance appli-
cations. In particular, we investigate the use of time series
imaging and automatic feature extraction to generate features
to be presented to an annotator for labeling and subsequently
to be used by a classifier algorithm. The aim is to facilitate
the annotation of time series data by having created an inter-
face that enables to assign labels to the time series shown to
the annotator. Furthermore, in our framework, we had con-
sidered the situation where there are no labels present at the
beginning of the active learning algorithm and we solve that
challenge by incorporating a pre-clustering step that intends
to identify some samples belonging to a predefined number
of expected labels. We find that the framework proposed by
this work is capable of achieving high accuracy by just hav-
ing to label 10% of the overall unlabeled dataset. These re-
sults are observed across two case studies, which included
vibration data and industrial data. However, each dataset has
a different performance depending on the feature extraction
technique used. The ball bearing dataset achieved high accu-
racy at a faster rate using automatic feature extraction tech-
niques, while the production dataset achieved high accuracy
with the time series imaging techniques. These results moti-
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(a) TSFEL

(b) TSFRESH

Figure 8. Comparison of the confidence intervals of the
learning curves for the automatic feature extraction

frameworks in the production dataset.

vate further investigations of the framework in a wider set of
time series data to identify if vibration and process data have
more suitable feature extraction techniques only to them. Fur-
thermore, an investigation of additional active learning query
strategies would be beneficial to understand the limitations of
the framework. Active learning frameworks are a useful ap-
proach to deal with the large amounts of unlabeled data that
is constantly produced by IoT systems. Further work is re-
quired to integrate these approaches into an efficient produc-
tion pipeline that can manage the unlabeled data as it becomes
available and users just need to respond to uncertain condi-
tions that might require further investigation. Active learning
can help in reducing the amount of work and expenses re-
lated to the labeling process of data while helping to maintain
a level of consistency on the labeling procedure across users.
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