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ABSTRACT 

Real-time root cause identification (RCI) of faults or 

abnormal events in industries gives plant personnel the 

opportunity to address the faults before they progress and 

lead to failure. RCI in industrial systems must deal with their 

complex behavior, variable interactions, corrective actions of 

control systems and variability in faulty behavior. Bayesian 

networks (BNs) is a data-driven graph-based method that 

utilizes multivariate sensor data generated during industrial 

operations for RCI. Bayesian networks, however, require 

data discretization if data contains both discrete and 

continuous variables. Traditional discretization techniques 

such as equal width (EW) or equal frequency (EF) 

discretization result in loss of dynamic information and often 

lead to erroneous RCI. To deal with this limitation, we 

propose the use of a dynamic discretization technique called 

Bayesian Blocks (BB) which adapts the bin sizes based on 

the properties of data itself. In this work, we compare the 

effectiveness of three discretization techniques, namely EW, 

EF and BB coupled with Bayesian Networks on generation 

of fault propagation (causal) maps and root cause 

identification in complex industrial systems. We demonstrate 

the performance of the three methods on the industrial 

benchmark Tennessee-Eastman process (TEP).  For two 

complex faults in TEP, the BB with BN method successfully 

diagnosed correct root causes of the faults, and reduced 

redundancy (up to 50%) and improved the propagation paths 

in causal maps compared to the other two techniques. 

Keywords: Bayesian Networks, Fault localization, Root 

cause Identification, Dynamic Discretization 

1. INTRODUCTION 

Predictive maintenance in manufacturing and process 

industries is expected to reduce breakdowns/unplanned 

shutdowns and time to repair critical assets thereby 

improving the availability of assets and reduce the cost of 

inventory and maintenance. The emergence of Industrial 

Internet of Things (IIoT) brought about a renewed interest in 

predictive maintenance for industries. Real time monitoring, 

reliable fault detection and diagnosis, estimation of 

remaining useful life for faulty components and dynamic 

scheduling of maintenance activities are the key steps in 

practicing predictive maintenance. Fault diagnosis is an 

umbrella term that covers identification of key 

variables/sensors bearing the fault signature (fault 

localization/isolation), classification of detected fault into 

one or more known fault classes (fault classification) and 

detecting the root cause/source of the fault (root cause 

identification).  

Of these, root cause identification (RCI) of faults or abnormal 

events in real-time or near real-time is a key ask from 

industries as it enables operators and plant managers to 

pinpoint the source(s) of the fault and take appropriate 

corrective actions to prevent catastrophic failure. RCI in 

industrial systems is, however, complex due to the large 

number of variables, corrective actions of control systems 

and wide variability in faulty behavior. It is, therefore, not 

practical for experts or plant operators to manually localize 

and identify the root cause of the fault. On the other hand, 

automatic approaches to root cause identification exist and 

can be broadly classified into ‘knowledge-based’ and ‘data-

driven’ approaches. Knowledge-based methods (such as 

FMEA) require a priori knowledge of faults and the 

relationship between faults and observations (Persana & 

Patel, 2014). While such knowledge can be derived from 

various sources, the initial effort required for this approach is 

significant and the gathered knowledge may not be 

exhaustive leading to missed identifications in some cases. 
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On the other hand, data-driven methods that utilize historical 

and current operations data collected from equipment and 

process sensors can be applied with minimal initial effort. 

Data-driven techniques for root cause identification such as 

Granger causality (H. S. Chen, Yan, Zhang, Liu, & Yao, 

2018) and Transfer Entropy(TE) (Shu and Zhao 2013)  are 

available in literature. Granger causality is a statistical 

method that describes a linear causality assuming linear 

relationship between process variables. It does not capture 

non-linear relationships and its applicability is limited to 

stationary time-series data.  Transfer Entropy is a model-free 

theoretical method of causality which does not assume any 

functional form of variables and analyzes causality between 

variables based on conditional probability estimation (Zhao, 

Wang, Chen, Yao, & Xu, 2020). However, accuracy of 

estimation is dependent on the quantity of data and wherein 

larger datasets improve accuracy but lead to large 

computation times. (Wollstadt, Martínez-Zarzuela, Vicente, 

Díaz-Pernas, & Wibral, 2014). Therefore, TE is not suitable 

for large datasets. To deal with these limitations, probabilistic 

models such as Bayesian models have been proposed 

(Lokrantz, Gustavsson, and Jirstrand 2018; Mechraoui, 

Medjaher, and Zerhouni 2008; Wang et al. 2018).  (Meel et 

al. 2007) initially used Bayesian networks (BNs) for root 

cause identification.  Learning BNs with a mix of 

continuous/numeric and categorical variables require 

discretization of the continuous variables.   Traditional 

discretization methods such as Equal Width (EW) 

discretization (Kerber 1992) divides the data into fixed 

number of intervals  while Quartile-based discretization 

divides the data into four parts using 3 quartiles where each 

part contains 25% of data. These methods, with fixed number 

of intervals, invariantly lose some amount of dynamic 

information and affect the Bayesian network inference. It is 

desired that discretization loses minimal dynamic 

information contained in the variables and work in an 

unsupervised manner to maximize the mutual information 

between all related variables in order to capture the wide 

range of possible industrial faults (step faults, slow drift, etc.). 

In this paper, we propose a novel root cause identification 

approach that combines Bayesian Blocks (BB), a dynamic 

discretization method based on Bayesian statistics, and 

Bayesian Networks. We demonstrate the efficacy of the 

proposed approach on the Tennessee Eastman problem.  

The rest of the paper is organized as follows: Bayesian 

Networks and various discretization methods used in the 

work are briefly discussed in Section 2. The proposed 

methodology for fault detection and root cause identification 

is presented in Section 3. An overview of the Tennessee 

Eastman benchmark problem is given in Section 4.  

Application of the proposed methodology to two faults in the 

Tennessee Eastman process for RCI is demonstrated and 

discussed in Section 5. Finally, conclusions and future work 

are given in Section 6. 

2. BACKGROUND 

2.1. Bayesian Networks 

A Bayesian network is a probabilistic graphical model that 

captures conditional dependencies between variables of 

interest (Pearl 1988). Bayesian networks are expressed by 

Directed Acyclic Graphs (DAGs) which represent the joint 

probability distribution over a set of random variables. 

Conditional dependencies are represented by edges in the 

DAG and each node represents a unique random variable. 

Through these relationships, inference on the random 

variables can be efficiently conducted and therefore 

causation. A BN is the pair (S, Θ), where S = (X, E) is a DAG. 

X is a set of variables (x1, x2,…, xn) as nodes and E is a set 

of connections of X. The graph structure encrypts the 

following set of independence assumptions: The probability 

of each variable depends on its parents and independent of all 

other variables (non-descendants). The second component of 

the pair Θ, represents the set of parameters that quantifies the 

network. It gives a set of conditional probability distributions 

of the variables Xi given their parent nodes Pa in S and 

represents a unique joint probability distribution over X as,    

P(x1, x2…, xn) = ∏ P(𝑥𝑖|Pa(𝑥𝑖)
𝑛

𝑖=1
)                 (1)  

2.2. Discretization Methods 

Discretization transforms numeric data into categorical data. 

Equal Width discretization (EWD) and Equal Frequency 

discretization (EFD) are two popular discretization methods 

that are widely used for transforming numeric data to 

categorical data. EWD divides the data into equal number of 

n bins. The width of each bin is calculated as w = (max-min)/n 

and the bin bounds are min+w, min+2w, ..., min+(n-1)w. EFD 

divides data in such a way that the number of values in each 

bin are the same.  

Bayesian Blocks Discretization (BBD) is a dynamic 

discretization method which adapts the bin sizes based on the 

properties of data itself. This method optimizes one of several 

possible fitness functions to determine an optimal binning for 

data, where the bin sizes are not necessarily equal width. 

Consider a time series, s(𝑡) with time interval, 𝒯, where t =
1,2, … , 𝒯. The time series can be modelled as: 

x(𝑡𝑛) ≡ 𝑥𝑛 = s(𝑡𝑛) + 𝑧𝑛                            (2) 

Where, 𝑥𝑛 is the observed value and 𝑧𝑛 is the observational 

error.  The Bayesian blocks algorithm proposed by Scargle, 

Norris, Jackson, and Chiang (2013) is a non- parametric 

method of segmenting time axis into non-uniform sub 

sequences or blocks. Continuous raw measurement 𝑥𝑖 within 

each block is modelled using a piecewise constant model and 

mapped to a discrete value 𝑘𝑖 . A partition of a time series of 

interval 𝒯 is defined as the set of collection of blocks 𝐵𝑘 

which is exhaustive and without any overlap as shown in Eq. 

(3) and satisfies Eq. (4) and Eq. (5) 
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 𝒫(𝐼) = {𝐵𝑘: 𝑘 = 1,2, … , 𝑛𝑘}                         (3) 

𝐼 = ⋃ 𝐵𝑘𝑘                                       (4) 

𝐵𝑖 ⋂ 𝐵𝑗 = ∅  𝑓or  i ≠ 𝑗                            (5) 

To measure the fitness of partition 𝒫, we define the fitness 

function as 

𝐹[𝒫(𝒯)] = ∑ 𝑓(𝐵𝑘)
𝑛𝑘
𝑘=1                          (6) 

𝑓(𝐵𝑘) is fitness of block 𝐵𝑘 that measures how good the data 

is represented by the piecewise constant model in that block. 

In this paper, we have used standard normal distribution and 

likelihood maximization to model the process data within 

each block. 

Bayesian blocks discretization uses dynamic programming 

approach to yield optimal partitions 𝒫ℴ𝓅𝓉 .Consider a block 

𝐵𝑅+1 starting from cell 𝑟 till cell 𝑅 + 1. If the fitness of the 

block is represented by𝑓′(𝑟) , then the fitness of partition 

𝒫(𝑅 + 1) as defined in Eq. (6) can be modelled as function 

of 𝑟: 

           𝐴(𝑟) = 𝑓′(𝑟) + 𝐹[𝒫ℴ𝓅𝓉(𝑟 − 1)]                               (7)        

                     =   𝑓′(𝑟) + {
0 𝑟 = 1
𝐴(𝑟 − 1)      𝑟 = 2,3, … , 𝑅 + 1   

 

For the range of 𝑟  mentioned in Eq. (7), all the possible 

partitions 𝒫(𝑅 + 1) are expressed and the optimal 𝑟 can be 

easily found by maximizing 

𝑟𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥[𝐴(𝑟)] (8) 

Computations mentioned in Eq. (7) and Eq. (8) are carried 

out till = 𝒯 , giving us the optimal partition for the sequence 

𝒫ℴ𝓅𝓉(𝒯).   

3. PROPOSED METHODOLOGY 

In this work, we propose a new methodology utilizing 

Bayesian Blocks discretization and Bayesian networks for 

RCI for faults and abnormal events in industrial systems. The 

main components of the proposed methodology are shown in 

Fig. 1 and comprise of fault detection and localization, data 

discretization and RCI modules.  

3.1. Fault Detection and Localization 

The fault detection and localization module detects process 

faults and identifies candidate variables carrying the 

signature of abnormal event/faults. In this work, we use 

principal component analysis (PCA) for fault detection and 

localization. PCA is a statistical procedure used for 

unsupervised dimensionality reduction and multivariate 

analysis (Deepthi and Rao 2014). It orthogonally transforms 

n-dimensional data into k-dimensions by projecting the data 

on to k principal directions of the data distribution known as 

principal components. Principal directions are obtained by 

calculating the eigenvectors of covariance matrix of the given  

Figure 1. Proposed Methodology for Root Cause 

Identification 

data.  Eigenvectors with the highest eigenvalue are selected 

as principal components (Anand 2014). Hotelling’s T2 

statistic is used to measure the variation of each sample 

within the PCA model. It is a generalized likelihood-ratio that 

gives the best fault detection rate (Chen et al. 2017; Mujica 

et al. 2011). Following is the procedure for fault detection and 

localization:  

1. Let X = {x1, x2, x3…. xd} be an input vector of variables, 

I the identity matrix, Pc the number of principal 

components and ∑ the covariance matrix. T2 can be 

calculated as: 

T2 = XT Pc ∑-1 PcT X                         (9) 

2. T2 values for all the process data are calculated and 

instances with T2 values above the threshold are detected 

to be indicative of faulty/abnormal operation. T2 statistic 

follows the Chi2 distribution. To get threshold  for T2 

statistics, the value of Chi2 corresponding to 95% 

significance is obtained from the distribution  

3. For instances identified to be faulty, Complete 

Decomposition Contributions (CDC) method is used for 

fault localization. T2 score is decomposed using CDC 

method as summation of the contributions of each 

variable (Wise et al. 2009).   

CDCi
T2 = (Ii

T Pc ∑-1 PcT X)2                  (10) 

4. CDC score for each variable for all the detected faulty 

instances is calculated. 

5. For every faulty data instance, the particular variables for 

which the contribution exceeds the threshold are 

diagnosed as variables responsible for the fault.  

3.2. Data Discretization  

The variables diagnosed as faulty variables after fault 

detection and localization are discretized using Equal Width, 

Equal Frequency and Bayesian Blocks discretization 

techniques and fed to the RCI module. 
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3.3. Root Cause Identification 

For each of the discretized datasets, causal maps are 

generated using Bayesian networks. A causal map is a 

directed graph that represents cause-effect relations. Each 

node in the causal map is a faulty variable while the edge 

between any two nodes represents the causal relationship 

between the two variables. To learn the structure of causal 

maps, Non-combinatorial Optimization via Trace 

Exponential and Augmented lagRangian for Structure 

learning (NOTEARS) algorithm is used (Zheng, Aragam, 

Ravikumar & Xing, 2018). Since searching the space for 

DAG structure is combinatorial, the search space increases 

exponentially as number of nodes increase, NOTEARS 

formulates the structure learning problem as a purely 

continuous optimization problem over real matrices that 

avoids this combinatorial constraint entirely. Using BNs, 

conditional probability distributions (CPDs) associated with 

each candidate variable are calculated. These CPDs are then 

used to learn the numerical parameters of causal maps.       

The generated causal maps are used for studying the causal 

relationships among candidate variables and finding the root 

cause variable(s) (RCVs). In an acyclic causal map, the 

variable with only outgoing edges and no incoming edges is 

determined as the RCV. However, due to recycle streams and 

feedback control in industrial systems, causal maps often 

comprise of bidirectional edges and cyclic graphs. In such 

cases, potential RCVs are shortlisted from causal maps 

depending on the number of outgoing edges and process 

knowledge. Trend plots of the shortlisted variables are then 

analyzed to arrive at the RCVs. 

4. CASE STUDY : TENNESSEE EASTMAN PROCESS 

Tennessee Eastman process (TEP) is a simulation study of a 

chemical production by Downs and Vogel (1993). It is an 

industrial benchmark that is widely used in studies for 

process monitoring, time series data analysis and process 

fault detection and diagnosis (Aldrich 2019). The schematic 

of the process is shown in Fig. 2 (Russell, Chiang, & Braatz, 

2000). The plant consists of 5 units: a reactor, a condenser, a 

stripper, a compressor and a separator. The reactions taking 

place in the reactor are given in Eq. (11). All the reactions are 

irreversible and exothermic in nature. Gaseous reactants A, 

D and E are fed to the reactor via separate streams. Stream 4 

containing stripping agents is introduced to the stripper. It 

consists of reactants C and A, and an inert B. The overall 

reactor input consists of reactant streams A, D and E along 

with the recycle stream from the compressor (Stream 6). The 

recycle stream introduces element C into the reactor as well. 

The resulting mixture of product, unreacted gases and inerts 

from the reactor outlet are sent to the condenser where they 

are cooled before entering the vapor-liquid separator. In the 

separator, the vapor and liquid phases are separated. The 

condensate (liquid phase, Stream 10) is fed to the stripper 

while the vapor phase is recycled back to the reactor inlet 

after purging a part of it (Stream 9) to avoid inert 

accumulation. In the stripper, stripping agents extract the 

desired product (Stream 11) from the condensate which is 

then analyzed for its composition (XD, XE, XF, XG and XH) 

using the composition analyzer modules shown in Fig. 1. 

{

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) →  G(liq)

𝐴(𝑔) + 𝐶(𝑔) +  E(g) →  H(liq)

𝐴(𝑔) + 𝐸(𝑔)                 →  F(liq)

   3𝐷(𝑔)                              →  2 F(liq)

               (11) 
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In this study, we demonstrate root cause identification using 

the proposed methodology for process faults in the Tennessee 

Eastman process. For this, we used the simulated data 

provided by Rieth, Amsel, Tran and Cook (2018). The dataset 

comprises of a total of 52 process variables with 22 of them 

being continuous process measurements (MEAS), 19 being 

composition measurements (COMP) and 11 being 

manipulated variables (MV) as listed in Table 1. Due to a 

significant time lag (6 to 15 minutes) in composition 

measurements (X23 to X41), they are omitted from causal 

inference analysis. The TE process is simulated for 20 faults 

of different nature such as a step fault, random variation in 

variables, slow drift of the process and sticking fault. The 

duration of each TE process simulation is 25 hours. During 

the simulations, the system is set to operate normally for 1 

hour after which faults are introduced. Simulated data of all 

variables is collected every 3 minutes. Therefore, each 

simulation generates 500 data instances with the first 20 

instances corresponding to normal operation and the rest 480 

instances corresponding to faulty operation. In this work, we 

study faults given in Table 2. IDV (7) corresponds to faulty 

operation that occurred due to loss header pressure of reactant 

C in stream 4 which is the feed stream to the stripper unit. 

IDV (1) is caused due to step change in the A/C feed ratio in 

Stream 4. 

  

 

Variable Description Type Variable Description Type 

X1 A feed stream MEAS X27 Composition of E  reactor  feed COMP 

X2 D feed stream MEAS X28 Composition of F  reactor  feed COMP 

X3 E feed stream MEAS X29 Composition of A purge COMP 

X4 Total fresh feed stripper MEAS X30 Composition of B purge COMP 

X5 Recycle flow into reactor MEAS X31 Composition of C purge COMP 

X6 Reactor feed rate MEAS X32 Composition of D purge COMP 

X7 Reactor pressure MEAS X33 Composition of E purge COMP 

X8 Reactor level MEAS X34 Composition of F purge COMP 

X9 Reactor temp MEAS X35 Composition of G purge COMP 

X10 Purge rate MEAS X36 Composition of H purge COMP 

X11 Separator temp MEAS X37 Composition of D product COMP 

X12 Separator level MEAS X38 Composition of E product COMP 

X13 Separator pressure MEAS X39 Composition of F product COMP 

X14 Separator underflow MEAS X40 Composition of G product COMP 

X15 Stripper level MEAS X41 Composition of H product COMP 

X16 Stripper pressure MEAS X42 D feed flow valve MV 

X17 Stripper underflow MEAS X43 E feed flow valve MV 

X18 Stripper temperature MEAS X44 A feed flow valve MV 

X19 Stripper steam flow MEAS X45 Total feed flow stripper valve MV 

X20 Compressor work MEAS X46 Compressor recycle valve MV 

X21 Reactor cooling water outlet temp MEAS X47 Purge valve MV 

X22 Condenser cooling water outlet temp  MEAS X48 Separator pot liquid flow valve MV 

X23 Composition of A reactor feed COMP X49 Stripper liquid product flow valve MV 

X24 Composition of B  reactor  feed COMP X50 Stripper steam valve MV 

X25 Composition of C  reactor  feed COMP X51 Reactor cooling water flow valve  MV 

X26 Composition of D  reactor  feed COMP X52 Condenser cooling water flow valve MV 

Table 1. Process Variables 
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5. RESULTS AND DISCUSSION                                                         

For detection and localization of both faults, PCA technique 

is used in the semi-supervised mode. 20000 data instances 

corresponding to normal operation are used for training and 

validation of the model. In the test data, instances for which 

the T2 score is above the threshold of 30.14 are detected to 

be faulty operating points. Faulty variables are diagnosed for 

the detected faulty instances using CDC. For each faulty 

instance, contributions of all variables to T2 are calculated 

and the mean of the contributions in the faulty instances is 

computed. Variables contributing to more than 5% of faulty 

instances are selected for root cause identification. These 

candidate variables are discretized and used for generating 

causal maps for the faults and subsequent root cause 

identification.                     

5.1. For IDV(7) fault 

Application of the PCA model on IDV(7) fault data detected 

deviation from normal condition after 22 instances that can 

be observed from the change in the T2 statistic in  Fig. 3 (a). 

Confusion matrix for this fault is shown in Table 3. It can be 

observed from the table that the number of true positives and 

true negatives obtained from the PCA model are 479 and 20 

respectively resulting in an accuracy of 99.79%.  

 
Predicted  Faulty 

Predicted 

Normal 

Actual Faulty 479 1 

Actual Normal 0 20 

Table 3. Confusion Matrix for IDV (7) 

 

Fault localization using CDC revealed 9 variables viz. X4, 

X7, X8, X13, X18, X19, X20, X45 and X50 which were 

identified as faulty variables in more than 5% of the total 

number of faulty instances as shown in Fig. 3(b). These 

variables are selected as candidates for RCI. Fault IDV(7) 

corresponds to faulty operation that occurred due to loss 

header pressure of reactant C in stream 4 which is the feed 

stream to the stripper unit. Due to this sudden drop in 

pressure, the total feed stripper flow rate (X4) dropped 

sharply which affects the stripper operation. This is evident 

from changes in several variables as shown in Fig 4. The 

stripper unit outputs stream 5 (recycle stream) to the reactor; 

thus the reactor level (X8) is also affected. The feedback 

controller tries to maintain the reactor level by manipulating 

the total feed flow stripper valve (X45) which adjusts the 

flow rate in Stream 4.  IDV(7) is a complex fault that affected 

several units and process variables. However, knowing the 

origin of the fault, X4 can be considered to be the root cause 

variable.  Fig. 5 shows the causal maps (CM) obtained using 

as-is numeric data (w/o discretization) and discretized data 

from the three discretization techniques viz. EWD, EFD and 

BBD on the candidate variables. In the CMs, the direction of 

the arrow indicates the direction of effect. 

 

(a)

 

(b) 

Figure 3. IDV (7) (a) Hotelling’s T2 plot (b) Variable 

contribution plot 

The CM obtained with as-is data (Fig. 5a) has too many edges 

(33 in number) making it difficult to comprehend the causal 

relationships among the candidate process variables and 

diagnose the root cause variable. Further, it has several edges 

that are not physically not feasible, for example, total feed 

flow rate (X4) → Separator Pressure (X13). The large 

number of edges obtained is probably due to noisiness in the 

data. This emphasizes the need for coarse-graining of time 

series signals and reducing impact of dynamic noise on the 

causal model. CMs obtained using EW and EF discretized 

data are shown in Fig. 5 (b) and (c) respectively. There is a 

visible improvement in these CMs compared to the one 

Fault ID Fault Description 

IDV(7) C Header pressure loss 

IDV(1) A/C  Feed ratio, B Composition 

constant 

Table 2. Fault ID and Description 
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obtained using as-is data. The number of edges in the CMs 

generated using EWD and EFD data is 20 and 18 

respectively. However, the cyclicity observed in these maps, 

for example, X4 → X13 → X19 → X45 → X4 in Fig. 5(b), 

leads to 7-8 potential root cause variables. In such a case, it 

is difficult to pinpoint the RCV without rigorous trend plot 

analysis to investigate the leading and lagging variables, and 

prior knowledge of the underlying fault. The CMs are also 

unable to capture the bi-directional edge between X4 and X45 

variable, which is a manifestation of control action of X45 on 

X4. The CM obtained using BB discretized data is shown in 

Fig. 5(d). The number of edges in this CM is 16 which is 50% 

lower than the number of edges observed in the CM obtained 

from numeric data.  

From this CM, X4 and X45 are identified to be potential root 

cause variables. However, since X45 is a manipulated 

variable that actually modulates X4, the root cause variable 

is identified to be X4 (i.e. Total fresh feed stripper feed flow 

rate). The causal edge X4 → X20 (compressor duty) is due to 

the varying composition of Stream 5, which changes 

compressor duty. Disturbances in reactor level (X8) and 

pressure (X7) can be seen to impact the manipulating flow 

control valve (X45) that modulates X4. We find that the root 

cause variable identified from the causal map generated using 

BB discretized data matches with that identified from process 

knowledge. 

 

Figure 4. Trends of variables in IDV (7) showing normal & 

faulty operation 

 

(a) 

 

(b) 

 

(c)  

 

(d) 

Figure 5. Causal Maps for IDV (7) obtained using (a) 

Numeric Data (b) EWD data (c) EFD data (d) BBD data 

 

5.2 For IDV(1) fault 

For the IDV (1) fault, the trend of T2 statistic obtained using 

the PCA model is shown in Fig. 6(a) and confusion matrix is 

shown in Table 4. It can be observed from the table that the 

number of true positives and true negatives obtained from the 

PCA model are 471 and 20 respectively. The overall accuracy 

of fault detection for IDV(1) is 98.20%. The number of 

instances in which each of the variables are identified as 

contributing variables using CDC is shown in Fig 6(b). From 

the figures, it can be observed that 7 variables viz. X1, X4, 

X18, X19, X44, X45 and X50 are identified as faulty 

variables in at least 5% of the faulty instances and are selected 

as candidates for RCI. 

 Predicted  Faulty Predicted Normal 

Actual Faulty 471 9 

Actual Normal 0 20 

Table 4. Confusion Matrix for IDV (1) 
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(a) 

 

 (b) 

Figure 6. IDV (1) (a) Hotelling’s T2 plot  (b) Variable 

contribution plot  

 

IDV (1) is caused by step change in the ratio of reactants A 

to reactant C in Stream 4. This disturbance in the A/C feed 

ratio caused the recycle stream from stripper (Stream 5) and 

consequently the reactor input feed (stream 6) to have 

decreased percentage of reactant A. To counter this and 

maintain the composition of stream 6, the controller increased 

the input feed flow rate in Stream 1. The increase in reactant 

A feed flow rate (X1) can be seen in Fig. 7. The manipulated 

variable, X44 (reactant A feed flow valve) is used to 

modulate X1. Subsequently, the flow rates of stream 4 (X4) 

and stream 1 (X1) are modulated together to ensure that the 

total input of reactant A to the reactor remains the same. 

Since stream 4 is an input to the stripper, change in the A/C 

feed ratio in stream 4 affects several stripper variables (X18, 

X19 X45 and X50). While the change in the ratio of A/C in 

stream 4 is the origin of the process fault, since the ratio is 

not measured, there are no direct variables indicative of the 

fault. The nearest variables that have the fault signature are 

X4 and X1, and are considered to be RCVs for IDV (1).  

 

 

Figure 7. Trends of variables in IDV (1) showing normal & 

faulty operation 

 

Fig. 8 shows the causal maps obtained for IDV(1) using 

numeric data as well as discretized data. The CM obtained 

using numeric data (Fig. 8(a)) has 15 edges and appears to 

have redundant edges, especially the ones reaching X44. 

From this CM, only X1 is identified to be the root cause 

variable. Figs. 8(b) and 8(c) show the CMs obtained using 

EWD and EFD data and have 12 and 13 edges respectively.  

 

Figure 8. Causal Maps for IDV (1) obtained using (a) 

Numeric Data (b) EWD data (c) EFD data (d) BBD data 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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From both the causal maps, only X1 can be identified as the 

root cause variable. It should also be noted that there are some 

spurious edges (e.g. X18 → X4) in Fig. 8(c). The CM 

obtained using BBD data is shown in Fig. 8(d) and has 7 

edges which is ~50% lower than the number of edges in the 

CM obtained using numeric data. From this CM, X1 is a root 

cause variable as it has only one outgoing edge (X1 → X44) 

which is indicative of the control action of X44 on X1. While 

X4 has two outgoing edges and one incoming edge, the 

incoming edge (X50 → X4) is indicative of the indirect 

control action of X50 on X4. Therefore, X4 can also be 

identified as a root cause variable. In this fault as well, we 

find that the variables diagnosed to be root cause variables 

match with those identified from process knowledge. 

In both faults, while the use of discretized data for learning 

Bayesian Networks significantly reduced the redundant 

edges compared to the numeric (as-is) data, the causal maps 

generated using EWD and EFD data had some spurious edges 

and did not always lead to the identification of the correct 

root cause variable(s). On the other hand, the use of BBD 

resulted in the generation of causal maps with physically 

logical edges and proper root cause identification. This 

highlights the effectiveness of using Bayesian Blocks as a 

discretization technique for RCI in complex industrial 

systems such as the Tennessee Eastman process.   

6. CONCLUSION  

In this study, we proposed a novel data-driven approach for 

identification of fault propagation and root causes in 

industrial systems. The approach consists of fault detection 

and localization using PCA models followed by generation 

of causal maps and root cause identification using Bayesian 

Networks. We studied the effect of data discretization using 

3 methods viz. EW, EF and BB on causal map generation and 

efficacy of root cause identification from the generated maps. 

The proposed approach is demonstrated on two complex 

faults in the industrial benchmark Tennessee-Eastman (TE) 

process. We found that discretization of data reduces 

redundant nodes by up to 50%. We also found that the use of 

BB technique for discretization led to the successful 

identification of correct root causes of the faults compared to 

the other two techniques. The merits of the proposed method 

are: (1) It is a data-driven RCI approach that does not require 

a priori knowledge of the industrial process for causal map 

generation and (2) It is more effective   in identification of 

the fault propagation paths and root causes in complex 

industrial systems compared to traditional methods. We plan 

to improve the approach using Dynamic Bayesian Networks.  
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