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ABSTRACT

In recent years, data-driven techniques such as deep learning
(DL) have been widely represented in the literature in the field
of bearing vibration condition monitoring. While these ap-
proaches achieve excellent performance in classifying bear-
ing faults on controlled laboratory data sets, there is little in-
formation available about their applicability to more realistic
working conditions. As a first step towards revealing the gen-
eralizability of DL models, we aim to understand the underly-
ing representations that DL networks use to classify bearing
defects. An interpretable DL model can give us hints on how
to increase its transferability by, e.g., using data augmenta-
tion, changing input representations and/or adapting model
architectures. We use the Grad-CAM algorithm along with
signal transformations to identify the elements of the input
spectrogram that contribute to class attribution. The results
show that removing time-domain information from the spec-
trogram has a minor impact on its performance. Instead, the
network learns distinct average frequency profiles. We there-
fore conclude that the networks learn signal features very spe-
cific to the physical properties of the specific test setup, such
as the frequency response function, rather than more general
features related to bearing defects.

1. INTRODUCTION

Rolling element bearings are widely used in a plethora of ro-
tating equipment and are critical components for their ade-
quate performance. Bearing failures can lead to unplanned
downtime with unforeseen costs, or even result in potential
disasters. Sensor-based condition monitoring has been an im-
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portant tool for the prediction of these undesired events. Us-
ing vibration sensors to monitor the condition of a bearing
is a common practice in industry and has been a well stud-
ied topic in academia (see the work from Randall and Antoni
(2011) for an overview).

Traditionally, bearing fault diagnosis has been based on
physics-inspired signal processing techniques, where time-
frequency analysis methods are applied to analyze vibration
signals. Such analyzes have been used to reveal the location
of surface defects (e.g., a spall on the inner or outer race)
(Randall & Antoni, 2011), and to estimate the size of such
faults (Epps, 1991; H. Zhang et al., 2021). Knowledge of the
spall sizes can be used as a tangible measure of the sever-
ity of a fault and can therefore be of substantial help for the
optimization of maintenance intervals.

One of the main challenges for the detection and size esti-
mation of spalls in real applications, is that the changes of
the vibration signatures (which are a function of spall sizes)
are difficult to observe due to their low signal to noise ratios
(SNR). Furthermore, the majority of the information avail-
able in the literature on the topic of spall size estimation is
based on controlled setups with very clean signals (H. Zhang
et al., 2021; Epps, 1991). Although these studies have made
important contributions to the understanding of the dynamics
of bearing containing systems, the algorithms proposed are
difficult to generalize to real applications.

Deep learning (DL) has introduced many breakthroughs in
the fields of computer vision, speech recognition and natural
language processing (LeCun, Bengio, & Hinton, 2015) and
there is currently great interest to study its potential in the
field of bearing fault diagnosis. In the last decade, a number
of studies have been published where data-driven approaches,
such as DL, are used in the field of bearing fault diagnosis
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(see S. Zhang, Zhang, Wang, and Habetler (2020) for an ex-
tensive review). In contrast to traditional signal processing
approaches, DL does not depend on human-engineered fea-
tures, but automatically learns abstract signal representations
to distinguish bearing fault classes.

Despite all the recent progress in DL, there are still many
challenges that need to be overcome in order to apply DL on
more realistic working conditions (S. Zhang et al., 2020). For
instance, due to the lack of labeled data from real applica-
tions, DL methods are typically trained on labeled laboratory
data sets such as the one from the Case Western Reserve Uni-
versity (CWRU) (Smith & Randall, 2015). However, little
is known about the ability of these models to transfer their
“knowledge” from the laboratory to the real world.

To improve the generalizability of DL methods for bearing
health state diagnosis, different approaches have been pro-
posed in the literature. One common technique is to apply
transfer learning methodologies, such as domain adaptation
(DA) (Ganin & Lempitsky, 2014), to force the network to
learn similar feature representations between different do-
mains. For example, in Wang, Michau, and Fink (2019)
torque loads were used to define the different domains. In
C. Liu, Mauricio, Qi, Peng, and Gryllias (2020), fault vibra-
tion signals were generated with a physical model and DA
was used to close the gap between the real and synthetic vi-
bration signals.

Another approach is to introduce domain knowledge by pre-
processing the signal into a more meaningful input represen-
tation, allowing the network to learn more general features.
For example, in Chen, Mauricio, Li, and Gryllias (2020) a
2D cyclic spectral coherence representation was used to ex-
ploit the second-order cyclostationary behavior of bearing vi-
bration signals (Antoni, 2009). Although the aforementioned
approaches are a good step towards more generalizable DL
methods, their validation has been limited to laboratory data
sets. Their applicability to real world data still remains to be
demonstrated.

In the present article we investigate what kind of signal fea-
tures typical DL methods (e.g., (S. Zhang et al., 2020)) ac-
tually learn, and investigate their potential to estimate spall
sizes in a more general way. Having an interpretable DL
model can give us hints on how to increase its applicability
by, e.g., using data augmentation, changing input represen-
tations and/or adapting model architectures. To this end, we
analyze a typical setup from the DL methods in S. Zhang et
al. (2020). We evaulate two different convolutional neural
networks (CNNs) trained on input spectrograms to classify
bearing faults from two different datasets. We use the Grad-
CAM algorithm (Selvaraju et al., 2019) together with signal
modifications to evaluate which parts of the input signal con-
tribute to class attribution.

2. METHODS

The interpretable deep learning framework is illustrated in
figure 1 and is described by the following steps: First, the
vibration signals are pre-processed to obtain a spectrogram
representation. Second, the input representations are fed into
two different CNN architectures, one with a general base-
line architecture and one state-of-the-art network. Third, the
Grad-CAM procedure is used to generate activation maps that
reveal the regions of importance for classification on the input
representations. Finally, to supplement the Grad-CAM acti-
vation maps we propose several signal processing methods to
modify signals to change the classification performance and
therefore validate the interpretation of the model.

2.1. Spectrogram input representations

Spectrograms are visual 2D representations of the frequen-
cies of a signal as a function of time. In this work they are
obtained by taking the logarithm of the squared magnitude of
the short-time Fourier transform (STFT) of the signal. We
transform the raw signals into spectrograms for the follow-
ing two reasons. First, spectrograms resemble a typical in-
put transformation used in DL methods from literature (Tao,
Wang, Chen, Stojanovic, & Yang, 2020; Verstraete, Ferrada,
Droguett, Meruane, & Modarres, 2017; H. Liu, Li, & Ma,
2016). And, second, spectrograms are image-like representa-
tions that permit the use of recent advancements in the field
of computer vision model interpretability, such as the afore-
mentioned Grad-CAM approach.

For the generation of the spectrograms, a signal duration of
500ms is used, containing more than ten defect pulse repeti-
tions. For the STFT settings, a Hanning window with a size
of 256 samples and an overlap of 50% are used. This rep-
resentation is then resampled to an image resolution of 112
by 112 pixels where the levels are normalized in such a way
that the full dynamic range of the image is used. These set-
tings are chosen to resemble typical setups available in the
literature (Tao et al., 2020; Chen et al., 2020).

2.2. Network architectures

As previously mentioned, two neural network architectures
(A and B) were considered. Network A has a rather general
and simple architecture, representative of what is used in the
literature. The architecture of network B is inspired by one of
the state of the art networks available in the literature.

2.2.1. Network architecture A

Network A is a CNN designed with a relatively simple archi-
tecture to be able to rule out any effects that might arise from
non-standard network elements, like group normalization in
the approach by Chen et al. (2020). A simple network will
also allow us to determine if the obtained results could be ex-
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Figure 1. Flowchart of the methodology used for the interpretability study of bearing vibration signals

tended to other types of (convolutional) neural networks. The
architecture of network A is presented in table 1.

After random initialization of the network weights, we train
the network with a batch size of 32 for 50 epochs. Each epoch
takes approximately 5 s when using GPU acceleration or 30 s
without it.

2.2.2. Network architecture B

For Network B, we use a convolutional neural network in-
spired by the work of Chen et al. (2020). This network ar-
chitecture employs multiple convolutional layers with group
normalization layers for regularization. The selection of this
specific network, is motivated by the fact that we want to gain
an insight into how the state-of-the-art networks in the litera-
ture attain such high performance scores in fault classification
tasks. A full overview of network B is presented in table 2.

The network is trained using a batch size of 32 for 20 epochs
and randomly initialized weights. Each (GPU-accelerated)
training epoch takes approximately 5 s, so training the net-
work can be done in under two minutes. When training the
network on a CPU, a single epoch takes approximately 30 s.

2.3. Interpretability

2.3.1. Grad-CAM

Grad-CAM is a method for attention visualization of convo-
lutional neural networks originally introduced by Selvaraju
et al. (2019). The Grad-CAM algorithm uses a trained neu-
ral network along with an input to highlight which areas of an
input image are important for classification. With the spectro-
gram representation used in this research, we can use Grad-
CAM to highlight which parts are important for classification.

We use the implementation of the original Grad-CAM al-

gorithm by Chattopadhyay, Sarkar, Howlader, and Balasub-
ramanian (2017) as made available on their GitHub page1.
This implementation follows the original article that proposes
Grad-CAM (Selvaraju et al., 2019).

The Grad-CAM algorithm obtains the class-discriminative lo-
calization map Lc

Grad-CAM ∈ Ru×v of width u and height v for
any class c by computing the gradient ∂yc

∂Ak of the score for
class c, denoted as yc, with respect to the feature map activa-
tions Ak of a convolutional layer. These computed gradients
are then global-average-pooled over the width (i) and height
(j) dimensions to obtain the neuron importance weights αc

k:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(1)

This weight αc
k represents a partial linearization of the deep

network downstream from A and therefore captures the im-
portance of feature map k for a target class c. The algorithm
then performs a weighted combination of forward activation
maps followed by a ReLU to obtain:

Lc
Grad-CAM = ReLU

(∑
k

ackA
k

)
(2)

This results in a heatmap with the same size as the convolu-
tional feature map of the last convolutional layer (37 × 37 or
56 × 56 for the respective network architectures). The rea-
soning behind the application of a ReLU to the linear com-
bination of maps is that Grad-CAM should only find the fea-
tures that have a positive influence on the class of interest
(Selvaraju et al., 2019). The resulting feature maps are plot-
ted to a colormapped image for interpretation.

1https://github.com/samson6460/tf keras gradcamplusplus
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Layer Layer type Parameter Setting Filter size Padding Output size
1 Input / / / / (112, 112)
2 2D Conv # of kernels 16 3× 3 Yes (112, 112, 16)
3 2D Conv # of kernels 32 3× 3 Yes (112, 112, 32)
4 Dropout Dropout rate 0.2 / / (112, 112, 32)
5 Max Pooling / / 3× 3 / (37, 37, 32)
6 2D Conv # of kernels 32 3× 3 Yes (37, 37, 32)
7 Dropout Dropout rate 0.2 / / (37, 37, 32)
8 Max Pooling / / 3× 3 / (12, 12, 32)
9 Softmax output # of outputs 12 / / (12, 1)

Table 1. Convolutional neural network architecture A

Layer Layer type Parameter Setting Filter size Padding Output size
1 Input / / / / (112, 112)
2 2D Conv # of kernels 16 3× 3 Yes (112, 112, 16)
3 Group Norm Group size 16 / / (112, 112, 16)
4 Max Pooling / / 2× 2 / (56, 56, 16)
5 2D Conv # of kernels 32 3× 3 Yes (56, 56, 32)
6 Group Norm Group size 16 / / (56, 56, 32)
7 Max Pooling / / 2× 2 / (28, 28, 32)
8 Fully Connected # of nodes 256 / / (256, 1)
9 Group Norm Group size 16 / / (256, 1)
10 Dropout Dropout rate 0.2 / / (256, 1)
11 Fully Connected # of nodes 126 / / (126, 1)
12 Group Norm Group size 16 / / (126, 1)
13 Dropout Dropout rate 0.2 / / (126, 1)
14 Softmax # of outputs 12 / / (12, 1)

Table 2. Convolutional neural network architecture B

Additionally, we generate an “average Grad-CAM map” by
letting the network predict all examples in the test set, sum-
ming the Grad-CAM arrays for each class and dividing them
by the number of correct examples in each respective class.
We chose to exclude misclassifications from these average
Grad-CAM maps because the Grad-CAM algorithm takes
the predicted class as input; including incorrect predictions
would dilute the resulting average maps with representations
of other classes.

2.3.2. Input transformations

To further interpret the models, two different transformations
are applied to the spectrograms in order to isolate the im-
pact of some features on the classification results. The goal
is to determine whether the network is using/learning com-
mon generalizable signal features (already known from tra-
ditional vibration analysis), or other information that might
not be related to the presence of defects/faults in the bearing.
The signal transformations also help us to see if the features
that contribute the most to the classification are in line with
the Grad-CAM activation maps. In the results section, the
relation between the Grad-CAM maps and the signal trans-
formations will be further explained.

As will be clear from the experimental Grad-CAM results,
we suspect that the network might be sensitive to average fre-
quency profiles. These are related to the resonating frequen-

cies in the transfer function of the specific test setup rather
than conventional signal features. We therefore propose the
following two signal transformations:

• Time-information removal: Each row in the spectro-
gram is replaced by its mean value in order to remove
the time-domain structure. As a consequence, traditional
signal information related to repetition frequencies is re-
moved, while transfer function information is preserved.

• Frequency normalization: Each spectrogram row is
normalized to unit energy before the log-transform is ap-
plied. This will eliminate the effect of the transfer func-
tion.

Examples of the transformations are shown in figure 2. Fig-
ure 2a shows the unedited spectrogram without any transfor-
mations applied to it. Figure 2b and 2c show the the time-
information removal and frequency normalization transfor-
mations applied to them respectively.

3. RESULTS

Two network architectures are analyzed with two independent
data sets to control for their effects on the learned represen-
tations. First, results of the analysis made using the CWRU
data set are presented, followed by the outcome of the inter-
pretability study using a second internal SKF data set.
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(a) Input spectrogram.
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(b) Time-information removal.
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(c) Frequency normalization.

Figure 2. An overview of the input transformations applied to a single example. The color scale goes from blue (low) to yellow
(high).

3.1. CWRU data set

The data set published by Case Western Reserve University
(CWRU) contains ball bearing data for normal and faulty
bearings mounted on a test bench powered by an electric mo-
tor. The vibration signals are recorded by several accelerom-
eters mounted on multiple locations on the test setup, and ac-
companied by meta-data including size and location of the
defect together with speed of rotation and torque load. The
data and further experimental details are available online 2.

For our analysis the drive-end data is selected. It has a me-
dian length of approximately 10 s and it was recorded using
a sample rate of 12 kHz. The data set is separated into 12
different classes (see the overview in table 3).

Defect location Defect size Class name
Ball 0.007 in B007
Ball 0.014 in B014
Ball 0.021 in B021
Ball 0.028 in B028
Inner race 0.007 in IR007
Inner race 0.014 in IR014
Inner race 0.021 in IR021
Inner race 0.028 in IR028
Outer race 0.007 in OR007
Outer race 0.014 in OR014
Outer race 0.021 in OR021
- - Normal

Table 3. Overview of different CWRU classes

3.1.1. Performance of the networks

Our custom network architecture A attains an average test
accuracy of 94.58%, with a standard deviation of 3.44%, in
a ten-repetitions experiment using different train-test splits.
For the Grad-CAM and input transformation experiments, we
used a fixed train-test split to be able to compare the results.

2https://engineering.case.edu/bearingdatacenter

The classification accuracy of network architecture A on this
fixed train-test set is 94.8%, which aligns well with the classi-
fication accuracy obtained on the ten-repetitions experiment.
The F1-scores per class and network are presented in table 4.
We see that, apart from the B014, B021 and OR14 classes,
the classification performance of network architecture A is
remarkable. This high performance indicates that, despite the
low complexity of the network, it has learned and stored fea-
tures that can clearly separate the different classes.

Network architecture B, using the same training schema,
reached an even higher average classification accuracy of
97.7%, with a standard deviation of 3.91%. A classifica-
tion accuracy of 96.9% was obtained using the fixed train/test
split. The corresponding F1-scores per class are presented in
table 4.

The improved performance compared to network architecture
A can be explained by the higher complexity of this network
architecture: network architecture A has only 69 644 train-
able parameters compared to 6 463 180 trainable parameters
in network architecture B. Alongside this significant increase
in the number of training parameters, network architecture
B benefits from group normalization layers that provide reg-
ularization which could potentially contribute to the higher
classification accuracy.

3.1.2. Interpretability

For each network type, two spectrograms with their corre-
sponding Grad-CAM activation maps are shown in figures 3
and 4. The activation maps indicate the potential importance
of the resonances of the system in the classification results.
These resonances, characterized by high energy concentra-
tions in distinguished frequency bands, are mainly parame-
ters of the transfer function of the system, rather than being
uniquely related to the bearing defect excitation signal. These
resonances can be seen in figures 3 and 4 as horizontally dis-
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(a) Input image (B021)
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(b) Grad-CAM map (B021)
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(c) Input image (IR007)
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(d) Grad-CAM map (IR007)

Figure 3. Examples of Grad-CAM activation maps of network architecture A trained on the CWRU data set. The color scale
goes from blue (low) to yellow (high).
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(a) Input image (B014)
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(b) Grad-CAM map (B014)
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(c) Input image (normal)
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(d) Grad-CAM map (normal)

Figure 4. Examples of Grad-CAM activation maps of network architecture B trained on the CWRU data set. The color scale
goes from blue (low) to yellow (high).

Class Network A Network B
B007 1.000 1.000
B014 0.876 0.962
B021 0.755 0.848
B028 1.000 1.000
IR007 1.000 1.000
IR014 0.960 0.927
IR021 1.000 1.000
IR028 1.000 1.000
OR007 1.000 1.000
OR014 0.788 0.892
OR021 1.000 1.000
Normal 1.000 1.000
All test samples 0.948 0.969

Table 4. Classification performance (F1-scores) of network
architecture A and B for different classes

tributed higher energies (represented by yellow) at certain fre-
quency bands.

Motivated by the insights given by the Grad-CAM activa-
tion maps it is of interest to see if the network is analyzing
any temporal structure with respect to any of these horizontal
lines. Therefore, we apply the transformations as discussed
in Section 2.3.2.

The results presented in figure 5 show the effect of the in-
put transformations on the classification performance using

network architecture A. As clearly seen in the figure, remov-
ing the temporal information from the signal, where the reso-
nances of the system are emphasized in the input image, has
negligible effect on the classification performance. On the
contrary, suppressing the transfer function effect in the signal
by normalizing along the frequency axis, dramatically weak-
ens the performance of the model. Only a few of the classes
are partially correctly classified and, even those cases, are
questionable. For instance, additional experiments showed
that class “OR021” can be classified with high confidence
by feeding a spectogram of random Gaussian noise to the
network. Altogether, these experiments confirm the hypoth-
esis made based on the Grad-CAM outcome, where it was
suggested that the network picks up features related to res-
onances of the system rather than information related to the
bearing defects.

Figure 6 shows the result of the same experiments but per-
formed on network architecture B. The outcomes are analo-
gous to those achieved by network architecture A. The addi-
tional regularization in this architecture did not help the net-
work to learn more bearing fault relevant features, possibly
due to the dominance of non-defect related features in the
signal which associate with a given class.
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Figure 5. Classification performance (accuracy) for the signal
transformations using network architecture A on the CWRU
data set.
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Figure 6. Classification performance (accuracy) for signal
transformations using network architecture B on the CWRU
data set.

3.2. Internal data set

In order to assess the applicability of our findings to other
machines, the above mentioned experiments are repeated on
a second data set created at SKF. This data set contains vibra-
tion signals recorded with a sampling rate of 100 kHz for a
6206 ETN9/C3 deep grove ball bearing. Rectangular defects
are engraved on the outer ring of the bearings with the fol-
lowing sizes: 0.1mm, 0.25mm, 0.5mm, 3mm, 5mm and
8mm, alongside data from a bearing with no defect. The
bearing is radially loaded and mounted at four distinct posi-
tions (0, 20, 40 and 60 degrees), where 0 degrees is the con-
dition where the defect is centered in the loaded zone. The
accelerometer is positioned close to the loaded zone in the
vertical direction. The data is recorded under four load con-
ditions (200N, 300N, 400N and 500N) while the rotational
speed is maintained at 1500 RPM. To be consistent with the
CWRU data, signals are resampled to 12 kHz.

Network A Network B
0mm 0.000 0.000
0.1mm 0.882 0.842
0.25mm 0.789 0.974
0.5mm 1.000 1.000
3mm 0.750 1.000
5mm 0.912 1.000
8mm 1.000 1.000
All test samples 0.837 0.880

Table 5. Classification performance (F1-scores) of network
architecture A and B for different classes.

3.2.1. Performance of the networks

The classification results of network architecture A and B
using this data set are presented in table 5. Both networks
perform well on all classes except for the non-defect class
(0mm). Similar to the experiments with the CWRU data set,
network architecture B outperforms network architecture A.

3.2.2. Interpretability

Examples of Grad-CAM maps of both network architectures
are presented in figure 7. Similar to the experiments using the
CWRU data set, the dependence of the network on resonance
related features becomes evident. Although the two data sets
are independent and acquired using two different machines,
the neural networks tend to classify based on the dominant
features in the data set, namely the resonances of the system.

The results of the input transformation experiments (figures
8 and 9) confirm the findings obtained on the CWRU data
set. The learned features are related to the dominant reso-
nances of the system in the signal. The performances are
largely unaffected by the time-information removal experi-
ment, while they drop drastically with frequency normaliza-
tion experiment. This further supports the hypothesis that the
network learns system dependent features.
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(a) Input image belonging to the
0.1mm class

(network architecture A).
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(b) Grad-CAM map of the
0.1mm class using network

architecture A.
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(c) Input image belonging to the
0.25mm class

(network architecture B).
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(d) Grad-CAM map of the
0.25mm class using network

architecture B.

Figure 7. Examples of Grad-CAM activation maps of network architecture A and B trained on the internal data set. The color
scale goes from blue (low) to yellow (high).
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Figure 8. Classification performance (accuracy) on the in-
ternal data set for the signal transformations using network
architecture A.
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Figure 9. Classification performance (accuracy) on the in-
ternal data set for the signal transformations using network
architecture B.

4. DISCUSSION AND CONCLUSIONS

Analyzing the internal representations of the network using
interpretability algorithms such as Grad-CAM, together with
input signal transformations, we observe that the networks
are learning distinct average frequency profiles, while ignor-

ing time-domain information. We expect that these frequency
profiles are mainly dominated by the transfer function res-
onating frequencies. This, in turn could hint towards the is-
sue with the generalizability of the DL approaches since the
transfer function is unique between machine/sensor configu-
ration. Note that the transfer function can still change as a
function of the bearing defect (H. Zhang et al., 2021), which
could explain the good performance of the network. How-
ever, this information is not generalizable to other machines.

Our findings conform with the results in Smith and Randall
(2015), where it is shown that the rig assembly (a contributor
to the transfer function) is affecting the vibration signal more
than the bearing defect in the CWRU data set. This poten-
tially means that the networks learn these more prominently
present features in the data rather than the defect signature.

In addition to the effect of system specific features on the
classification outcome, the underlying representations that
caused the activation of certain classes were in particular in-
triguing. Informal experiments (not described in this paper)
show that the network classifies random noise (2D image rep-
resentation) as an outer ring defect of 21mm length with very
high confidence. In addition, the network, in some instances,
classifies correctly using only the Grad-CAM representation
of the signal as an input. These are very compelling observa-
tions, considering that these inputs carry no meaningful infor-
mation regarding the bearing fault such as explained in, e.g.,
H. Zhang et al. (2021); Epps (1991).

Another interesting observation while analyzing the Grad-
CAM maps was achieved by clustering these maps for a given
defect according to the patterns they generated. In the CWRU
data set, the patterns correlate with different sensor locations.
The signals acquired from each sensor for a given defect, ac-
tivate similar representations in the network. This is yet an-
other confirmation that the networks learned transfer function
related features rather than defect signature features. More-
over, it shows that the networks do not generalize simply
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by providing data of the same defect acquired from differ-
ent paths. Instead of learning the underlying defect features,
the networks had learned multiple different transfer function
representations associated to the same class.

To summarize, we conclude that the trained networks are not
generalizable neither to other machines, nor to the same ma-
chine with another configuration. As a first step we propose
to introduce more domain knowledge within the field of DL-
based bearing fault diagnostics. This could be done for exam-
ple by pre-processing the data, aiming at reducing the com-
peting dominant machine specific features in the signal to at-
tain a more generalizable solution. The results further high-
light the importance of thorough investigation of the input
signal to the neural network, the class representations learned
from that input, and the generalizability of the solution.
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