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ABSTRACT

In this work, the sensor data from a gas turbine system was
analyzed with the objective of modeling the health status of
the system. A variety of classification models of the sys-
tem were developed in a three-class problem to differentiate
healthy, deteriorated and failed system states to explore the
ability of machine learning models to provide early warning
of upcoming incidents. However, there are limited examples
of failure incidents and the available examples do not cover
the scope of possible failures. Therefore the challenge is to
create a model that detects failures in new unseen incidents,
while also successfully applying that model to different vehi-
cles of the same type. Three approaches to selecting training
data were used. The first followed a traditional method of
randomly selecting data points from all data according to a
target ratio between training and testing data for each data
class. The second data selection strategy was to consider data
related to failure incidents as a whole and select certain in-
cidents to include in training, and the remaining ones to be
unseen in testing. The third approach was a cross-validation-
inspired approach, separating data into folds but training and
testing models based on failure incidents. In addition to in-
vestigating training and data selection strategies, the effect
of hyperparameter optimization was explored as well as the
effect of varying the time period of the deteriorated class.
The classification methods included support vector machines,
Gaussian Naı̈ve Bayes, Random Forest, Adaboost, multilayer
perceptron, k-nearest neighbor, and extreme gradient boost-
ing. Ensemble models were also created to leverage all the
individual classification models that were developed. This
paper describes the comprehensive results that were obtained
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using the various approaches and combinations, highlighting
the respective benefits and limitations.

1. INTRODUCTION

Rapid developments in sensor technology, data processing
tools and data storage capability have helped fuel an increased
appetite for equipment health monitoring in mechanical sys-
tems. As a result, the number of sensors and amount of data
collected for health monitoring has grown tremendously. It is
hoped that by collecting large quantities of operational data,
predictive tools can be developed that will provide opera-
tional, maintenance and safety benefits. Fault detection, fault
diagnosis, prognostics and health management for mechani-
cal systems is an active research field. Data mining and ma-
chine learning techniques are at the core of this analysis and
have been key to the ongoing advancements in this area to ad-
dress the challenge of extracting useful results from the data
collected.

In this work, the sensor data from a gas turbine system was
analyzed with the objective of modeling the health status of
the system. Previous efforts (Cheung, To, & Valdés, 2020)
had used a two-class approach for this problem, to distin-
guish healthy and failed states of the system. Some of the key
findings were that the selection of the training data sets is a
very important consideration, as the success of the classifiers
were significantly diminished for the second technique tested
in which whole failure events were withheld from training.
Another outcome was that despite simplification of the sys-
tem into two states, the results showed accurate predictions
could still be achieved, and that an ensemble could be used
to leverage a variety of classification and anomaly detection
models. To build on this work, a third class labeled as de-
teriorated system data was added prior to each failure event
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to explore the ability of machine learning models to provide
early warning of upcoming incidents.

Three approaches to selecting training data were used. The
first followed a traditional method of randomly selecting data
points from all data according to desired percentages. The
second data selection strategy was to consider data related
to failure incidents as a whole and select certain incidents to
include in training, and the remaining ones to be unseen in
testing. These first two approaches were explored initially in
(Cheung et al., 2020). A third approach was added in this
work, namely a cross-validation inspired approach. In addi-
tion to investigating training and data selection strategies, the
effect of hyperparameter optimization was explored as well as
the effect of varying the time period of the deteriorated class
of data.

In many real-world applications, a severe class imbalance ex-
ists between available normal, healthy system data and data
from failure incidents. Furthermore, the full scope of possi-
ble system failures is not captured by data that can be used for
training models. Finally, the variation between vehicles of the
same type presents an additional challenge for model devel-
opment. In the search for system models that are sufficiently
robust and flexible to overcome these challenges, investigat-
ing different data selection strategies for model training has
been a key focus area.

Consequently, the exploration of data selection, or model
training schemes as alternatives to conventional random sam-
pling were pursued in order to investigate the ability and flex-
ibility of machine learning models to accurately identify the
health status of the gas turbine system in two different vehi-
cles, though not identical but with similar sensor systems.

Through the investigation of these data selection techniques,
different classification methods, hyperparameter optimiza-
tion, and time period of the deteriorated class, a comparison
of the different approaches and techniques can be made, pro-
viding insight into which techniques are most effective in this
challenging problem, as well as highlighting the respective
benefits and limitations.

This paper is organized as follows: Section 2 provides details
of the gas turbine data and the three data classes, Section 3
gives an overview of the analysis approach, Section 4 de-
scribes the methods and tools used for data analysis, Section 5
details the selection of training and testing sets, Section 6 dis-
cusses the implementation details and model hyperparameter
settings, Section 7 presents and discusses the results of the
analysis, and Section 8 summarizes the findings.

2. GAS TURBINE DATA

Gas turbine (GT) data from two separate vehicles were ob-
tained for analysis, referred to as Vehicle 1 and Vehicle 2. A
total of 76 predictor variables were included for developing

models for the GT system, comprising speeds, temperatures,
pressures, vibration levels, and control stick positions. Ad-
ditional details of the sensors are provided in (Cheung et al.,
2020).

A total of seven GT-related incidents were recorded by the
gas turbine sensor system on the two vehicles, six on Vehicle
1 and one on Vehicle 2. For this analysis, the data associated
with the periods of these ‘failure’ incidents were considered
as ‘failed’ data points and belonging to the ‘failed’ class of
data. Previously, all other data would be considered part of
the ‘healthy’ class of data.

2.1. Transition to three-class problem

As a method of early detection, a new data class was added.
The deteriorated period is an adjustable length of time prior
to known failures that was hoped to show some abnormal be-
haviour which could help predict the upcoming failure. Time
periods of 3 and 6 hours were selected to provide a reason-
able distribution of data classes. However, by adding the third
class, anomaly detection models could no longer be used as
they can only separate the data into two groups, normal and
anomalous.

Although it is a reasonable hypothesis that the signals may
show indications of system deterioration prior to a failure,
there is still a large amount of uncertainty surrounding label-
ing of data into classes. The sources of this uncertainty are
twofold. First, only dates of failures were provided without
precise times and therefore errors are introduced in the class
labeling with the chosen start and end mark of a failure event.
Second, the length of the deteriorated time period is arbitrar-
ily selected, and the introduction of information that could
mislead the classifiers in unforeseen ways is a possibility. As
correct labeling may be one of the most vital steps of classi-
fication, these are issues that may be worth reviewing in the
future.

3. OVERVIEW OF ANALYSIS APPROACH

The overall analysis approach, including the different data se-
lection strategies that have been tested in this work, is pre-
sented in Figure 1. Pre-processing was the initial step, to
which raw data was input and from which cleaned and labeled
data was output. More details of the pre-processing steps are
provided in (Cheung et al., 2020).

The three data selection strategies that were explored (fur-
ther described in section 5) are shown in Figure 1 in green
boxes. Random sampling (section 5.1) and blind failure (sec-
tion 5.2) were explored using all available data, as well as
with representatives and hyperparameter optimization. The
outputs from both options were compared within each strat-
egy. In addition to individual classification models, two en-
semble classifiers were created using these two data selec-
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Figure 1. Summary of model building approach

tion strategies, differing slightly in their training and testing
sets. The right column of the figure summarizes the cross-
validation inspired approach (section 5.3), also referred to as
CV-inspired approach. Under- and over-sampling techniques
(further detailed in section 4.2), such as Synthetic Minority
Over-sampling Technique (SMOTE) and the leader cluster-
ing algorithm were implemented before applying the hyper-
parameter optimization via Sherpa, described further in sec-
tion 6. For each classification method in the CV-inspired ap-
proach, four models were created using different folds and
gathered into an ensemble that was tested on a final unseen
fold.

The classification methods (more details provided in sec-
tion 4.1) included Support vector machines, Gaussian Naı̈ve
Bayes, Random Forest, Adaboost, multilayer perceptron, k-
nearest neighbor, and extreme gradient boosting. Ensemble
models were also created, using a decision table classifier, to
leverage all the individual classification models that were de-
veloped.

Previous results obtained when the data was divided into
two classes indicated significant challenges to obtain accu-
rate classification models when all of the data from a specific
failure were withheld (i.e. blind failure data selection strat-
egy). The inclusion of anomaly detection models helped off-
set the poor classification models. However, in a three-class
problem, anomaly detection models can no longer be used. In
efforts to create diverse classifiers that would perform better

on unseen failures, the CV-inspired approach and ensembles
were investigated.

4. METHODS

This section presents the machine learning and other tech-
niques explored in the analysis of the gas turbine data. In
particular, the various classifiers, under-sampling and over-
sampling techniques, and ensemble methods are described.

4.1. Classifier methods

Several classification methods were explored in this work to
develop models for the gas turbine system. The methods
included Support vector machines, Gaussian Naı̈ve Bayes,
Random Forest, Adaboost, multilayer perceptron, k-nearest
neighbor, and XG boost. Ensemble models were also created
to leverage all the individual classification models that were
developed, implementing a decision table classifier.

Support Vector Machines (SVM) are one of the most robust
classifiers as they are the least prone to overfitting (Cortes
& Vapnik, 1995), (De Rainville, Fortin, Gardner, Parizeau,
& Gagné, 2012). A nonlinear classification function is cre-
ated by transforming the feature space to a higher dimension,
through a kernel, where linear boundaries successfully clas-
sify data.

The Gaussian Naı̈ve Bayes (NB) classifier (John & Langley,
1995) makes use of Bayes’ theorem to compute the a poste-
riori probability of belonging to a class given a priori proba-
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bility and knowledge of likelihoods of each feature belonging
to said class. The likelihoods stem from assigning Gaussian
distributions for each feature in the feature space. The naı̈ve
assumption is invoked by assuming the features to be mutu-
ally independent.

The Random Forest (RF) method (Breiman, 2001) outputs the
aggregate decision of a large forest of decision trees trained
on bootstrapped data, a random subset of rows and columns
of the full training data (Hastie, Tibshirani, & Friedman,
2009). This method of bagging or bootstrap aggregation re-
duces the high variance tied to decision trees by averaging
many noisy but approximately unbiased models.

The AdaBoost algorithm (Schapire, 2013) generates a se-
quence of weak learners and computes the weighted sum of
their hypotheses to create a highly accurate classifier. Weak
learners are decision trees with performance slightly better
than random guessing. Weight is assigned to a weak learner
so as to minimize the error made by the sequence of decision
trees thus far. The order of the weak learners ensures that
they cover for each other’s misclassification by adapting the
weight of the subsequent weak learner in favor of the misclas-
sified instances.

The data structure of Neural Networks (NN) was inspired
from the brain’s neural architecture to include multiple nodes
with connections analogous to synapses. NNs with multiple
hidden-layers, or multi-layer perceptrons (MLP) (Rumelhart,
Hinton, & Williams, 1986) linearize the process by activating
nodes in a certain layer based on a linear combination of the
previous layer’s nodes. The initial layer is the set of input
parameters, while the final layer consists of K output nodes
corresponding to the K classes (De Rainville et al., 2012).
The most ‘active’ node in the final layer determines the class.

The K-nearest neighbor (kNN) classifier (Bentley, 1975),
(Omohundro, 1989) considers the data structure and distri-
bution of the labeled training data to make a classification.
Unseen data will be labeled according to the majority class
among the K closest neighbors by Euclidean distance (Hastie
et al., 2009).

Extreme gradient boosting, more commonly referred to as
XG Boost, employs a gradient boosting framework where
decision trees are built sequentially by minimizing the er-
rors from previous models. It is optimized for performance
and computational speed through parallel processing, tree-
pruning, and regularization to avoid overfitting (Chen &
Guestrin, 2016).

The strength of the decision table rule-based classifier lies in
its simplicity as a majority classifier. The ‘best-first’ search
method and cross-validation are employed to evaluate feature
subsets (Kohavi, 1995). The generated decision table relates
the inputs to the output class in an explicit and simple manner.

4.2. Under-sampling and over-sampling techniques

In the CV-inspired approach, described further in section 5.3,
three techniques were used to over- and under-sample the
existing data in order to achieve the desired data distribu-
tion in each fold: Synthetic Minority Over-sampling Tech-
nique (SMOTE), random under-sampling, and a leader clus-
tering algorithm. The latter algorithm was also used prior
to hyperparameter optimization in the random sampling (sec-
tion 5.1.2) and blind failure (section 5.2.2) data selection
strategies in order to reduce the size of the data set.

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) re-
stores balance in the data set by synthesizing new examples
of the minority class. By generating more failure examples
to train the classifier, it is less likely that a biased classifier
with low precision is created. SMOTE uses a kNN algorithm
to find the nearest neighbors in the feature space and place
new samples on the lines connecting existing samples in the
feature space.

The leader clustering algorithm (Hartigan, 1975) is used to
construct samples from the total data set to facilitate the anal-
ysis of data. Given Euclidian distance as a similarity mea-
sure, the algorithm reduces the data set to representative ob-
jects (leaders) that cluster similar (close in distance) samples
into fewer elements. In this way, the constructed samples are
inclusive of the entire space covered by the original data set
and no outliers are left unaccounted for, as may occur with
conventional random sampling.

4.3. Ensemble model training

In addition to individual classification models, two ensemble
classifiers were developed for two of the data selection strate-
gies, namely random sampling and blind failure. The process
followed to generate these ensemble classifiers is summarized
in Figure 2. The individual classifiers, trained on the original
training set, were used to make an array of predictions. The
ensemble models were built by inputting the independent pre-
dictions from the individual classifiers mentioned above into
a decision table that output a final prediction regarding the
health class of the data point. Two approaches were consid-
ered to train the ensemble models:

- Training the decision table using predictions from the
same training data seen by the individual classifiers, and
testing on the same unseen testing data (referred to as
‘ensemble’ model)

- Training the decision table using predictions from a sub-
set of the individual classifiers testing data, and test-
ing on the remaining unseen testing data (referred to as
‘val ensemble’ model)

Although training to testing set ratios were conserved for both
ensemble models, the contents of the testing sets differ.
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Figure 2. Ensemble construction for random sampling and blind failure methods

5. DATA SELECTION STRATEGIES

This section provides details of the training and testing sets
assembled for the three data selection strategies: random
split, blind/withheld failures, and cross- validation inspired
approach. An effort was made to have similarly sized training
and testing sets between the various data selection strategies.

5.1. Random sampling

In the random sampling process, all of the data was shuffled
and then separated into training and testing sets. The sets
were selected to obtain either 65/35 or 70/30 ratio of available
data points for each class in the training vs testing set. In ad-
dition, two time periods for the deteriorated class were inves-
tigated, one of 3 hours and the other of 6 hours. To study the
effects of different deteriorated time periods and data splits,
various training and testing data sets were created.

5.1.1. Random sampling without hyperparameter opti-
mization

For each set of data, four configurations were tested, sum-
marized in Table 1. Results were generated separately from
Vehicle 1 and Vehicle 2 data sets as well as a combined data
set of data from both vehicles.

Table 1. Random sampling configurations

Short form
Label

Length of
Deteriorated
Time Period

Ratio of
data points
per class in
training set

Ratio of
data points
per class in
testing set

3 65 35 3 hours 65% 35%
3 70 30 3 hours 70% 30%
6 65 35 6 hours 65% 35%
6 70 30 6 hours 70% 30%

Table 2, Table 3, and Table 4 describe the number of points
associated with each class in all the configurations training
and testing data sets for Vehicle 1, Vehicle 2, and the com-
bined data set with both vehicles’ data, respectively.

Table 2. Class breakdown of data points in different training
and testing sets for Vehicle 1 GT data

Config.
Data
set Failed Det Healthy Total

3 65 35
Training 23151 588 302675 326414
Testing 12466 317 162980 175763

3 70 30
Training 24931 633 325958 351522
Testing 10686 272 139697 150655

6 65 35
Training 23151 1173 302090 326414
Testing 12466 632 162665 175763

6 70 30
Training 24931 1263 325328 351522
Testing 10686 542 139427 150655

Table 3. Class breakdown of data points in different training
and testing sets for Vehicle 2 GT data

Config.
Data
set Failed Det Healthy Total

3 65 35
Training 5616 702 139002 145320
Testing 3024 379 74848 78251

3 70 30
Training 6048 756 149695 156499
Testing 2592 325 64155 67072

6 65 35
Training 5616 1404 138300 145320
Testing 3024 757 74470 78251

6 70 30
Training 6048 1512 148939 156499
Testing 2592 649 63831 67072
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Table 4. Class breakdown of data points in different training
and testing sets for the combined data (random sampling)

Config.
Data
set Failed Det Healthy Total

3 65 35
Training 28767 1290 441678 471735
Testing 15490 696 237827 254013

3 70 30
Training 30979 1390 475653 508022
Testing 13278 596 203852 217726

6 65 35
Training 28767 2577 440391 471735
Testing 15490 1389 237134 254013

6 70 30
Training 30979 2776 474267 508022
Testing 13278 1190 203258 217726

5.1.2. Random sampling with hyperparameter optimiza-
tion

In the random sampling training strategy, optimization of the
classifier hyperparameters was investigated as described fur-
ther in section 6.1. Smaller data sets were used in the hyper-
parameter optimization, as the computational costs were very
high for running the optimization on all the available data.
These smaller groups of data were found using the leaders
clustering algorithm, described in section 4.2. The size of the
smaller data sets was chosen to correspond with the size of the
folds in the CV-inspired process, described in section 5.3. For
each failure incident in the data set, 17,088 points were added
to the total points in the training and testing optimization data
sets. The total points were then separated into training and
testing based on the percentage used in the overall training
and testing set.

Table 5 describes the approximate number of leaders used for
the optimization training and testing data set for Vehicle 1,
the total for each being 102,528 since there were 6 failures in
the data set.

Table 6 describes the approximate number of leaders used for
the Vehicle 2 optimization training and testing data set, the
total for each being 17,088 since there was one failure event
in the data set. Since the leader algorithm could not be used
to achieve a specific number of points but only a similarity
threshold, the final data sets may vary by ± 100 points.

Table 5. Class breakdown of data points in different training
and testing sets for the combined data (random sampling)

Config. Training Testing Total
3 70 30 71770 30758 102528
6 70 30 71770 30758 102528

Table 6. Number of data points in Vehicle 2 GT optimization
data sets for each configuration

Config. Training Testing Total
3 70 30 11962 5126 17088
6 70 30 11962 5126 17088

5.2. Blind Failure

To test how well the classifiers perform on unseen data, the
way the training and testing data sets were created was mod-
ified. Entire failure events were withheld for testing, so that
groups of failure and deteriorated data were completely un-
seen by the classifiers in training. Similar to the random sam-
pling data selection approach, the configurations included 3
and 6 hour deteriorated time periods, as well as 2 or 3 with-
held failure events for testing. The data for both vehicles were
combined for the blind failure training strategy.

5.2.1. Blind failure without hyperparameter optimization

Using all the available data, and without hyperparameter op-
timization, Table 7 describes the number of points associated
with each class in the four configurations that were investi-
gated, corresponding to two deteriorated time periods (3 or 6
hours) and number of failure incidents withheld for testing (2
or 3 incidents).

Table 7. Class breakdown of data points in different training
and testing sets for the blind failure strategy

Config.
Data
set Failed Det Healthy Total

3 2
Training 34561 1624 494518 530703
Testing 9696 362 184987 195045

3 3
Training 33121 1443 467045 501609
Testing 11136 543 212460 224139

6 2
Training 34561 3244 493077 530082
Testing 9696 722 184448 194866

6 3
Training 33121 2883 465684 501688
Testing 11136 1083 211841 224060

5.2.2. Blind Failure with Hyperparameter Optimization

Hyperparameter optimization of the classifiers in the blind
failure data selection strategy was also explored. The same
breakdown of data points as in Table 7 was used for the blind
failure scenario for training and testing.

As with the randomly sampled data, the leaders clustering
algorithm was used with the blind failure data sets to reduce
the size of the data set. Table 8 describes the approximate
number of leaders used for the combined vehicle optimization
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Table 8. Number of data points in Combined Blind Failure
GT optimization data sets for each configuration

Config. Training Testing Total
3 3 82535 37081 119616
6 3 82535 37081 119616

training and testing data set, the total for each being 119616
since there are seven failure incidents in the data set.

5.3. Cross-validation inspired approach

In conventional cross-validation, a certain number of folds,
with approximately the same number of points and point dis-
tribution in each fold, are created. Models are created using
all but one of the folds, with the last fold used for testing, al-
lowing for an assessment of classifier performance on unseen
data. However, the entirety of the data is utilized to train the
final classifier.

The cross-validation inspired approach, also referred to as
CV-inspired approach, that was adopted in this work used
the idea of separating the data into folds, but also retained
the blind failure concept for training and testing the models.
Although classifiers were trained using folds, the final clas-
sifier was not trained on all the data as is done traditionally
in cross-validation, but using an ensemble of the individual
classifiers. Therefore, one fold was withheld entirely for test-
ing the ensemble, while training included four folds, where
each classifier was trained on three folds and tested on the
fourth. Figure 3 illustrates how the data was separated into
folds, and how the folds were used for training classifiers and
the ensemble. From each of the training data sets on the right
of the diagram, two folds of data were withheld, one that the
classifier would be tested on and one that the final ensemble
would be tested on. In the diagram, classifier 1 corresponds
to Fold 1 being withheld for testing, similarly classifier 2 cor-
responds to Fold 2 withheld for testing. Fold 5 was withheld
from all training and used for the ensemble testing as unseen
data. The ensemble was trained on the four folds of data that
were used for training and testing of classifiers 1-4.

Figure 3. Steps to separate data into cross-validation folds

Figure 4. Data sets for training and testing in each step

Figure 4 describes the process performed to create the folds
for cross-validation. The goal was to create equal folds
with the same class distributions, as it is important in cross-
validation for the folds to have similar statistical properties.
To try to reduce the class imbalance existing in the original
data set, it was decided that each fold should contain approx-
imately 50% healthy points, 40% failed points, and 10% de-
teriorated points. Three techniques were used to over- and
under-sample the data that already existed to obtain the de-
sired distribution in each fold, described in section 4.2: Syn-
thetic Minority Over-sampling Technique (SMOTE), random
under-sampling, and leaders.

On the left side of Figure 4 the process to select the healthy
data is shown. The identified healthy leaders were randomly
shuffled and split into the five equal groups. The right side
of Figure 4 displays the process to select the failure and de-
teriorated data points for each fold. Each failure event was
separated into groups containing the failed points and accom-
panying deteriorated points that occurred prior to the failure.
To try to not heavily oversample or under sample a specific
failure event, all of the failures were either extracted or re-
duced to the average number of failed points, 6835. If a fail-
ure event had more failed data points than the average, the
data set was reduced further using random under-sampling.
If a failure event had less points than the average, SMOTE
was used to generate more points. SMOTE was also used
to oversample each group of deteriorated points to create the
10% representation desired in each fold.

The folds were created by combining the finalized failure
groups and randomly split leaders of the healthy data. Each
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fold contained 17088 points in total: with 8544 healthy
points, 6835 failure points, and 1709 deteriorated points.

The groups of training data built one of each type of model,
with the hyperparameters of each group of data and classifiers
being optimized. Therefore seven classifiers were trained us-
ing each of the 4 training groups; creating 28 classifiers in
total. The predictions of the classifiers were then combined
in a decision table to create the ensemble trained on 4 of the
5 folds. The final step was to test the ensemble model on the
last withheld fold of data.

6. IMPLEMENTATION DETAILS

This section discusses the implementation details of the tech-
niques that were used, including the range of settings ex-
plored for optimization of the hyperparameters in each of the
classifiers built.

The model development and analysis was carried out on
the Python platform. In particular, the Scikit-learn package
(Pedregosa et al., 2011) was used to implement the classifiers
described in section 4.1.

The Synthetic Minority Over-sampling Technique (SMOTE)
was implemented through the imblearn package (Lemaı̂tre,
Nogueira, & Aridas, 2017), as was the random under-
sampling technique described in section 4.2.

Optimization of hyperparameters of the machine learning
models was carried out using Sherpa, which is a Python li-
brary for hyperparameter tuning of machine learning models
(Hertel, Collado, Sadowski, Ott, & Baldi, 2020). It provides a
variety of optimization algorithms that can be used to explore
any number of hyperparameters. The GPyOpt Bayesian Opti-
mization was selected as it was efficient when using multiple
parameters and when the number of trials is large.

6.1. Hyperparameter optimization function

When using the Sherpa optimization of hyperparameters, this
process was driven by the selected objective function. Typical
scoring functions of classification include precision, recall,
F1 score, and many others that reflect true/false negative and
true/false positive rates.

For the GT data, it was important that the classifiers correctly
identify the failed and deteriorated data points since they are
both the minority classes and correspond to when the system
is not functioning as expected. Finally it is more costly to
have false negatives as it is very important to identify when
there is a malfunction, and would be more harmful to be mis-
classified as healthy. These considerations led to the use of
a combination of the failed and deteriorated F2 score as the
optimization function.

Equation (1) is the Fbeta equation which is a combination
of precision and recall that is controllable via the beta coef-

ficient; for the F2 score, beta is equal to 2. Each class has
separate F2, precision, and recall scores.

Fbeta =
(1 + beta2) ∗ (Precision) ∗ (Recall)

(beta2 ∗ Precision) +Recall
(1)

Precision =
TruePositives

TruePositives+ False Positives
(2)

Recall =
TruePositives

TruePositives+ FalseNegatives
(3)

The final optimization function uses the classification results
from the test group in equation (4).

OptimizationFunction =
F2failure + F2deteriorated

2
(4)

6.2. Classifier hyperparameters

For the configurations where the hyperparameter values for
the classifiers were not optimized (sections 5.1.1 and 5.2.1),
the set of values used are included in Table 9 of the Appendix.
Where the hyperparameter value is not specified, the default
value was used.

For the configurations where Sherpa was used to optimize
classifier hyperparameters (sections 5.1.2, 5.2.2, 5.3), Table 9
in the Appendix lists all the hyperparameters and the val-
ues explored in the classification results that appear in sec-
tion 7.1.2, 7.2.2, and 7.3. Table 10 in the Appendix details
the outcome of the hyperparameter optimization for the vari-
ous configurations.

7. RESULTS

Results were generated for a number of configurations and
combinations of training strategy, deterioration period, and
hyperparameter optimization. The results are presented in the
following order:

- Random sampling
- Random sampling with hyperparameter optimization
- Blind failure
- Blind failure with hyperparameter optimization
- Cross-validation inspired approach with hyperparameter

optimization and SMOTE

In this section, the results from the many classification meth-
ods are compared using two metrics, namely the macro F1
score (Equation (5)) and the modified macro F2 score used
for optimization (Equation (4)). Equation (1) can be used to
calculate the F1 and F2 score of each class, where beta is
equal to 1 and 2 respectively. The macro F1 score is an av-
erage of the three F1 scores from each class, as described in
Equation (5). The modified macro F2 can be calculated using
Equation (5), which is an average of the failure and deterio-
rated F2 scores. The macro F1 provides insight into how well
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the classifier performs on all the classes, and the modified
macro F2 shows how it behaves during anomalous behavior.

F1macro =
F1healthy + F1failure + F1deteriorated

3
(5)

In the plots of macro F2 score vs macro F1 score, the various
shapes represent the different configurations and the colors
correspond to the different classifier types.

In addition to individual classifier models, two ensemble clas-
sifiers were also used in the batch learning. By using the
predictions of the individual classifiers, decision tables were
built using two techniques as described in section 4.3.

7.1. Random sampling results

Details of the training and testing sets for the random sam-
pling data selection strategy were provided in section 5.1, in-
cluding the two deteriorated time periods that were consid-
ered and individual vehicle and combined vehicle data sets.

7.1.1. Random sampling results without hyperparameter
optimization

Figure 5 and Figure 6 plot the F2 (modified macro) metric vs
the F1 (macro) metric from training and testing, respectively,
of each classifier using Vehicle 1 GT data. Figure 7 and Fig-
ure 8 show these plots for the Vehicle 2 GT data. Figure 9
and Figure 10 plot the metrics from the training and testing,
respectively, of each classifier for the combined data sets of
Vehicle 1 and Vehicle 2 GT data.

From the Vehicle 1 random sampling results, the strongest
classifiers are Random Forest and XGBoost, while AdaBoost
and GaussianNB display the weakest performance. Slightly
higher scores were obtained when using 6 hour deteriorated
time period as compared to the 3 hour deteriorated time pe-
riod.

Figure 5. Vehicle 1 random sampling - training results

Figure 6. Vehicle 1 random sampling - testing results

Figure 7. Vehicle 2 random sampling - training results

Figure 8. Vehicle 2 random sampling - testing results
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Figure 9. Combined Vehicles 1 and 2 random sampling -
training results

Figure 10. Combined Vehicles 1 and 2 random sampling -
testing results

There were no obvious differences noticed in the train-
ing/testing split of 65/35 or 70/30. In the 6 70 30 config-
uration, corresponding to a 6 hour deteriorated time period,
and 70/30 training and testing split, the val ensemble obtains
the best performance overall, perhaps because the test set is
smaller.

From the Vehicle 2 random sampling results, again the
strongest classifiers were Random Forest and XGBoost. Al-
though the weakest classifiers were AdaBoost and Gaus-
sianNB, generally good performance was obtained from all
classifiers, since F1 and F2 values were greater than 0.7.

Both ensembles, ensemble and val ensemble, achieved
similar success to the best individual classifiers, with
val ensemble having slightly better performance perhaps
because the test set is smaller. F1 and F2 scores are very
similar in value for each classifier. Slightly higher scores

were obtained when using 6 hour deteriorated time period as
compared to the 3 hour deteriorated time period. Similar to
Vehicle 1, there were no obvious differences noticed in the
training/testing split of 65/35 or 70/30.

From the combined data results, consistent improvements in
performance were evident across the various configurations,
likely due to the larger test data used. The strongest classifiers
are still Random Forest, XGBoost, and the two ensembles.
Slightly higher scores were noticed again when using 6 hour
deteriorated time period.

7.1.2. Random sampling with hyperparameter optimiza-
tion and leaders

The data sets used for the training and testing of the final-
ized classifiers in this section are the same as those described
in section 5.1.2. Since there was not much variation in the
results obtained previously between the 70/30 and 65/35 con-
figurations, only the 70/30 data sets were tested in this sec-
tion. Figure 11 and Figure 12 plot the two main metrics for
Vehicle 1 GT data sets following hyperparameter optimiza-
tion. Figures 13 and 14 plot the two main metrics for Vehicle
2 GT data sets following the hyperparameter optimization.

From the Vehicle 1 results, it is noted that AdaBoost, XG-
Boost, kNN experienced slight improvements from optimiza-
tion. However, RF and SVM performance significantly re-
duced from optimization, which could be because the hyper-
parameter values that were explored were not well suited to
the data set. From the Vehicle 2 results, many classifiers per-
formed very well, showing improvements on the approach
with no optimization. Most models achieved scores very
close to the (1,1) ideal result except for AdaBoost and Gauss-
sianNB, which is consistent with the results obtained previ-
ously. The Vehicle 1 results were not as strong as those for
Vehicle 2.

Figure 11. Vehicle 1 random sampling with hyperparameter
optimization - training results
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Figure 12. Vehicle 1 random sampling with hyperparameter
optimization - testing results

Figure 13. Vehicle 2 random sampling with hyperparameter
optimization - training results

Figure 14. Vehicle 2 random sampling with hyperparameter
optimization - testing results

7.2. Blind failure results

The following section contains information regarding the
runs of the combined (Vehicles 1 and 2) GT data. To test
how well the classifiers will perform on unseen data, entire
failure events were withheld for testing, meaning groups of
failure and deteriorated data were completely unseen by the
classifiers in the training. The configurations include 3 and
6 hour deteriorated time periods, as well as 2 or 3 withheld
failure events for testing.

7.2.1. Blind failure results without hyperparameter opti-
mization

Table 7 in section 5.2.1 describes the number of points associ-
ated with each class in all the configurations training and test-
ing data set. Figure 15 displays the scores from the training,
while Figure 16 shows the results of testing of each classifier.

Promising training results were obtained from some classi-
fiers, but then poor performance ensued in testing. This be-
havior was also seen previously in the two class problem
(Cheung et al., 2020). Extremely poor performance from all
classifiers resulted on the withheld failures in testing. The
F1 score is consistently higher than the F2 score in train-
ing, indicating that the failure and deteriorated classes were
not predicted well. Near zero values for F2 scores in test-
ing means that the classifiers were classifying all points as
healthy. There did not seem to be any clear and consistent
difference between the classifiers trained with 2 vs 3 failure
incidents, especially since the classifiers’ performance on the
unseen failures in testing was very poor all around.

Figure 15. Combined Vehicle 1 and 2 data – Blind failure
training results
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Figure 16. Combined Vehicle 1 and 2 data – Blind failure
testing results

7.2.2. Blind failure results with hyperparameter opti-
mization and leaders

The addition of hyperparameter optimization in the blind fail-
ure data selection strategy was also explored, but only for 3
withheld failure events for testing. Figure 17 and Figure 18
display the scores from the training and testing of each clas-
sifier.

The hyperparameter optimization had virtually no effect on
the classifier performance. Similar to the results without op-
timization, there were some good classifiers that performed
well in training, but the testing results were poor for all clas-
sifiers with F1 scores consistently at 0.3 and near zero F2
scores.

Figure 17. Combined Vehicle 1 and 2 data – Blind failure
with hyperparameter optimization – training results

Figure 18. Combined Vehicle 1 and 2 data – Blind failure
with hyperparameter optimization – testing results

7.3. Results of cross-validation inspired approach

Cross-validation is typically used as a technique to evaluate
how a classifier will perform on unseen data while still using
the entirety of the data to train the final classifier. In this work,
the intent was to modify the method to build multiple classi-
fiers that may be more diverse and combine their predictions
in an ensemble. This section presents the results from the
CV-inspired approach which included hyperparameter opti-
mization, SMOTE to oversample for deteriorated and failure
classes, and leaders for the healthy class.

To begin, some of the intermediate results from the individual
models built before the ensemble were inspected. The classi-
fiers that had been successful during training in the past, like
the Random Forest and XGBoost models continued to clas-
sify very well on the training folds but were still unsuccessful
at classifying the withheld fold. However, the classifiers that
did not typically excel in training, sometimes performed more
reasonably on the testing fold. The confusion matrices from
three examples are shown in Figure 19.

An ideal classifier would have non-zero values on the main
diagonal and zero values in all the other cells. The AdaBoost
and Neural Networks tend to over classify the data as healthy,
and the GaussianNB Classifier very successfully classifies the
deteriorated data. These examples are quite different from the
majority of the classifiers which classify almost all the test set
data as healthy.

After creating an ensemble from 28 classifiers using a deci-
sion table, the ensemble included the predictions of the fol-
lowing four classifiers to predict the status of the GT system:

- GaussianNB classifer 2 (testing on Fold 2)
- Neural Network classifier 3 (testing on Fold 3)
- XGBoost classifier 1 (testing on Fold 1)
- XGBoost classifier 2 (testing on Fold 2)
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Figure 19. AdaBoost classifier 3, GaussianNB classifier 4,
and Neural Network classifier 1 Testing

It is interesting to note that none of the classifiers from the 4th
group of folds (Fold 4 used for testing) were selected, and that
the GaussianNB classifier was selected even though it does
not typically predict as well as some of the other classifiers.

In Figure 20, the results from the training and testing of the
final decision table ensemble model are shown. The results
from training were very successful with only one point being
misclassified. However, the testing results seem to continue

Figure 20. Ensemble results for training (top) on Folds 1-4
and testing (bottom) on Fold 5

to suffer, with almost all the data points classified as healthy,
despite the attempts to diversify the classifiers, optimize the
hyperparameters and reduce the imbalance of data.

Figure 21 plots the F1 and F2 scores for the ensemble from

Figure 21. Training and testing scores for ensemble in
cross-validation inspired approach
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this approach after training and testing, again reflecting the
almost perfect performance during training but poor perfor-
mance in testing.

7.4. Discussion

Random sampling for constructing the training set, where ex-
amples of all failure incidents were included in training, led
to high performing models, as noted by the high macro F1
and macro F2 scores. XG Boost and Random Forest mod-
els perform extremely well, and the ensembles also perform
similarly. While improvement upon weaker individual clas-
sifiers is expected in the ensembles due to the reduction of
the variance of the estimates, the contribution of the different
methods depends on many factors related to the individual er-
ror distributions. For this reason, it is useful to examine the
relationship between the ensemble and the contributing meth-
ods.

Optimization of hyperparameters seemed to provide some
benefit based on the results obtained for random sampling.
These results are very promising as they indicate that provid-
ing samples of all available data in training can lead to models
that can provide some early warning of known failure types.

The training approach of keeping data from an entire failure
incident excluded from the training data, what is referred to
here as ‘blind failure’, led to very poor performing models
in the three-class problem. Similar results were seen using
this approach with classifiers in a two-class problem (Cheung
et al., 2020), so these results are not all that surprising. In
the two class problem, anomaly detection models could be
leveraged in the blind failure approach to generate reasonably
accurate ensemble models, however those anomaly detection
models are not applicable in a three-class problem.

The CV-inspired approach merged aspects of the random
sampling and blind failure approaches. There were some
promising results obtained in training with an ensemble
model but unfortunately those results did not translate into
good results in testing.

8. CONCLUDING REMARKS

In many real-world applications, a severe class imbalance ex-
ists between available healthy system data and failed system
data. To add to the complexity, the full scope of possible sys-
tem failures is not covered by training data and vehicles of
the same type may not be identical. In the efforts to achieve
system models that are sufficiently robust and flexible to over-
come these challenges, investigating different data selection
strategies for model training has been a key focus area.

Using gas turbine system data from two vehicles which in-
cluded 7 failure incidents and 76 predictor variables, a variety
of classification models of the GT system were developed in
a three-class problem. Three approaches to selecting train-

ing data were used. The first followed a traditional method
of randomly selecting data points from all data according to
a target ratio between training and testing data for each data
class. The second data selection strategy was to consider data
related to failure incidents as a whole and select certain in-
cidents to include in training, and the remaining ones to be
unseen in testing. The third approach was a cross-validation
inspired approach, separating data into folds but training and
testing models based on failure incidents. In addition to in-
vestigating training and data selection strategies, the effect of
hyperparameter optimization was explored as well as the ef-
fect of varying the time period of the deteriorated class.

Similar to the results obtained when the problem was ap-
proached as a two-class problem (Cheung et al., 2020), high
performing models were achieved with the first approach of
randomly selecting data from all data for training, in partic-
ular the Random Forest, XG Boost classifiers, as well as en-
semble models. Very poor results were obtained using the
blind failure approach for all classifiers. The CV-inspired ap-
proach merged aspects of the random sampling and blind fail-
ure approaches. There were some promising results obtained
in training with an ensemble model but unfortunately those
results did not translate into good results in testing.

This paper describes the comprehensive results that were ob-
tained using the various approaches and combinations, high-
lighting the respective benefits and limitations. Promising re-
sults were obtained using the random sampling approach, in-
dicating that providing samples of all available data in train-
ing can lead to models that can provide some early warning
of known failure types.

It should be noted that comprehensive studies like what was
done in this work can be useful in other failure modeling or
fault detection applications. Understanding the impact of the
statistical properties of the data set, as well as understanding
the variations in the classifiers are both important. They pro-
vide further knowledge of the problem, and can be used to
study the consistency and reliability of the models built. Ex-
ploring different classifier types, data sampling techniques,
and hyperparameter optimization are all ways to complete a
thorough study of any modeling problem.

As has been noted in previous work, it is important to point
out that one of the weaknesses in the GT data and the anal-
ysis that has been carried out in this work is how the initial
labeling of the data into the three classes is carried out, as the
assigned labels have a significant impact in model training.

8.1. Recommended Future Work

Overall, there seems to be opportunity in each method to im-
prove the consistency of the classifiers and resilience to new
unseen failure data. In combination with trying to access
more failure data which would help the classifiers prepare for
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more failure types, some of the future work that may be ex-
plored include:

- Consider the use of other metrics in place of F measures
for evaluating the classifiers, such as the Mathews corre-
lation coefficient.

- Explore hyperparameters more thoroughly and how to
select the appropriate ranges of values to explore in opti-
mization.

- Further research in intelligent oversampling and under
sampling.

- Implement alternative algorithms to the leader algorithm
for prototype selection.

- Investigate methods to improve the labeling of the data
into classes.

- Given that there is data available from two vehicles, in-
vestigate how successful the models trained on one vehi-
cle’s data can be applied to another vehicle.
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APPENDIX

Table 9. List of hyperparameters of classifiers

Classification
method Hyperparameter Type Original value Optimization range

SVM

C continuous 1.0 (default) [0.4,1.2]
gamma continuous ‘scale’ (default) [0.5,4.0]

shrinking choice True (default) [True, False]
decision function shape choice ‘ovr’ (default) [’ovo’, ’ovr’]

class weight choice {0.0:1, 1.0:20,
2.0:150}

[’balanced’, {0.0:1, 1.0:30, 2.0:200},
{0.0:1, 1.0:20, 2.0:240}]

GaussianNB var smoothing continuous 1e-9 (default) [1e-8, 1e-10]

Random
forest

n estimators discrete 100 (default) [100, 150]
criterion choice ’gini’ (default) [’gini’, ’entropy’]

max features choice auto’ (default) [’auto’, ’log2’, None]
bootstrap choice True (default) [True, False]

class weight choice None (default)

[None, ’balanced’,
’balanced subsample’,
{0.0:1, 1.0:30, 2.0:200},
{0.0:1, 1.0:20, 2.0:240}]

AdaBoost n estimators discrete 50 (default) [30, 80]
learning rate continuous 1 (default) [0.5,4.0]

NN
MLP

hidden layer sizes choice (15, 10, 5) [(100,), (100,10,),
(15,10,5), (100,10,10)]

activation choice relu’ (default) [’identity’, ’logistic’, ’tanh’, ’relu’]
solver choice adam’ (default) [’lbfgs’, ’sgd’, ’adam’]
alpha continuous 1.00E-05 [1e-4, 1e-6]

learning rate init continuous 0.001 (default) [1e-3, 1e-4]
max iter discrete 500 [250, 800]

kNN

n neighbors discrete [4,6] [4, 9]
weights choice uniform’ (default) [’uniform’, ’distance’]

algorithm choice auto’ (default) [’ball tree’, ’kd tree’, ’auto’]
p choice 2 (default) [1, 2, 3, 4]

XGBoost

booster choice gbtree’ (default) [’gbtree’, ’dart’]
eta continuous 0.3 (default) [0.1, 1]

max depth discrete 9 [6, 10]
max delta step discrete 6 [0, 10]

tree method choice auto’ (default) [’auto’, ’approx’, ’hist’]
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Table 10. List of optimized hyperparameters for several configurations

Classification
method Hyperparameter

Random
sampling

V1 3 70 30

Random
sampling

V1 6 70 30

Random
sampling

V2 3 70 30

Random
sampling

V2 6 70 30
Blind failure

3 3
Blind failure

6 3

SVM

C 0.789 0.793 0.706 0.726 0.947 0.622
gamma 0.613 0.500 0.525 0.549 2.586 1.573

shrinking FALSE FALSE TRUE TRUE FALSE TRUE
decision
function

shape
ovo’ ’ovr’ ’ovr’ ovo’ ’ovr’ ovo’

class weight
{0.0: 1,
1.0: 20,

2.0: 240}

{0.0: 1,
1.0: 30,

2.0: 200}

{0.0: 1,
1.0: 30,

2.0: 200}

{0.0: 1,
1.0: 30,

2.0: 200}
’balanced’

{0.0: 1,
1.0: 30,

2.0: 200}
GaussianNB var smoothing 3.86E-10 2.52E-09 3.12E-09 2.18E-09 6.31E-09 2.88E-09

Random
forest

n estimators 113 108 121 129 109 111
criterion ’entropy’ ’entropy’ ’entropy’ ’entropy’ gini’ ’entropy’

max features None None None ’log2’ None None
bootstrap TRUE FALSE TRUE FALSE FALSE FALSE

class weight
{0.0: 1,
1.0: 20,

2.0: 240}

{0.0: 1,
1.0: 30,

2.0: 200}

{0.0: 1,
1.0: 30,

2.0: 200}

{0.0: 1,
1.0: 20,

2.0: 240}

{0.0: 1,
1.0: 20,

2.0: 240}
’balanced’

AdaBoost n estimators 60 66 47 45 56 61
learning rate 1.341 1.301 1.340 2.764 1.912 3.948

NN
MLP

hidden layer
sizes (100) (100,

10,10) (100, 10) (15,
10, 5)

(100,
10)

(100,10,
10)

activation ’tanh’ ’relu’ ’tanh’ ’tanh’ ’identity’ ’identity’
solver ’adam’ ’adam’ ’adam’ ’adam’ sgd’ ’adam’
alpha 4.42E-05 3.76E-05 3.33E-05 2.78E-05 2.84E-05 1.30E-05

learning
rate
init

4.50E-04 7.89E-04 8.82E-04 4.71E-04 8.02E-04 8.46E-04

max iter 633 386 679 344 444 263

kNN

n neighbors 4 4 6 8 7 5
weights ’distance’ ’distance’ ’distance’ ’distance’ ’distance’ ’distance’

algorithm ’ball tree’ ’ball tree’ ’ball tree’ ’kd tree’ ’ball tree’ ’kd tree’
p 1 1 1 1 1 1

XGBoost

booster ’gbtree’ ’dart’ ’gbtree’ ’gbtree’ ’dart’ ’gbtree’
eta 0.451 0.588 0.239 0.975 0.301 0.291

max depth 7 7 9 9 6 9
max
delta
step

1 1 8 3 7 8

tree method ’approx’ ’approx’ ’approx’ ’hist’ ’hist’ ’hist’
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