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ABSTRACT

With proliferation of deep learning (DL) applications in di-
verse domains, vulnerability of DL models to adversarial at-
tacks has become an increasingly interesting research topic
in the domains of Computer Vision (CV) and Natural Lan-
guage Processing (NLP). DL has also been widely adopted
to diverse PHM applications, where data are primarily time-
series sensor measurements. While those advanced DL algo-
rithms/models have resulted in an improved PHM algorithms’
performance, the vulnerability of those PHM algorithms to
adversarial attacks has not drawn much attention in the PHM
community. In this paper we attempt to explore the vulnera-
bility of PHM algorithms. More specifically, we investigate
the strategies of attacking PHM algorithms by considering
several unique characteristics associated with time-series sen-
sor measurements data. We use two real-world PHM appli-
cations as examples to validate our attack strategies and to
demonstrate that PHM algorithms indeed are vulnerable to
adversarial attacks.

1. INTRODUCTION

Prognostics and health management (PHM) is a modern
maintenance strategy that aims for reducing operation and
maintenance (O&M) costs by reducing unscheduled re-
pairs and increasing availability of industrial assets. PHM
involves several technical components or predictive algo-
rithms/models, including fault detection, fault diagnosis, fault
prognosis, and logistical decision-making based on predic-
tions (Ferrell, 1999). The predictive accuracy and robustness
of those predictive models are the keys to enabling PHM to
achieve maximal business values.

Towards achieving the highest predictive accuracy of the
PHM models, deep learning (DL), regarded as a state-of-the-
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art ML technique, has been increasingly adopted in PHM ap-
plications in recent years, for example, (Lin, Li, & Hu, 2018;
Yan, 2019). (Fink et al., 2020) and (Zhang et al., 2019) pro-
vided a broad review of different deep learning techniques
used in diverse PHM applications.

As shown in the domain of computer vision, deep learn-
ing models are vulnerable to adversarial attacks(Szegedy et
al., 2013; Goodfellow, Shlens, & Szegedy, 2015; Moosavi-
Dezfooli, Fawzi, Fawzi, & Frossard, 2017; Su, Vargas,
& Sakurai, 2019; Eykholt et al., 2018). That is, small
deliberately-designed perturbations to the original samples
can cause the DL model to make false predictions with high
confidence scores. DL models’ vulnerability to adversarial
attacks is well studied in CV. However, to date adversarial at-
tacks on PHM algorithms or, more generally, PHM solution
security have not been actively studied.

For a majority of PHM applications, the data used by PHM
models are predominantly multivariate time-series sensor
measurements, as opposed to 2D images in computer vision.
The time-series sensor measurement data has it own unique
characteristics, including: 1) noisy and unreliable due to the
faulty or failed sensors, 2) multimodal and heterogeneous,
i.e., data coming from different types of sensors, e.g., temper-
ature, pressure, accelerometers, and 3) having strong spatio-
temporal dependencies. These unique characteristics associ-
ated with time-series sensor data pose additional challenges
and require special design strategies in attacking as well as
defending PHM algorithms.

On the other hand, the economic impact of adversarial at-
tacks to these PHM solutions can be significant or even bigger
than that to hard perceptual problems, simply because most
of PHM applications involve safety-critical and time/cost-
sensitive industrial assets, e.g., power grids, power plants and
gas turbines. Take fault detection as an example. Fault de-
tection is to detect problems and abnormal behaviors of as-
sets or processes earlier to prevent catastrophic damages. An
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adversary in this case can manipulate the time-series data to
cause the detection algorithms to miss-detect the faults or fail-
ures on time, thus resulting in catastrophic damages to the
machine. Alternatively, an adversary can simply temper the
normal time-series data to force the algorithm to generate a
large number of false alarms, which results in unnecessary
manpower for tracing the false alarms and even unnecessary
machine downtime.

Despite the aforementioned importance, securing PHM solu-
tions from adversarial attacks has been largely ignored yet.
Very recently, Zhou et al. (Zhou, Canady, Li, & Gokhale,
2020) demonstrated that deep learning prognostics models
are vulnerable to adversarial attacks. To the best of our
knowledge, work by Zhou et al. was the only one related
to PHM algorithms’ security. With proliferation of PHM so-
lutions deployed for a large variety of mission-critical indus-
trial assets, more active research efforts are in great need on
developing proper strategies for attacking as well as defend-
ing PHM solutions by considering the specific characteristics
of time-series sensor measurements data involved in PHM ap-
plications.

Motivated by these needs, in this paper, we study vulnera-
bility of PHM algorithms where time-series sensor measure-
ments are the primary data type. More specifically, we ex-
plore attack strategies by exploiting the unique characteristics
of time series sensor data. We use two real-world PHM ap-
plications to validate the attack strategies and to demonstrate
that PHM algorithms are vulnerable to adversarial attacks.

The rest of the paper is organized as follows. Section 2 re-
views related work. Strategies and attack model details are
discussed in Section 3. Section 4 presents experiments and
their results, while Section 5 concludes the paper.

2. RELATED WORK

In the past a few years, adversarial machine learning (AML)
has emerged as a hot research topic ((Goodfellow, McDaniel,
& Papernot, 2018; Kianpour & Wen, 2019)). There are var-
ious adversarial attack methods for deep learning models.
Inference-time attack and the training-time attack are two
common adversarial attacks for neural networks. For the in-
ference time-attack, an adversary adds small perturbations to
input measurements so that a machine learning model pro-
duces incorrect predictions with high confidence (Goodfellow
et al., 2015; Szegedy et al., 2013; Carlini & Wagner, 2017;
Kurakin, Goodfellow, & Bengio, 2016a). Later, (Moosavi-
Dezfooli et al., 2017) demonstrate a way of generating an
universal adversarial perturbation for a trained classifier, (Su
et al., 2019) show an approach of generating one-pixel attack
against a classifier. Most of attacks are generated in the digi-
tal domains by manipulating the digits of an image, (Eykholt
et al., 2018) demonstrate that this type of attack are also fea-
sible in the physical world. For the training-time attack, train-

ing data are corrupted with carefully designed backdoors or
triggers (Liu et al., 2017). Through injecting the backdoor
into the training data, the poisoned models will make false
predictions (Gu, Dolan-Gavitt, & Garg, 2017). In this paper,
we focus on inference-time attack and will demonstrate the
attack using experimental data from two PHM applications.

Most of the adversarial attacks are demonstrated in CV and
NLP applications (Szegedy et al., 2013; Goodfellow et al.,
2015; Papernot, McDaniel, Swami, & Harang, 2016). For
example, (Goodfellow et al., 2015) uses the fast gradient sign
method (FGSM), and (Papernot et al., 2016) uses the for-
ward derivative method to craft adversarial examples. More
recently, (Fawaz, Forestier, Weber, Idoumghar, & Muller,
2019) use the FGSM methods on time series classifications
to investigate the adversarial attacks on the vehicle sensor
and food data classification problems. Adversarial attacks
on PHM solutions/algorithms have not been actively studied.
Very recently, (Zhou et al., 2020) demonstrated adversarial at-
tacks on Remaining Useful Life (RUL) of turbo fan engines.
To the best of our knowledge, this is the only work that related
to our work in this paper.

3. ADVERSARIAL ATTACKS ON PHM ALGORITHMS

In this section, we describe our strategies of attacking PHM
algorithms. PHM solutions generally have four categories of
functional algorithms, namely, fault detection, fault diagno-
sis, fault prognostics and logistic decison-making. While de-
tection and diagnosis are a classification problem, prognos-
tics is a regression problem and logistic decision-making is
an optimization problem. In this paper, we focus on strate-
gies on attacking fault detection and prognostics algorithms
and leave adversarial attacks of logistic decision-making to
our future work.

PHM algorithms attack scenarios considered PHM mod-
els perform their functionalities based on the sensor measure-
ments from the asset monitored. These sensor measurements
typically are communicated to PHM models via a communi-
cation protocol. We assume the attacker can access the com-
munication channels and thus can attack the PHM solutions
by manipulating the sensor measurement signals. We also
assume the attacker has the full knowledge of the PHM al-
gorithms, that is, in this paper we consider white-box attacks
((Yuan, He, Zhu, & Li, 2019)).

An attacker can attack the PHM solutions at either training
time (training-time attacks, also called “poisoning attacks”)
or inference time (inference-time attacks, also called “eva-
sion attacks”). In this paper we only consider inference-time
attacks. The inference-time attack refers to an adversarial at-
tack in the inference stage after a model is built and deployed.
Inference attacks can be targeted attack and non-targeted at-
tack (Yuan et al., 2019). We do not limit our attack to a par-
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ticular class, thus we generate adversarial examples with the
more general non-targeted attack.

Problem formulation Let x = (x1, x2, ..., xn) ∈ Rn be the
multivariate time-series sensor measurements, the input sig-
nals to PHM algorithms. We can formulate an adversarial
attack as an optimization problem as shown in Equation 1.

max
x′

L(x′,y) (1)

s.t. ∥x′ − x∥p ≤ ϵ

where we denote the perturbed data, i.e., the adversarial ex-
amples, as x′ ∈ Rn, adversary targeted input as y ∈ R, ad-
versarial function as L which is a function of x, x′ and y, as
well as the perturbation budget as ϵ.

The goal of the attacker is to find the optimal perturbation sig-
nal that can maximize the loss defined in Eq. 1, while at the
same time keeping the perturbation magnitude small enough
such that the resulting perturbed signal has invisible differ-
ence from the original signals. Adversarial function L and
adversarial input y will be tailored based on the applications.
One common formulation for adversarial function is the train-
ing loss (maximize the training loss). Adversarial input is as-
sociated with adversary’s goal. For classification, adversarial
input can be the targeted adversarial label. For regression,
adversarial input can be the targeted numerical value.

Adversarial sample generation algorithm There are several
different attack generation algorithms available. In this paper
we use Basic Iterative Method (BIM) since it fits well with
our attack formulation. BIM was first introduced in (Kurakin,
Goodfellow, & Bengio, 2016b). It extends the FGSM method
((Goodfellow et al., 2015)) into a multi-step process. The
adversarial examples from the BIM attack can be formulated
as:

x′
0 = x, x′

i+1 = Clipx,η

{
x′
i+αsign

(
∇xJθ(x

′
i, l)

)}
(2)

where Clipx,η {x′} = min
{
x + η,max

{
x − η,x′}}, and

α controls the size of the update. Compared with FGSM,
BIM attack needs multiple iterations to obtained adversarial
examples. During each iteration, new x′ will be clipped by
η, which is a hyper parameter controlling the strength of the
perturbation. To adapt from the image-based adversarial ex-
amples to the time series data, we remove the constrains of
x ∈ [0, 255] from the formulation (Kurakin et al., 2016b) .

4. EXPERIMENTS AND RESULTS

In this section we use two real PHM applications to validate
the attack strategies discussed in the previous section. One

of the real PHM applications is on anomaly detection and an-
other is on fault prognostics, both of which are discussed in
detail in the following two subsections, respectively.

4.1. Anomaly detection

The problem and the data The Tennessee Eastman Process
(TEP) is a real industrial process; and the dataset generated
from the TEP simulator, a realistic simulation program of a
chemical plant (Downs & Vogel, 1993), has been widely used
for benchmarking fault detection algorithms/models. As the
flow diagram shown in Figure 1, the process with five ma-
jor units including: reactor, condenser, compressor, separator
and stripper. The process has two products from four reac-
tants. Additionally, there is an inert and a by-product. These
make a total of 8 components denoted as A, B, C, D, E, F,
G and H. The process has at total of 52 measurements out
of which 41 are process variables and 11 are manipulated
variables. In this dataset, the system is sampled at every 3
minutes. There are 500 runs of normal operation data for
training, each with 500 samples, totaling of 25 hours of op-
eration. There are 20 process faults defined. Each of them
also has 500 runs of 25 hours of operation. Testing data has
similar setup except that each run has 960 samples, equiva-
lent to 48 hours of operation. For faulty runs, fault is injected
at 1-hour time step for training data, while at 8-hour time step
for testing data. In this paper, we formulate the TEP anomaly
detection problem as binary classification classifying normal
operation from the 20 process faults.

Figure 1. Tennessee Eastman Process (TEP) overall flow di-
agram.

The anomaly detection model The anomaly detection model
is an auto-regression residual-based AD model. As shown in
Figure 2, the residual-based AD scheme relies on the auto-
regression model (normality model), f(.). In this paper, our
normality model is a 2-layer stacked LSTM (Long and Short-
Term Memory) with the number of hidden states of 50, which
was trained using normal data only. The window length T
(the number of lagged samples) is 120. The residual vec-
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tor, Rt, which is the difference between the predicted and
measured values at time t, is then transformed to an anomaly
score (a scalar), ot, by the function g(.), the Mahalanobis dis-
tance, to the normal data residual distribution. The anomaly
score is finally thresholded to obtain the status (either normal
or abnormal).

f (.)

- g (.)

𝑥!

𝑥!"

𝑥!"#, … , 𝑥!"$ , 𝑥!"%

𝑅!

𝑜!𝑥!

Normal or 
abnormal

Figure 2. Flow diagram of our auto-regression residual-based
anomaly detection scheme.

Model performance comparison Anomaly detection is a
binary classification problem distinguishing abnormal from
normal. And thus the attacker’s objective for anomaly detec-
tion can fall into two categories:
1) to perturb a normal sample such that the detection algo-
rithm predicts as an abnormal sample.
2) to perturb an abnormal sample such that the detection
algorithm predicts as a normal sample.

To achieve this goal, adversarial samples to be generated
for normal data need to maximize the scoring function g(.),
while adversarial samples to be generated for abnormal data
need to minimize the scoring function g(.). Thus, we define
our adversarial function L as g(.) for normal samples and
−g(.) for abnormal samples.

We use receiver operating characteristic (ROC) and
Precision-Recall curves (PRC) as well as their associated
area-under-curve (AUC ROC and AUC PRC) as the per-
formance metrics for anomaly detection and use the same
performance metrics to demonstrate the effectiveness of
adversarial examples. Figure 3 shows the comparison of
the performance metrics between the clean (attack-free)
model and the model subjected to the adversarial perturba-
tion with a small perturbation magnitude of 0.00025. As
can be seen from the figure, adversarial samples generated
significantly degrade the performance of the detection algo-
rithm. Specifically, the AUC ROC is reduced from 0.9365
to 0.8843 and the AUC PRC from 0.9575 to 0.9342. Table
1 also summarizes the performance metrics (AUC ROC
and AUC PRC) change as perturbation magnitude in-

Table 1. AUC-ROC and AUC-PRC under different perturba-
tion magnitudes.

Perturbation
Magnitude AUC-ROC AUC-PRC
0.0 0.9365 0.9575
0.00025 0.8843 0.9342
0.00825 0.6870 0.8269
0.03500 0.6206 0.7821

creases, which indicates that as the perturbation magnitude ϵ
increases, the performance degrades significantly more.

(a) Clean (𝜺 = 𝟎.𝟎)

(b) 𝜺 = 𝟎.𝟎𝟎𝟎𝟐𝟓

Figure 3. Comparison of ROC and PRC between (a) the clean
and (b) adversarial samples with perturbation magnitude of
0.00025.

Figure 4 shows an example of comparison between a clean
sample and the corresponding adversarial perturbed sample,
when perturbation magnitude is 0.035. Each subplot repre-
sents a variable (sensor measurement). For plotting conve-
nience, we randomly selected 12 variables out of the 52 vari-
ables. One can see that our perturbation is very small (almost
invisible), and thus it is most likely undetectable in real world
operation.

4.2. Fault Prognosis

The problem and the data For RUL prediction, we use
the publicly available C-MAPSS datasets created by NASA
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Figure 4. Comparison between clean and perturbed signals for the TEP data (perturbation magnitude of 0.035). Note: only first
12 signals are shown. X-axis is time stamp and Y-axis is the normalized measurement.

(Saxena, Goebel, Simon, & Eklund, 2008), which have been
popularly used in publications for benchmarking and devel-
oping prognostics algorithms. The datasets were generated
using the commercial modular aero-propulsion system simu-
lation (C-MAPSS), a turbofan engine simulation engine (see
Figure 5). The C-MAPSS datasets consist of five individual
datasets that differ in the number of simultaneous fault modes
and the operational conditions simulated. Each of these five
datasets consists of multiple multivariate time series, repre-
senting engine health status from normal to fault and to fail-
ure (i.e., run-to-failure data). There are a total of 26 variables.
The first 2 variables are for engine ID and timestamps. The
next three variables are for defining engine operation condi-
tions. The rest of 21 variables are the engine response mea-
surements. In this paper we use dataset No. 3 for validating
our attack strategies.

The RUL prediction model The RUL prediction (progno-

Figure 5. Turbo Fan Engine for C-MAPSS data.
LPC = low pressure compressor; HPC=high pressure com-
pressor; LPT=low pressure turbine; HPT = high pressure tur-
bine; and N1, N2 = fan and core speeds.

sis) model is to predict the remaining useful life of the engine
based on the 21 measurements obtained at a given time. To
perform the RUL prediction, we build a convolutional neural
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network (CNN) model. It consists of two convolutional lay-
ers: 19-5x17 and 25-16x1 with ReLu activation, followed by
a global average pooling and a dense-connected layer. Train-
ing loss is defined as MSE between predicted RULs and tar-
geted RULs. Time window size for the input signals is 35.
We use the sliding window to augment the dataset for train-
ing of the model. The data is standardized/scaled by mean
and standard deviation of individual variables.

Model performance comparison Prognostics or RUL pre-
diction is a regression problem. We use MSE as the perfor-
mance measure. Figure 6 compares the predicted and the true
RULs for six samples of time-series sequences, where for pre-
dicted RULs we show both for clean (in green color) and per-
turbed (in red color) model outputs. From Figure 6 one can
clearly see that the clean RUL prediction model performs rea-
sonably well by tracking the RUL trajectories. And, more im-
portantly,the adversarial sampling significantly degrades the
model’s prediction capability by resulting in significant in-
crease on prediction errors.

Figure 6. Comparison between the true and the predicted
RULs for six samples of time-series sequences.

To quantitatively show the prediction error increase due to
the adversarial samples, the performance metrics(MSE) of
the RUL prediction models between the clean model and the
model under adversarial sampling with different perturbation
magnitudes are shown in Table 2. With a small perturbation
magnitude of 0.025, the MSE increases from 242.93 of the
clean model to 421.05 after the perturbation, a 73.3% increase
on MSE. Such prediction error increase can result in a signif-
icant economic consequences. For example, over-prediction
of RUL could lead to missing a timely maintenance which
might cause a catastrophic damage to the asset monitored.

Table 2. Performance (MSE) of the prediction models with
different perturbation magnitudes.

Perturbation
Magnitude MSE
0.000 242.93
0.025 421.05
0.045 876.89
0.065 1504.13

Figure 7 shows comparison between a clean sample and the
corresponding adversarial perturbed sample, when perturba-
tion magnitude is 0.025. Each subplot shows a normalized
variable (sensor measurement) over time (cycle). For plotting
convenience, we only show 12 variables out of the 21 vari-
ables. One can see that our perturbation is very small (almost
invisible), and thus it is most likely undetectable in real world
operation.

5. CONCLUSION

The vulnerability of deep learning models to adversarial at-
tacks has been actively studied in the domains of CV and
NLP. PHM algorithms’ vulnerability to adversarial attacks,
however, has not yet attracted too much attention in the PHM
community, despite the fact that deep learning models have
been increasingly adopted to PHM applications. This paper
presents an initial study on PHM algorithms’ vulnerability
to adversarial attacks. We discussed the strategies of attack-
ing PHM algorithms by considering their unique characteris-
tics of PHM data type, i.e., time-series sensor measurements.
Experiments on the two real-world PHM applications case
studies validated the effectiveness of the attack strategies and
demonstrated that PHM algorithms indeed are vulnerable to
adversarial attacks.

Our future work will include:
1) Investigating other two types of attacks, namely black-box
and gray-box attacks, to PHM algorithms in addition to the
white-box attacks considered in this paper.
2) Exploring strategies for attacking traditional machine
learning (i.e., non DL) PHM algorithms.
3) Exploring strategies on defending adversarial attacks to
PHM algorithms.
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Figure 7. Comparison between clean and perturbed signals for the C-MAPSS data (with perturbation magnitude of 0.025).
X-axis is the time unit and Y-axis is the normalized variable value (measurement).

NOMENCLATURE

f(.) normality function
g(.) transform function
x multivariate time series
x′ perturbed multivariate time series
y target label
L adversarial loss function
PRC precision-recall curves
ROC receiver operating characteristic
RUL remaining useful life
T time window length
ϵ perturbation magnitude
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