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ABSTRACT 

Accurately predicting the entire capacity trajectory using 

early-life data enables more efficient cell design, operation, 

maintenance, and evaluation for second-life use. To 

accomplish this challenging task, we propose an end-to-end 

learning framework combining empirical capacity fade 

models and data-driven machine learning models, in which 

the two types of models are closely coupled. First, we 

evaluate the accuracy of a library of relevant empirical 

models which have been shown to model the observed 

capacity fade of Li-ion cells with reasonable accuracy. After 

selecting a power-law model, we formulate an end-to-end 

learning problem that simultaneously fits the chosen power-

law model to estimate the capacity fade curve and trains an 

elastic net to estimate the best-fit parameters of the empirical 

model. Our proposed end-to-end learning framework is 

evaluated using a publicly available battery dataset consisting 

of 124 lithium-iron-phosphate/graphite cells charged with 

various fast-charging protocols. This dataset was split into 

training, primary test, and secondary test datasets. Our 

method performs on par with existing early prediction 

methods in terms of cycle life prediction, attaining root-

mean-square errors of 112 cycles and 165 cycles for primary 

and secondary test datasets, respectively. In addition to the 

cycle life prediction, our method possesses a unique ability to 

predict the entire capacity trajectory. 

1. INTRODUCTION 

Capacity-trajectory prediction is a critically important task 

given its broad utility throughout the battery product life 

cycle. Examples where capacity fade models prove useful are 

new material selection, manufacturing process validation, 

remaining useful life estimation for predictive maintenance, 

and charge/discharge protocol optimization [1]–[3]. Even 

more useful is estimating a battery cell’s capacity trajectory 

when the cell has not exhibited any noticeable capacity 

degradation. Additionally, a new area of research aims to 

repurpose Li-ion batteries from electric vehicles (EVs). This 

research requires more understanding of the battery 

degradation profile than simply estimating the final cycle life 

of a cell [4]. Accurately predicting the entire capacity 

trajectory using early-life data not only provides accurate and 

early estimates of battery end-of-life (EoL), but also sheds 

light on the battery capacity degradation process over cycles. 

These tools will enable more efficient cell design, operation, 

maintenance, and evaluation for second-life use. 

A different yet related area of research is battery lifetime 

prognostics. Many studies on battery lifetime prognostics 

attempted battery capacity-trajectory prediction. They can be 

divided into model-based methods and data-driven methods 

[5]. Model-based methods are developed based on a 

mechanistic model of degradation mechanisms [6], [7], an 

equivalent circuit model (ECM) of electrical performance 

[8], or an empirical model of capacity fade [1], [9]–[12]. The 

mechanistic model-based methods consider the internal 

electrochemical processes and generally achieve the highest 

accuracy and the greatest generalization ability. However, the 

high computation cost, expertise required, and difficulties in 

identifying model parameters inhibit the use of mechanistic 
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model-based methods. ECM-based methods consider battery 

aging mechanisms to some degree by modeling the growth of 

internal resistance. However, this technique often requires 

the use of electrochemical impedance spectroscopy (EIS), 

which necessitates expensive test equipment and may 

accelerate the battery aging process. Empirical model-based 

methods have been widely used because they are easy to 

establish and achieve acceptable accuracy. The most 

common implementation of empirical models is done by 

using a filtering algorithm to online estimate the empirical 

model parameters based on the latest available data 

measurements. Common filtering variants include particle 

filters [1], [11], extended Kalman filters [13], and unscented 

Kalman filters [14]. An inherent advantage to filtering 

techniques is that they can produce probabilistic predictions, 

making them more easily integrated into a prognostics-

informed decision-making framework. The main drawback 

of empirical model-based methods is that they require a large 

amount of historical capacity fade data from the online cell in 

order to be accurate in estimating its future trajectory. This is 

also a common issue for most battery lifetime prognostic 

methods: they generally need to collect more than 40% of the 

entire life-cycle data from a cell to either estimate model 

parameters or train a data-driven model [5]. Another 

drawback of empirical model-based methods is the lack of 

shared information between cells. Empirical models are not 

able to be adjusted given extra information about previous 

best fit parameters from other cells in the fleet. This lack of 

shared information combined with the growing size of 

modern battery datasets is a main reason why data-driven 

models are an effective alternative.   

Data-driven methods predict the capacity degradation trend 

based on historical data from a group of similar cells using 

various techniques including support vector machine [15], 

relevance vector machine [16], Gaussian process regression 

[17], and neural networks [18], [19]. Researchers in [20] 

developed a regression model using early-life statistical 

features from cell voltage vs. discharge capacity curves to 

estimate cell cycle life. The work showed for the first time 

that the cycle life for cells cycled under various conditions 

could be accurately estimated using data from only the first 

100 cycles. Most related to our work is the early prediction 

study presented in [21]. Instead of only focusing on a point 

prediction like cell end-of-life (EoL) or remaining useful life 

(RUL), Li et al. proposed using a long short-term memory 

(LSTM) deep learning model to predict the battery capacity 

trajectory [21]. The input to the trained sequence-to-sequence 

LSTM model is nothing more than the previous capacity 

measurements of the online cell. The method achieved good 

accuracy on both capacity-trajectory prediction and cycle life 

prediction for the blink dataset. [21]. While all these new 

methods have found success, the techniques largely consist 

of machine/deep learning models that are trained entirely on 

statistical correlations found in training data. Researchers 

have opted for chemistry- and cycling profile-agnostic 

machine learning models to gain predictive accuracy but have 

in turn sacrificed model generalizability. The small sizes of 

battery aging test datasets tend to lead to overfit machine 

learning models as more accuracy is demanded of them. This 

is especially true for deep learning models and regression 

models which perform single point prediction, i.e. predicting 

cell EoL and RUL. It is critically important to evaluate data-

driven model’s generalization performance on more unseen 

test datasets including cells with different cycling conditions 

and storage conditions (e.g., storage time). There remains a 

significant opportunity for advancing the state-of-the-art in 

capacity-trajectory prediction to include higher accuracy, 

better generalization to new cycling conditions, and earlier 

prediction.  

In this study, we aim to improve the information output of 

data-driven battery early life prediction machine learning 

models by augmenting them with empirical capacity fade 

models. Frist, we evaluate the accuracy of a library of 

relevant empirical models which have been shown to model 

the observed capacity fade of Li-ion cells with reasonable 

accuracy. We then formulate an end-to-end learning problem 

that simultaneously fits the chosen empirical model to 

estimate the capacity fade curve and trains a machine learning 

model to estimate the best-fit parameters of the empirical 

model. By solving this end-to-end learning problem, rather 

than sequentially executing the separate tasks of fitting the 

capacity fade model and training the machine learning model, 

we achieve a more optimal solution which is shown to better 

balance these two objectives. Our proposed end-to-end 

learning framework is evaluated using a publicly available 

battery dataset consisting of 124 lithium-iron-

phosphate/graphite (LFP/graphite) cells charged with various 

fast-charging protocols [20], [22]. 

The rest of the paper is outlined as follows: Section 2 

describes the methodology for the end-to-end learning 

framework and the implementation procedure for the end-to-

end learning model. Section 3 presents the results and 

comparisons with other methods. Conclusions are drawn in 

Section 4. 

2. METHODOLOGY 

2.1. Empirical Capacity Fade Models 

There are several empirical models reported in the literature 

that can be used to represent the Li-ion battery capacity fade 

behavior, including linear model [1], two-term exponential 

model [12], exponential/linear hybrid model [1], power-law 

model [10], exponential/power-law hybrid model [16], and 

two-term power-law model [10]. Each of the candidate 

empirical capacity fade models are evaluated for use in the 

end-to-end learning framework. The capacity data used for 

empirical model fitting were first normalized by dividing 

each capacity measurement by the value of the first capacity 

measurement. This ensures all cells start at a normalized 
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capacity of 1.0. Other than normalization, no preprocessing 

or denoising was performed. The models were evaluated for 

both overall fitting accuracy by comparing mean RMSE 

across all 41 training cells, and model simplicity indicated by 

the number of parameters needed to define the capacity fade 

curve. The power-law model was found to have acceptable 

accuracy (more accurate than the linear model and the 

exponential/linear hybrid model) and the least number of 

parameters, and so it was chosen as the candidate model for 

the end-to-end learning framework. 

Power-law model [10]: This model assumes capacity fade 

can be represented as a single power law model, shown as 

 1
b

k
Q a k= − ⋅  (1) 

where a is the coefficient of the power law and b is the power-

law exponent. The choice of empirical model is dataset 

dependent, and any of the aforementioned empirical models 

can be used in the proposed end-to-end learning framework 

without increasing implementation difficulty.      

2.2. End-to-end Learning Framework 

The end-to-end learning framework simultaneously fits an 

empirical model to estimate the capacity trajectory and trains 

a machine learning model to estimate the best-fit parameters 

of the empirical model. After selecting the power-law model 

as the empirical model and elastic net as the machine learning 

model, the problem is formulated as 
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where m is the number of sample points for a capacity fade 

curve; n is the number of cells in the training dataset; λ is the 

ratio of the first term in modeling the capacity-trajectory 

prediction error, Q is an n×m capacity matrix for all sample 

points in the capacity fade curves of all cells and K is the 

corresponding n×m cycle matrix; p1 and p2 are respectively 

the vectors of best-fit values of two power-law capacity fade 

model parameters log ����	 and b; X is the early-life feature 

matrix; w1 and w2 are the linear regression model coefficients 

for estimating best-fit empirical model parameters; α is the 

regularization magnitude; r is the ratio of the L1 norm term in 

the regularization; QEoL are the end-of-life capacity values of 

all training cells; lmax and lmin are the upper and lower limits 

for the cycle life and are empirically determined as 300 and 

3000 in this study; and p1,min, p2,min, p1,max, and p2,max are the 

upper and lower limits for the two empirical model 

parameters. Note that we use the same number of sample 

points m from the capacity fade curve of each cell, regardless 

of its cycle life. If we were to train the model using all the 

available capacity datapoints for each cell (i.e. m is equal to 

the cycle life of a given cell) in the training dataset, the model 

would be biased towards cells with longer cycle lives. A 

solution to this is to sample each cell’s capacity fade curve at 

an evenly spaced interval of cycle number, so that every cell 

has the same impact during model training. 

The objective is to minimize the capacity fade prediction 

error for all cells in the training dataset as well as the 

regularization penalties for the linear regression model 

coefficients. The first term in the objective function describes 

the log10-scale error of capacity-trajectory prediction for all 

cells. The log10 function is inherently more sensitive to the 

sample points at the early stage of the capacity trajectory. To 

increase model sensitivity to the capacity points near the EoL, 

we add a second term to the objective function which 

measures the capacity prediction error at the EoL. The third 

and fourth terms are the L1 and L2 regularization penalties.  

The early-life features, X, are fed as input to the linear 

regression model which predicts the empirical model 

parameters. Six early-life features are used as the input to the 

machine learning model. These six features are the same 

input features used in the “discharge model” introduced in 

[20], namely initial capacity, maximum capacity between 

cycle 10 and cycle 100, log��|Min�∆�������	| , 

log��|Var�∆�������	| , log��|Skew�∆�������	| , and 

log��|Kurt�∆�������	|. Here, the terminology ∆�������  is 

referring to the difference in the discharge capacity vs voltage 

curves at cycle 100 and cycle 10. Researchers in [20] 

developed numerous features based on the difference in 

curves at cycle 100 and cycle 10. While many features were 

proposed and examined, the “discharge model” used four 

features from the  ∆�������  vs. voltage curve and two 

features from the capacity fade curve for the first 100 cycles, 

achieving the best accuracy for cycle life prediction [20], 

[22]. We chose to use the same six early-life features to 

demonstrate our proposed end-to-end learning framework’s 

effectiveness as compared to similarly reported models. In 

our future work, feature selection will be performed for a 

more optimized and thorough discussion. 

To better understand the advantages of the proposed end-to-

end learning framework, we formulate a sequential 

optimization problem to be used as a baseline framework for 

comparison. The sequential optimization framework 
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executes the separate tasks of fitting a capacity fade model 

and training a machine learning model. First, we obtain best-

fit empirical model parameters for all cells in the training set 

by solving the following unconstrained curve-fitting 

optimization problem 
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The curve-fitting results for the training cells are used to set 

the upper and lower limits for the empirical model 

parameters. These limits are also used in the end-to-end 

framework. The limits are expressed as 
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where p1, is the fitted empirical model parameters obtained 

by solving the unconstrained curve-fitting optimization 

problem in Eq. (3). These empirical model parameter 

constraints are incorporated into the end-to-end learning 

model for two purposes. First, they incorporate relevant 

information about typical empirical model parameter values 

from the training dataset. The constraints loosely restrict the 

range of the empirical model parameters (and subsequently 

the range of predicted cycle lives) during the training process 

to improve the model’s generalization capability. Second, the 

constraints ensure the predictions from the model remain 

physically meaningful, limiting the model to only predict 

capacity fade trajectories that decrease and eventually cross 

the EoL threshold.  

For the second part of the sequential optimization method, we 

define two elastic net machine learning models that map the 

early-life features to the best-fit empirical model parameters, 

one for each empirical model parameter. The training 

processes of these two elastic net models are formulated as 
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2.3. Implementation of the End-to-end Learning Model 

The optimization problem formulated for the end-to-end 

learning model in Eq. (2) can be solved by most off-the-shelf 

solvers. However, the heaviest computation burden is in 

determining the values for the three hyperparameters, λ, α, 

and r. To determine the optimal values for the 

hyperparameters, we use a random search technique 

combined with repeated cross validation (CV). The candidate 

hyperparameters are randomly and independently sampled 

from uniform distributions, denoted as 
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A random search method was chosen because it was 

determined during early experimentation that the model was 

more sensitive to the regularization parameter α, but 

indifferent to changes in �  and r [23]. Knowing this and 

determining that the average evaluation time for a single set 

of hyperparameter values takes roughly 4 minutes, random 

search was used to better explore the large α parameter space 

in a shorter amount of time than a grid search method did. To 

evaluate the trained end-to-end model with a specific set of 

hyperparameters, a CV method is employed. The v-fold CV 

may produce an error estimate that is highly variable if the 

dataset is too small, which is exactly the case for this battery 

capacity-trajectory prediction problem. In order to enhance 

the stability of the v-fold CV estimate, we propose using 

repeated v-fold CV to determine the optimal hyperparameters 

for the end-to-end learning model.  

The pseudo-code for determining the optimal 

hyperparameters and implementing an optimized end-to-end 

learning framework is summarized in Table 1. The procedure 

begins with the random generation of N hyperparameter 

tuples based on their distributions. Next, T training datasets 

are generated by randomly splitting the 41-cell training 

dataset into v-folds of nearly equal size. Then, v-fold cross 

validation is performed for all sets T, and the repeated cross-

validation error (RCV) is recorded. Using T sets better 

accounts for the run-to-run variation experienced by 

randomly generating the v-folds. To select the optimal 

hyperparameters, the mean RCV value and standard 

deviation is calculated for all N tuples of hyperparameters. 

There will exist a few different sets of hyperparameters which 

are found to produce mean RCV less than the minimum mean 

RCV plus the corresponding standard deviation, and so we 

select the set of hyperparameters in which α is maximum. 

Selecting a set of hyperparameters which produce 

approximate minimum error and have a large regularization 

magnitude α ensures the end-to-end model is less likely to 

overfit the training data. In this study, N is set to 100, T is set 

to 100, and v is set to 4. consists of the following steps. 

3. RESULTS 

The open-source battery aging dataset in [20] was used to 

validate the proposed end-to-end learning framework. The 

dataset consists of 124 LFP/graphite A123 APR18650M1A 

cells cycled under different fast-charging protocols. The  
 

Table 1. Procedure for implementing the end-to-end 

learning model 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

5 

Algorithm: Implementing the end-to-end learning model 

Inputs:   Training dataset: X, Q, K  

Hyperparameter distributions: 

�~��0.5,1	; $~��0,1	; log�� % ~��&4,&0.5	 

Sample number for the random search: N  

Number of repeated v-fold CV evaluations: T  

CV folds: v 

Output:  Trained machine learning model: w1, w2 

1 for i=1: N 

2   Generate a tuple of random hyperparameters: (αi, ri, 

  η1,i) based on their distributions. 

3   for j=1: T 

4    Generate a CV dataset by randomly splitting the 

   42-cell training dataset into v subsets with nearly 

   equal size. 

5    for k=1: v 

6     Train the end-to-end learning model using the 

    CV subsets excluding the kth subset.  

7     Validate the trained model on the kth subset 

    and calculate the validation error, CVk 

8    end for 

9    Calculate the jth v-fold CV error: 

( )

1

CV CV
k

j

k

j

v
=

=  

10   end for 

11   Save the repeated v-fold CV error vector: 

RCVi = {CV(j)}j = 1:T 

12 end for  

13 Calculate the mean RCVi,mean and standard deviation 

RCVi,std of the repeated v-fold CV error vector RCVi 

corresponding to the hyperparameters λ1,i, αi, and ri. 

14 Obtain the sample indices of hyperparameter tuples 

which have minimum RCVi,mean: 

 
,mean

arg min RCV
i

i
i

− =  

15 Determine the optimal sample index: 

( )*

,mean ,mean ,std
arg max  | RCV RCV RCVi i i ii

i α − −= ≤ +  

16 Train the end-to-end model on the training dataset using 

the optimal hyperparameters *
i

λ , *
i

α , and *
i

r . 

 

original authors split the dataset into three subsets, namely a 

training dataset (41 cells), a primary test dataset (43 cells), 

and a secondary test dataset (40 cells). To ensure the 

proposed end-to-end learning framework is directly 

comparable to similar models for cycle life prediction, the 

same dataset partitioning used in [20] is also used in this 

paper. The capacity fade trajectories of all the cells are plotted 

in Fig. 1. One cell in the primary test dataset experienced 

extremely fast capacity degradation and was recognized as an 

outlier in the original dataset description. Therefore, we have 

removed this cell from the primary test dataset. The end-to-

end learning framework is trained on the training dataset and 

evaluated on both the primary and secondary test datasets. 

Figure 2 presents the predicted capacity trajectories for some 

sample cells in the primary and secondary test datasets. 

 

 
Figure 1. Capacity fade curves of all 124 cells in the 

open-source dataset. 

 
(a) 

 
(b) 

Figure 2. Example capacity-trajectory predictions by the 

end-to-end learning model. (a) Four primary test cells. (b) 

Four secondary test cells. 
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3.1. Model Performance Evaluation Criteria 

The proposed end-to-end learning framework not only 

provides cycle life estimates, but also provides an estimate of 

the capacity trajectory. Thus, it is important that a predicted 

capacity fade curve for a cell accurately models the observed 

capacity trajectory, and so we define the capacity-based root-

mean-square error (RMSE) metric as follows 

 ( )
2

1 1

1 1 ˆRMSE
n m

Q ij ij

i j

Q Q
n m= =

 
= − 

 
   (8) 

where n is the cell number, m is the number of points sampled 

from the capacity trajectory, �()  is the true capacity value in 

mAh for cell i at the jth sample point of the capacity 

trajectory, and �*() is the predicted capacity value for �() . In 

this study, m is set to 100 to strike a balance between 

computation time and modeling accuracy. 

While RMSEQ is used to evaluate the model’s predictive 

performance on estimating the capacity values at specific 

cycles, we define another RMSE metric to evaluate the 

model’s predictive performance on estimating the cycle 

number at a specific capacity fade level. This metric is 

denoted as 

 ( )
2

Cycle

1 1

1 1 ˆRMSE
n m

ij ij

i j

k k
n m= =

 
= − 

 
   (9) 

where +() is the true cycle value for cell i at the capacity level 

of the jth sample point, and +*() is the predicted cycle for +().  

In addition to the metrics used to evaluate the capacity-

trajectory predictions, we also define the RMSE and mean 

absolute percentage error (MAPE) to evaluate the end-to-end 

learning model’s performance on cycle life prediction. In this 

study, and similar to the work in [20], a cell’s cycle life is 

defined as the cycle number at which the cell’s capacity 

reaches 80% of the nominal capacity. These two metrics are 

defined as 
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where +,-.,( and +*,-.,( are the observed and predicted cycle 

lives of the ith cell, respectively. 

3.2. Model Performance 

Model performance is evaluated from two perspectives. First, 

we evaluated the end-to-end framework and the sequential 

optimization framework in terms of capacity-trajectory 

prediction accuracy. This analysis provides insight into the 

apparent advantage of the end-to-end learning framework in 

its ability to accurately predict a cell’s capacity trajectory. 

Second, we compared the end-to-end learning framework 

with a state-of-the-art model (i.e., “discharge model” in [20]) 

on cycle life prediction. 

3.2.1. Capacity-Trajectory Prediction Performance 

The proposed end-to-end learning framework was developed 

to enable early capacity-trajectory prediction. Similar early 

prediction models are only trained to estimate cell EoL at a 

specific capacity threshold, and therefore cannot be directly 

compared to the end-to-end learning framework in this area. 

The sequential optimization framework outlined in Section 

2.2 is proposed as a baseline comparison model for the end-

to-end framework. The first step in training the sequential 

optimization framework is fitting an empirical model to each 

cell’s capacity fade curve. To show how accurate the curve-

fitting procedure is, we included the curve-fitting RMSEs in 

Table 2 (see the “fitted empirical model”). Next, the elastic 

net machine learning model is trained to predict the fitted 

empirical model parameters by mapping from early-life 

features. However, for all but one of the test datasets, this 

two-step sequential process was found to introduce large 

errors, evident by the largest RMSE1and RMSE23456 values in 

Table 2. 

The poor performance of the sequential model is due to the 

two separately executed tasks used to train the model. First 

fitting the empirical model to the cells biases the sequential 

model to preferring a more accurate capacity-trajectory 

prediction. This overfitting of the empirical model 

parameters in the sequential model is evident when the 

empirical model parameters for the training dataset are 

plotted in the parameter space (Fig. 3b). The predicted 

empirical model parameters from the end-to-end learning 

model for the training dataset are shown in Fig. 3a for 

comparison. Specifically, we can see that the sequential 

optimization method overfit both parameters a and b, evident 

by the larger dispersion of the empirical model parameters on 

the less informative axis d2 in Fig. 3b. We know this to be 

overfitting because the end-to-end learning framework 

achieved greater accuracy on all but one dataset and error 

metric in Table 2 while having a much smaller dispersion of 

fitted parameter values along the d2 axis. The same 

observation can be made about the d1 axis. The d1 axis is 

shown to correlate with cell cycle life more strongly, and the 

end-to-end model was found to slightly increase parameter 

dispersion by about 8% in this direction. The overall smaller 

parameter value variance in the d2 direction, and increased 

variance in the d1 direction in Fig. 3a is evidence that the end-

to-end model is more appropriately balancing the two 

objectives of fitting empirical model parameters and 

minimizing the elastic net regression weights. This improved 

balance between objectives was found to be the main reason 

why the end-to-end learning framework achieved much more 

consistent accuracy across the three datasets in Table 2. 
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Table 2. Capacity-trajectory prediction accuracy

Method 
RMSEQ RMSECycle 

Train Primary Secondary Train Primary Secondary 

End-to-End 0.041 0.037 0.069 67 104 135 

Sequential optimization 0.047 0.057 0.047 82 212 534 

Fitted empirical model 0.013 0.012 0.015 29 44 70 

 

(a) end-to-end framework (b) sequential optimization framework 

Figure 3. Predicted empirical model parameters for training dataset

3.2.2. Cycle-Life Prediction Performance 

Neither the proposed end-to-end learning framework nor the 

sequential optimization framework directly estimates cell 

cycle life. However, based on the predicted capacity 

trajectory, we can derive the predicted cycle life at any 

capacity value by evaluating the predicted capacity fade 

curve. To be consistent with prior literature, the cycle life of 

a cell is defined as the cycle at which the cell reaches 80% 

nominal capacity. The nominal capacity for the cells in this 

study was reported to be 1.1 Ah, and therefore the EoL 

threshold is 0.88 Ah. For comparison, the derived cycle life 

prediction results are presented alongside an elastic net model 

that directly maps the early-life features to cell cycle life. The 

elastic net model is equivalent to the “discharge model” 

reported in [20].  

As shown in Table 3, the end-to-end learning framework 

achieved accuracies on par with those of the elastic net for 

both the training and secondary test datasets. However, the 

error of the end-to-end model was much greater than that of 

the elastic net model for the primary test dataset. It is 

reasonable to expect that the elastic net model would achieve 

higher accuracies than the end-to-end model because the 

former does not have to consider fitting an empirical model, 

but this is shown to not necessarily be the case given the 

better performance by the end-to-end model on the other two 

datasets. 

 

Table 3. Model errors for cycle life prediction 

Method 
RMSEEoL MAPEEoL 

Train Primary Secondary Train Primary Secondary 

End-to-End 69 112 165 10.0 10.4 9.2 

Elastic net  75 82 173 9.6 9.8 8.7 

Sequential optimization 88 327 769 12.5 16.9 55.3 

To further investigate the accuracy discrepancy between the 

proposed end-to-end learning model and the elastic net 

model, we retrained the elastic net model to estimate cell 

cycle life at 90% nominal capacity and plotted the predicted 

cycle lives at both 80% and 90% nominal capacity in Fig. 4 

and Fig. 5, respectively, and present the errors for the 90% 

nominal capacity prediction problem in Table 4. By 

analyzing the cycle life errors at different levels of 

degradation, we can get a better understanding of whether the 

large errors are a result of a larger modeling issue or a result 

of a few outlier datapoints in the dataset. Figures 4 and 5 

show that the large accuracy difference between the models 
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for the primary test dataset in Table 3 mainly comes from the 

predictions on just two cells: cell 1 and cell 3. These two cells 

have 80% normalized capacity cycle lives upwards of 2000 

cycles. Both the elastic net model and the proposed end-to-

end model struggled to predict the cycle lives of cells 1 and 

3, regardless of the EoL criteria used. The high and sporadic 

errors observed for cells 1 and 3 in the primary test dataset 

are due to two main reasons.  Firstly, the training dataset only 

contains a single cell (cell 2) with a similarly high cycle life 

to cells 1 and 3 in the primary test dataset. The lack of training 

data in the high cycle life region suggests that the trained 

models will have lower accuracy and less confidence in 

predicting cells in the high cycle life region, as seen in Figs. 

4, 5 and 6. Second, cells 1 and 3 of the primary test dataset 

are observed to have a high level of noise in their capacity 

measurements, as shown in Fig. 6. It is for these reasons that 

we saw sporadic behavior in both models on the primary test 

dataset. Also, it can be observed that the end-to-end model 

was more consistent in its cycle life prediction for the high 

cycle life cells shown in Fig. 6. This is because the end-to-

end framework was trained a single time to learn and predict 

the capacity trajectory. So, when it was evaluated at a higher 

EoL cut-off than 80%, it did not need to be retrained, and its 

cycle life prediction will always be found to decrease 

following the capacity fade model. The same cannot be said 

about the elastic net model. A good example of this issue is 

the predictions for cell 1 in Fig. 6b. The elastic net model was 

found to increase its 90% nominal capacity cycle life 

prediction relative to its 80% nominal capacity prediction. 

This sort of prediction violates the commonly reported 

physical phenomenon where the aging of a Li-ion cell causes 

the cell capacity to decrease monotonically with cycle and 

time.  

(a) End-to-end leaning framework 

(b) Elastic net 

Figure 4. Cycle life predictions for primary and 

secondary datasets (at 80% nominal capacity) 

 

(a) End-to-end leaning framework 

(b) Elastic net 

Figure 5. Cycle life prediction for primary and secondary 

datasets (at 90% nominal capacity) 
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(a) Cell 2 from the training dataset 

 

 (b) Cell 1 (red) and 3 (blue) in primary test dataset 

Figure 6. Prediction for cells in the high cycle life region. Pentagrams represent the predicted cycle lives by elastic net 

model. 

Table 4. Accuracy for cycle number prediction corresponding to 90% nominal capacity 

Method 
RMSEEoL,90 MAPEEoL,90 

Train Primary Secondary Train Primary Secondary 

End-to-End 62 93 175 9.8 10.5 12.9 

Elastic net 55 149 155 8.6 10.7 10.3 

4. CONCLUSION 

An end-to-end learning framework has been proposed for Li-

ion battery early life prediction. The proposed method 

simultaneously fits an empirical model to estimate the 

capacity trajectory and trains a machine learning model to 

estimate the best-fit parameters of the empirical model using 

early-life features. The end-to-end learning framework 

advances the state-of-the-art in early life prediction by having 

the unique ability to predict a cell’s entire capacity trajectory 

using only data from the first 100 cycles. Using the predicted 

capacity trajectory, the cycle life of a cell can be derived for 

any capacity threshold. The proposed end-to-end learning 

framework is shown to better balance the tradeoff between 

empirical model fitting accuracy and machine learning 

prediction accuracy than a baseline comparison framework 

which sequentially executes the separate tasks of fitting an 

empirical model and training a machine learning model. A 

comparative study is conducted on a publicly available 

battery dataset consisting of 124 lithium-iron-

phosphate/graphite cells charged with various fast-charging 

protocols. The end-to-end learning framework is shown to 

achieve cycle life prediction accuracies on par with, or better 

than current state-of-the-art models, while also providing 

more physically compliant results. The proposed method 

shows promise in applications like Li-ion battery second-life 

use where predicting the entire capacity trajectory of a cell 

gives more insight into the current internal degradation of the 

cell and enables more accurate and timely retirement of cells 

from the field so that second-life use is maximized. 
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