A Data Management Framework & UAV Simulation Testbed for the
Study of System-level Prognostics Technologies

Timothy Darrah!, J eremy Frank?, Marcos Quifiones-Grueiro®, Gautam Biswas

4

L.3.4 Vunderbilt University, Nashville TN, 37209 USA
timothy.s.darrah@vanderbilt.edu

marcos.quinones.grueiro @vanderbilt.edu

gautam.biswas @vanderbilt.edu

2 NASA Ames Research Center, 1 Moffett Field, CA 94035 USA

Jjeremy.d.frank@nasa.gov

ABSTRACT

Prognostics-enabled technologies have emerged over the last
few years primarily for predictive maintenance activites such
as condition based maintenance (CBM), or its successor,
CBMH+, that accounts for the entire network of support ele-
ments required to execute a CBM program. However, due to
the challenges that arise from real-world systems and safety
concerns, they have not been adopted for operational decision
making based on system end of life estimates. It is typically
cost-prohibitive or highly unsafe to run a system to complete
failure and, therefore, engineers turn to simulation studies for
analyzing system performance. Prognostics research has ma-
tured to a point where we can start putting pieces together to
be deployed on real systems, but this reveals new problems.
First, a lack of standardization exists within this body of re-
search that hinders our ability to compose various technolo-
gies or study their joint interactions when used together. The
second hindrance lies in data management and creates hurdles
when trying to reproduce results for validation or use the data
as input to machine learning algorithms. We propose an end-
to-end object-oriented data management framework & simula-
tion testbed that can be used for a wide variety of applications.
We describe the requirements, design, and implementation of
the framework and provide a use-case application involving a
stochastic data collection experiment that demonstrates how
the framework can be used.

1. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) has rapidly
grown over the last few years across a wide variety of ap-
plications that include aerial photography, surveillance, pack-
age delivery, cartography, agriculture, military missions, and

Timothy Darrah et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

more. As adoption and use of these vehicles increase, so does
the risk of collisions and crashes that can result in a loss of
money, time, productivity, and most importantly, human lives.
As the health of these systems degrade over time, so does the
risk of failure in flight and that is why safety is such an active
area of research. System-wide safety', one of NASA’s primary
thrust in the Urban Air Mobility (UAM) program, deals with
all aspects of safety within the operational context of the UAV
and is a driving force in this area of research.

There is an abundance of research on the technical aspects
of UAV systems: their design & implementation (Osmic et
al., 2016); stability & risk analysis (Quifiones-Grueiro et al.,
2021); decision making (Darrah et al., 2021); degradation
(Gorospe et al., 2017; Darrah et al., 2020); and fault diag-
nostics (Moir & Seabridge, 2012). Prognostics and health
management (PHM) technologies are of greater interest to
us, which specifically addresses fault diagnosis and remaining
useful life estimation in an effort to improve system reliabil-
ity, safety, and maintainability. PHM technologies will play a
critical role in the future of the next generation airspace.

NASA recently commissioned the National Academy of Sci-
ences to conduct an in-depth study of the benefits and chal-
lenges of Advanced Air Mobility (National Academies of Sci-
ences & Medicine, 2020). A key finding related to safety was
that the current state of the art in simulation technology is
not adequate. The report discusses the need for better tools
to address both simulation and testing. Development of new
technologies typically start with simulation and experimenta-
tion, and therefore a systematic approach to designing end-to-
end simulation systems is needed.

In a similar vein, using a mix of tools and frameworks, along
with custom software written in various languages, researchers

Thttps://www.nasa.gov/aeroresearch/programs/aosp/sws

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

around the world are developing prognostics applications with
great results. However, (Li et al., 2020) summarize quite suc-
cinctly,

“existing literature addresses aspects of PHM design
methodology and provides PHM architecture formula-
tions. However, a systematic methodology towards a
consistent definition of PHM architectures, i.e., one that
spans the conceptual and application level, has not been
well established.”

A complete “bits-to-batteries” approach to simulation that al-
lows for the seamless composition of component models into
a fully fledged dynamical system with data management and
interoperability in mind is the thesis of this paper. We specif-
ically focus on model and data management as the founda-
tion for building PHM applications. Our contribution lies in
an end-to-end simulation framework with a object-oriented
model & data management design pattern. This allows for
a more comprehensive study of degradation, failure, and re-
maining useful life; the generation of curated datasets for
the development of machine learning models; and flexibility
to simulate a multitude of vehicles (not just constrainted to
UAVs) in a wide variety of environments and trajectories.

Paper Organization

The rest of the paper is organized as follows: Section 2 dis-
cusses the motivation behind our work; section 3 describes
the testbed requirements; section 4 discusses the data manage-
ment design pattern; section 5 details the simulation environ-
ment; section 6 details the framework implementation; section
7 provides the results and discussion; and section 8 is the con-
clusion with a brief overview of future work.

2. MOTIVATION

The origin of this work came from the need to generate data
for deep learning and reinforcement learning based prognos-
tics applications. We realized that the creation and curation
of the data used to generate machine learning models was
a bigger challenge than anticipated, and, this especially ap-
plies to the evaluation of PHM technology in general. Since
data is generated from the simulations, it is important to ac-
count for how the data is generated, stored, and later retrieved.
Many system-level prognosics experiments utilize some form
of Monte Carlo simulation and take a considerable amount of
time to finish. The amount of data can be quite substantial
and a lot of time is spent organizing it after-the-fact. Often
times the source code contains changes that are not reflected
in the accompanying dataset, making it difficult to reproduce
results. Different component models or degradation processes
could be used in different experiments and these differences
manifest in the resultant data. When this type of metadata is
missing or the dataset lacks an accurate description, validation
exercises are typically unsuccessful.

Tracking components, degradation models, environment mod-
els, and other “software artifacts” that generate data for the en-
tire system and the environment is a critical piece that has been

found missing in the PHM literature. System performance and
overall state of health is affected by all of these factors and a
robust PHM architecture should track them as well. In the con-
text of safety, it can be disastrous if a prognostics algorithm is
built off data generated from different components than those
that are in the system it is operating in. System level prognosis
is all about understanding how degrading system performance
is a result of the joint interactions among all of these factors,
and a whole system-simulation framework that supports this
does not exist. This is where the shortcomings in currently
available tools and frameworks come to light.

Simulation tools such as Simulink, LabVIEW or Modelica are
industry standard for modeling components, designing sys-
tems, and performing simulations. Gazebo is a tool that fo-
cuses on environmental simulation and visualization, has a
powerful physics engine and is great for simulating interac-
tions with the environment. Robot Operating System (ROS) is
a framework for developing robotics applications, and, can in-
tegrate with other tools. However, these are open-ended tools,
not prognostics frameworks. The Generic Software Architec-
ture for Prognostics (GSAP) (Teubert et al., 2017) is a frame-
work for developing prognostic applications. This is an excel-
lent software package developed by researchers at NASA with
well defined interfaces and is easily extended. GSAP focuses
on implementing common functionality across PHM applica-
tions, not so much on data management. The data manage-
ment framework presented here can interoperate with any of
the aforementioned tools and example usage is provided with
Simulink.

3. REQUIREMENTS

Design decisions are driven by requirements, which are them-
selves driven by higher level goals that are to be achieved. In
this case, the goal is to simplify and facilitate PHM research,
and four key requirements to reach this goal are

Reproducibility. Being able to reproduce experiments
allows for better peer-review of research, and provides a
known starting place for other experiments (data, meta
data, asset organization).

Explainability. Explaining what causes a particular con-
figuration or algorithm to perform a certain way requires
tracking all influences from models to algorithms, and
tracing their influence through the process of data gen-
eration to models that control the vehicle.

Extensibility. When the existing codebase does not need
to be significantly changed to accommodate new experi-
ments, technologies and techniques can be developed and
evaluated at a faster pace

Maintainability This is a measure of how easy it is to
keep a consistent codebase or data storage, track bugs,
and fix errors. Maintaining a consistent and organized
codebase is an essential step in using data for machine
learning models.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Capabilities

These requirements establish fundamental attributes that the
data management framework should possess in order to ad-
dress the motivating issues and support a wide variety of use
cases. Five key applications include

* support different component & degradation models

» support multiple UAV types & configurations

* support multiple missions with different trajectories,
tasks, risks, and rewards

* support Monte Carlo simulations

+ support data logging with automatic validation' and a
common interface for storing and retrieving data

We demonstrate the use of this framework with a Monte Carlo
simulation study and through the discussion show how these
requirements and capabilities are met. First, a brief overview
of the system used is provided in the next section.

4. DATA MANAGEMENT DESIGN PATTERN

Object oriented design methodology is perhaps the most suc-
cessful approach to planning and designing software. Advan-
tages include the ability to reuse code, improved maintainabil-
ity, reduce mistakes, and improve testing or debugging tasks
(among many others). We propose an object oriented design
pattern for asset, process and data management to record and
organize high fidelity simulation data for the development,
testing, and evaluation of PHM applications.

The foundations of the framework are assets (i.e. component
models such as a motor, battery, sensor, etc), processes (degra-
dation models and environmental factors such as wind), and
data (such as flight telemetry or aggregate statistics). We pro-
vide a complete simulation environment as reference imple-
mentation of this framework for a UAV in MATLAB® and
Simulink®. 2 3

Assets

Assets are the tangible components that make up the UAV. The
asset acts as a first class object and is the archetype model that
all components of the UAV inherit from. This includes the
airframe, motors, battery, as well as any number and type of
other components that might be used on the UAV. All physical
components are assets, including the UAV. This a central point
for the paper and key to interoperability among components,
systems, environmental effects, and degradation models. This
built-in modularity addresses two of the four requirements, ex-
tensibility and maintainability.

All assets have an associated asset type (shown in table 1),
which holds meta-data about the asset. This table name is

IData constraints set in the table definitions are checked and enforced by the
database, not user code.

2A complete simulation package that can serve as a stand alone applica-
tion or as an example to build one using this framework can be found at
https://github.com/darrahts/uavTestbed.

3an API in Python is currently under development.

B uav_tb B asset_th

i i) iiid serial 8 asset_type_tb

3 airframe._id int4 aec owner varchar(32) id

serial

123 type._id intdlg
(¢ serial_number varchar(32)
123 age float4

5 batery.id int4,
2 motorl_id int4|
125 motor2_id int4 gt~ o
23 motor3_id inta| TEiiC 123 eol floatd

soc type varchar(32)
ocsubtype varchar(32)
eec description varchar(256)

122 motord_id int4] REC Units. varchar(32)
123motor5_id int4] /
123 motor6_id int4]
123 motor7_id int4
122 motor8_id int4]
123max_flight_time float8

B8 default_airframe_tb

P ‘ “iid int4,

8 dc_motor_tb N1z num_motors int4
Hid int4 B eqc.battery tb Yt floats|

. -

23 motor_number int4| id int4 2icq floats
123Req floats 2cycles intd 22 mass floatd
123Ke_eq floats 23Q floats, b _floats
123) floats 126 floats 123 cd floats
23Df floats =M floats 123 Ay floats
g floats MO floats, 123 poz floats

125RC floats| 123 Ayz float8]
123R float8 173 rho float8
13RO float8 123 Ix float8
23in float8 12y floatg
1ZSEQD float8 1231z floatd

1237 float8 123 | float8
1231 float8
125h float8
123y float8
123v0 float8
123 dt float8

Figure 1. Asset Relationship Diagram

asset_type_tb, and it contains the fields id, type,

subtype , and description. The type property is
the high level component type such as an airframe or battery.
The subtype property is used for further specification such
as whether or not the battery is a discrete-eqc (discrete equiva-
lent circuit) or a continuous-ec (continuous electro-chemistry).
The description property contains information regard-
ing the source of the model that is used by the asset. DC mo-
tor dynamics are well understood and a simple models like
this can be considered generic . It may be more appropri-
ate to cite an author an year for more complex models such as

plett_2015 for the battery.

id type subtype description
1 airframe octorotor osmic_2016
2 battery discrete-eqc plett_2015

3 motor dc generic

4 uav - -

Table 1. Asset Types

Other asset types might include electronics or sensors, or even
equipment could be a type that might include a communica-
tion device and a grappling mechanism for transporting goods.
These are just a few examples and not meant to serve as an ex-
haustive list. The point for a robust PHM architecture is that
if it generates data, degrades, or affects system performance,
then it should be tracked.

Assets can be created after the asset types. The asset_tb
the fields id,

serial number . The relationship between these two

contains owner, type_id, and

tables is depicted in Figure 1, where the type_id field of
the asset_tb table is a foreign key reference to the id

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

field of the asset_type_tb table. Four other tables are
depicted in Figure 1 that store the model parameters for the
asset types listed in table 1. Each table stores the parameters
of the component model and is specifically related to that
component model type. There is a one-to-one relationship
between a given model class and an entry in the asset type
table, while there can be any number of model instances of the
same model class. Enforcing this constraint (and others) using
a database management system is very straightforward and
reliably works the way it is implemented. Such constraints
ensure data integrity and directly address the other two high
level requirements, explainability and maintainability.

Each table (with the exception of uav_tb) presented in
Figure 1 comes with default parameters that are provided
from the information in the description field of the

asset_type_tb . Each of these tables is linked to the asset

table via foreign key relationships on the id fields, whereby
the asset table entry must exist before the derived component
model entry is created. This decoupling between model pa-
rameters and the object representation they hold when used in
simulation is another aspect that supports a robust data gener-
ation process and improves traceability.

Finally there is the uav type (table 1), a special type of as-
set that serves as a container that simply stores asset IDs of
the installed components and links to the process and envi-
ronmental models. This is one of many concepts applied that
provide modularity and data organization, and this serves as
the common interface among all components. Correctly stor-
ing and extracting data generated from different sources and
experiments can be very tedious and prone to errors. This is
addressed through the use of an underlying database manage-
ment system with a well defined data management architec-
ture. The metadata provided by the asset makes it easy to
track the components with all other factors and sources of data
within the simulation. This is a subtle, but very critical piece of
the framework that is repeated with not just assets like motors
and batteries, but with processes, like degradation or wind.

Processes

Each component has different degradation profiles and failure
modes separate from the operation and health of the overall
system. Much like tracking components as assets having as-
set types, degradation is tracked as a process, having process
types (table 2). The relationship between processes and as-
sets is shown in Figure 2. Each process has a foreign key
relation type_id on the process_type_tb id field,

which has a foreign key relation asset_type_id on the
asset_type_tb id field.
With these relationships and constraints established, the joint

interactions between various processes and whole system per-
formance is captured in the database by design.

id type subtypel subtype2 asset_type_id
1 degradation battery capacitance 3
2 degradation battery internal resistance 3
3 degradation motor internal resistance 2
4 environment wind gust 1
5 environment wind constant 1
Table 2. Process Type Table
EB process_type_tb £ asset_type_tb
Hiid serizl Gid serial
e G2 wype varchara2)
- subtypez varchar o4 "B subtype varchar(32)
subtype R vard a'?) et description varchar(256)
123 asset_type_id int4,
. .
EB process_tb BB asset_tb
135 id serial 1gid serial
123 type_id int4 AEC Owner varchar(32)
rec description varchar(256) 123 type_id int4
AEC SOLrCe varchar(256) Aec serial_number varchar(32)
Jzh parameters json 123age floatd

123 gol
REC Units

float4
varchar(32)

Figure 2. Process Relationship Diagram

Data Management

Experimental data is influenced by a multitude of factors and
generated from a wide variety of sources within the simulation
environment. In the context of prognostics applications, we
are especially concerned with components, degradation mod-
els, environmental models, and other internal / external events
that generate information. Metadata is just as important to
capture as the raw data as well. Ensuring these complex inter-
actions captured and all relevant data is logged and associated
with the metadata of the UAV, components processes, and the
environment, is the cornerstone of system-wide PHM applica-
tions.

The data relationship diagram can be seen in Figure 3 where
three types of data are considered: degradation data, summary
data, and telemetry data. The degradation and telemetry tables
have a foreign key relation on the flight_summary_tb,
which contains aggregate data from each mission such as
its ending state of charge (z_end), average position error

(avg_pos_err), or distance travelled .

All data that is generated is inherently organized correctly
when this framework is used in conjunction with a simulation
environment, regardless of whether it is a UAV, car, space-
craft, or other system. In this manner the entire process of
data generation, storage, retrieval, and analysis among flights
with different components can be executed with the same code.
It is left to the individual practitioner to implement the dynam-
ical models of their system, this framework handles everything
else. We apply this framework to a UAV system in an urban
environment as discussed in the following section.

for a complete description of the table schemas see
https://github.com/darrahts/uavTestbed/blob/main/sql/table_schema.sql

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

BB uav_th
15 id intd
122 airframe_idl int4
124 hattery_id inta
125 motor1_id int4
22 motor2.id int& B flight_telemetry_th
25 motor3_id inta = =
8 flight_degradation_tb 123 motor4_id int4 Q’dt timestamptz
i weria o |2smotors_id int4 o batt floats
" [“Imotors_id int4 1252 batt floats
1e4flight id ints 15 motor7_id it 125pos err floats
1#4q_deg floatd 123 mctorEild intd 123x_pos floats
123 g var floats b 125 max flight time floata) 123y _pos floats
124 q_slope floats | Huavid int4
123 q_intercept floats 13 flight_id intd
1or deg floata . 1251 batt floats
::z :_::’ float? B flight_summary_tb i batt floats
_slope floats - 1zsctrl_err floats
12 intercept floats || id serial 2 pos floata
122m_deg floats 125 stop_code intd 1231 motori floats
123 m_var floata “zend floats 125r_motor2 floats
14 m_slope floats 23y_end floats 1251 motor3 floate
122m_intercept floats < |5 avg_pos_err floats . rimoturzi floate
123 uav_id intd 124 max_pos_err floats |- 122r motorS floats
123 std_pos_err floats 1231 motoré floats
122 avg_ctrl_err floats 125 motor? floats
123 max_ctrl_err floats 1221 motors floats
124 std_ctr|_err floats
122 distance floats
123 flight_time floats
124 avg_current floats
122 amp_hours floats
@ dt_start timestamptz
@ dt_stop timestamptz
23 trajectory_id intd
23 yav_id intd
125 flight_num int4

Figure 3. Data Relationship Diagram

5. SIMULATION ENVIRONMENT

System failure is not a function of individual component fail-
ure, but of (1) the compete interactivity among all the com-
ponents within the system as well as (2) between the system
and the environment. The simulation environment needs to
have enough fidelity to realistically simulate the joint inter-
actions and nuances among all the components and the envi-
ronmental conditions the system is operating in. This level of
fidelity is critical to evaluating PHM applications, e.g. com-
paring Remaining Useful Life (RUL) algorithms to each other,
or in different environments or with different vehicles. The
same considerations apply to machine learning, especially for
PHM applications. Data driven models are only as good as
the data they are trained on, and therefore the nonlinearities
of system-level degradation with respect to individual compo-
nent degradation, operational load, and environmental factors
must manifest in the data. The coupling of the environmen-
tal conditions, the system, components, and degradation mod-
els (potentially more, this is not an exhaustive list), naturally
lends itself to higher quality data, and therefore, higher quality
data-driven models. Simulation to failure or capturing hard to
understand edge cases are other benefits of end-to-end simu-
lation infrastructures, and the system itself is only part of the
simulation.

System Description

The system used in our experiments is a generic octorotor
modelled with parameters taken from (Osmi¢ et al., 2016). In
previous work (Darrah et al., 2020) & (Quifiones-Grueiro et
al., 2021), a DJI Mavic Pro and DJI S-1000 were used, respec-

tively. Detailed modeling and implementation can be found in
those publications, however a brief overview is provided be-
low.

The octocopter airframe dynamics model is based on Newton-
Euler equations of motion for a rigid body (Valavanis & Vacht-
sevanos, 2015). The derived body forces are

Iy = Fy + Fp +mgRrpe;, (D

where Fj, € R? is the resulting force acting on the body frame,
Fy € R is the resultant force generated by the motors,
Fp € N3 is the drag force resulting due to the movement
of a UAV through the air, m is the mass of the UAV, g is
the gravity acceleration, R;p € 23*3 is the rotation matrix
from the inertial frame to the body frame, and e, = [0 0 1]%.
The motors are simulated with a generic dc-motor model by
(Schacht-Rodriguez et al., 2018) in equations 2 and 3:

1
w; = T(Keic — Tioad — wa - Tf); (2)
1
'c - 5 - Ke i)y 3
i Req(ch w;) 3)

Req = % Zj.:l R; is the equivalent electric resistance of the
coils, K, is the back electromotive force constant, w; is the an-
gular velocity of the ith motor, T’ is the static friction torque,
Dy is the viscous damping coefficient that allows to estimate
the dynamic friction torque (D yw), J,, is the inertia of the mo-
tor, vpc is the input voltage control signal, ¢, is the current de-
manded from the battery pack, and 7,4 represents the torque
load generated by the propellers. The battery is modeled using
an equivalent circuit representation (Plett, 2015) with dynamic
equations that characterize the battery behavior given by:

. le
Vsoc = -4 “)
Q
. Z.c id
= - 5
""" RiCs RaCa ®)
‘/out = Vocv - Rdid - ROim (6)

where () represents the total capacity of the battery, i, the in-
put current, R4 and C; are the diffusion resistance and capac-
itance, ¢4 the current going through the diffusion resistance,
R, represents the internal resistance, V., is the open circuit
voltage, and V,,,; is the output voltage of the battery. A listing
of the system parameters can be found in the appendix.

Degradation Models

Component degradation models (see Figure 4 of (Darrah et
al., 2021)) are just as important to track as the components
themselves, if a high degree of confidence in data quality is
desired. Degradation profiles for three parameters considered
were derived empirically through run to failure experiments
as described in (Saha & Goebel, 2007; Jackey et al., 2009)
[battery], or (Xuan et al., 2017) [motor]. These parameters
degrade non-linearly over time (although they can be linearly

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

approximated) and are dependent on several factors such as
load demand or external disturbances. The three parameters
considered in this work are

battery charge capacitance. This is the amount of
charge that can be extracted from the battery in a fully
charged state. Internal chemical processes within the bat-
tery and environmental factors such as temperature affect
this parameter. Over time this value decreases. Degra-
dation is a function of current draw, both instantaneously
(fast discharges increase aging) and cumulatively (the to-
tal amount of current drawn from the battery over time).
battery internal resistance. This is a resistance to charge
flowing out and is considered a separate degradation fac-
tor than charge capacitance. Over time this value in-
creases and results in the battery reaching end of dis-
charge (EOD) faster. Lithium corrosion, plating, and elec-
trolyte layer formation affect this parameter (Daigle &
Kulkarni, 2013).

motor #2 coil resistance. This is used as a proxy for mod-
eling loss of performance due to different factors such as
exposure to adverse weather conditions or general use. As
the coil resistance increases, the amount of current drawn
from the battery for the same throttle demand will be re-
duced, which translates into a reduction in thrust.

External Influences

External influences are environmental factors that affect the
operation or performance of the system. These can include
(but are not limited to)

temperature. Temperature is known to have an effect on
both flight and battery performance. In high temperatures,
flight performance is reduced due to the aerodynamic af-
fects of increased molecular air speed and lift. In (Ma et
al., 2018), the authors show that battery aging increases
in high temperature, and battery charge capacitance de-
creases in low temperatures.

wind. In (Wang et al., 2019), the authors provide a com-
prehensive analysis of different types of wind, wind mod-
elling, and their effects on flight. We implement a simple
turbulent wind model via sampling of magnitude and di-
rection values from a normal and uniform distribution, re-
spectively. Wind effects create load on the airframe which
puts stress on both the motors and the battery as the con-
troller will attempted to compensate to maintain stability.
obstacles. Obstacles are either static, that is their lo-
cation in the global coordinate frame (time and space)
does not change, or they are dynamic, in which their
temporal-spatial location does change. Static obstacle in-
fluence system behavior during the trajectory planning
phase. Obstacles are part of the map and all trajectories
are a minimum of 3 meters from any static obstacle.

We do not go into detail discussing how these external influ-

ences affect UAV performance (see previous references), but
show that they are part of the whole simulation architecture.

Trajectories

The trajectories a UAV flies also plays a role in its overall
performance and degradation of its components, as well as
risk of failure or safety violation during flight. To be able to
study these effects in depth, the trajectories must be tracked
as well and linked to the data generated from them. In gen-
eral, a trajectory consists of a timeseries multidimensional ar-
ray whereby each axis represents the x,y,z plane in space and
each triplet is a specific point in space at a specific time. There
are 37 different trajectories that can be chosen from based on
distance, estimated flight time, risk, or reward. Trajectories
are formed in a two step process using probabilistic roadmaps
(PRM) followed by B-spline smoothing.

PRMs (Kavraki et al., 1996) were introduced as a method of
generating collision-free trajectories for robots in static envi-
ronments (i.e. the environment is known ahead of time). This
method consists of a learning phase and a guery phase. In the
learning phase, the algorithm generates a graph of the envi-
ronment “who’s nodes correspond to collision-free configura-
tions and who’s edges correspond to feasible paths between
these configurations.” In the query phase, any two locations
are added to the graph, and a path is returned that connects
these two points.

A thorough discussion on the application of B-spline smooth-
ing to motion planning for robots can be found in (Magid et
al., 2006). The basic concept is to smooth the transition of two
intersecting lines about their intersection where the radius of
the circle generated by the curvature of the smoothed intersec-
tion can be parameterized..

6. IMPLEMENTATION

The simulation environment is implemented with MATLAB®
and Simulink and utilizes the design pattern described above
for data management. The database is implemented with Post-
greSQL, an open-source relational database management sys-
tem. There are many benefits to this database engine such as
being free, community driven, and widely supported. Using
a database with an API will directly solve many issues faced
when it comes to managing data generated from simulation
experiments as detailed in this paper. In our example data col-
lection experiment, all possible variables have been fixed - i.e.
the parameters for different random variables (such as the bat-
tery charge capacitance degradation parameter, etc...) do not
change from flight to flight. We are just asking the question,
“at what point will this UAV no longer safely fly this trajec-
tory, given these degradation profiles and environmental con-
ditions?”

The simulation block diagram is shown below in Figure 4. In
the initialize workspace block, system performance thresh-
olds are defined, control and estimation parameters are loaded,

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Initialize
workspace

Stochastic simulation (44 samples)

H

Load
Trajectory

Conduct
flight

start

Create UAV

Store flight
data
Fly again? H

Il0|

|
Figure 4. Simulation Experiment Block Diagram

component
degradation
parameters

Check stop
codes

and degradation profiles are loaded from the database. All the
necessary degradation information can be retrieved with the
following sql statement (listing 1) that joins three of the tables
shown in Figure 2.

| select ptt.id as process_type_id,

2 ptt.subtypel as process_subtypel,
3 ptt.subtype2 as process_subtype2,
4 ast.id as asset_type_id,

5 ast."type" as asset_type,

6 ast.subtype as asset_subtype,

ast.description as model_source,
pst.id as process_id,
9 pst.description as process_description,
10 pst."source" as degradation_model_source,
11 pst.parameters
12 from process_type_tb ptt
13 inner join process_tb pst on pst.type_id = ptt.id
14 inner join asset_type_tb ast
15 on ptt.asset_type_id = ast.id;

SQL, like any language, has its own syntax and semantics that
are easily picked up with regular use. For example, in lines
5 and 10, the words fype and source are in quotes - this is
because they are keywords in PostgreSQL. The data returned
from this query can be viewed in table 7 of the appendix.

In the create uav block of Figure 4, a new UAV is created in
the database and returned as a struct object. All data gener-
ated by the system is linked to the UAV; aggregation and other
analysis methods use the UAV’s id property to get all data
generated by that UAV. In this experiment a UAV flight and
degredation processes are simulated over and over again un-
til the UAV reaches end of life (EOL). This is depicted in the
stocahstic simulation grouping.

First, a trajectory is loaded from the database, then the flight
is simulated within the simulation environment. The three
sources of data described above, telemetry, summary, and
degradation, are stored in the database. Next, the stop codes
received from the simulation are checked in a logic block
that informs us when the UAV has violated a system perfor-
mance parameter threshold. These stop codes are stored in the
stop_code_tb and are related to the stop_code field

ofthe flight_summary_tb . Only valid stop codes are al-
lowed to be entered as flight summary data. This is another
of many constraints in place to ensure that data integrity is
maintained. The decision to not fly again is made when the
stop code is not arrival success for a count of 10 times (does
not have to be sequential). This allows us to also catch data
from failed flights during the stages of degradation that result
in violating a system performance parameter. If the UAV does

fly again, the degradation parameters are resampled from their
distributions and the UAV flies again.

id description

low soc

low voltage

position error

arrival success

average position error of entire flight
low soh (battery)

AN AW =

Table 3. Stop Codes

The data collected from 44 run-to-failure (RTF) samples total-
ing 3,624 flights is presented in the following section.

7. RESULTS & DISCUSSION

The first thing to look at is basic telemetry data from a typi-
cal flight when the system is healthy in figures 5, 6, 7, 8. The
telemetry data used to generate these plots is comprised of a
single flight only sampled at 4 hz and depicts the UAVs ref-
erence trajectory and actual position (Figure 5); position error
(Figure 6); voltage and SOC sensor readings (Figure 7); as
well as total current demand (Figure 8).

The flight_telemetry_tb contains all sensor data that
comes from the UAV and all data that was used to generate
these plots. Adding new sources of sensor data to the existing
framework is quite easy with the correct PostgreSQL syntax
and following a consistent grammatical naming convention.

UAV Path and Waypoints
400

350 \

300 . N——

250 / /
/

200
start
150 waypoint
waypoint
100
50 J)

o &

waypeint
waypoint

e aCMua

[-X-X-X-]

success
reference

0

0 50 100 150 200 250 300 350 400 450

Figure 5. Trajectory # 3 Reference & Actual Position

3.5
3
25
15
1

M
400

Euclidean Position Error

800

600 1000 1200
Time (s)

Position Error (m)
~

0 200

Figure 6. Position Error

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Voltage and SOC plot

estimated Voltage
= = ‘actual Voltage
Estimated SOC
Actual SOC

SOC (%)

0 200 400 600 800 1000 1200
Time (s)

Figure 7. Voltage & State of Charge (SOC)

Current Demand
40

‘Actual Current
Average Current

Current (A)

200 400 600 800 1000 1200
Time (s)

Figure 8. Current Demand

jectory has typically violated a system performance parameter
threshold 10 times (10 was chosen to ensure enough failure
data is collected) by around the 80th flight. Retrieving the
UAVs and the flight data for these plots can be done with the
following select statement

1 select count (fst.x) as num_flights,

2 fst.uav_id,

3 ast.serial_number from flight_ summary_tb fst
4 join asset_tb ast on fst.uav_id = ast.id

5 group by fst.uav_id, ast.serial_number

6 order by fst.uav_id asc;

Each uav_id can be further used as an index to query other
data tables. Using a uav_id from the derived uav table, the
system summary and degradation data for that and only that
UAV across an entire simulation epoch (also referred to as a
run-to-failure sample) can be returned.

The system performance parameters battery state of charge
(top left), output voltage (top right), average position error
(bottom left), and position error standard deviation (bottom
right) are shown in Figure 10.

State of Charge Degradation Output Voltage Degradation

441

Next to look at is data from all of the flights contained in
the flight_summary_tb , starting with the distribution of
failure times (i.e. flight number) across all UAVs in the study.
Figure 9 (top) is a bar graph of the number of flights before
faliure for each UAV, and Figure 9 (bottom) is the failure dis-
tribution generated from this data.

0 20 40 60 80 100 20 40 60 80 100
Flight Number Flight Number
s Position Error (mean) o7 Position Error (std)
128 0.68
126 066 - N
£ £
124 064
— e~
122 062
12 06
0 20 40 60 80 100 20 40 60 80 100

Number of flights before failure

Flight Number

7 SN ARSI (DRI IRRI PR

UAV ID
Time of Failure Distribution

0.12
0.1r
> 0.08 -
E
3 006
2
o
0.04
0.02 -
0
65 70 75 80 85 20 95
Flight Number

Figure 9. Time of failure distribution.

Flight Number Flight Number

Figure 10. System Performance Parameters

It can be seen that each flight is indeed stochastic and that this
particular UAV likely suffered from battery failure, as opposed
to motor failure, even though both components are undergoing
degradation. It is shown in the two position plots at the bottom
of Figure 10 that system performance in terms of position error
remained relatively stable until near the end of the simulation
epoch.

Component degradation for this UAV is depicted in Figure 11.
The capacitance degraded by roughly 14%, the battery inter-
nal resistance degraded by 1000%, and motor coil resistance
degraded by about 23%. How would the performance have
been different if the internal resistance degradation wasn’t so
extreme?

1 Battery Charge C. i Battery Internal i 03 Motor
T

z |l | "
g 15puL nl g =028 N
e I ML N 2 Ve
3 I H /
S i Q0.2 A/
T 14 | f I 0.26 -
3 1V

4 .

/ ,w
13 | 024},
0 50 100 0 50 100

Flight Number Flight Number Flight Number

What these results show is that this specific UAV, components,

component degradation profiles, external influences, and tra-

Figure 11. Component Degradation Parameters

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

In Figure 12 the stop codes for each flight taken by the UAV is
shown. The majority of the time the UAV successfully reaches
all waypoints of the trajectory. A few times around the 60th
flight the stop code is low SOC, meaning that the flight had
to be stopped because the UAV’s battery SOC went below
the minimum SOC threshold (a parameter set in the initial-
ize workspace block described above). Then around the 75th
flight the same stop code was repeatedly triggered, and ulti-
mately the sample was terminated.

Stop Code Reason Per Flight
low soh (battery)| 6

avgposerr 5

success| 4 R R AR TR RS TRRRRIENED ©

position error| 3 [

Stop Code

low voltage| 2 [

low soc| 1 | o]

0 10 20 30 40 50 60 70 80 90
Flight Number

Figure 12. Stop Codes by Flight

Next, the evolution of the system performance parameter dis-
tribution over time is depicted in Figure 13 for the battery
SOC, and in Figure 14 for the position error standard devi-
ation. The battery state of charge appears to progress fairly
linearly across the first 50 flights and then in the last couple
of flights the distribution tightens up quite a bit. This suggests
that the majority of the failures occured when there was 42%
remaining state of charge at mission completion.

State of Charge Evolution

100
. 1st Flight
\ 25th Flight
80 [50th Flight
g \ 7o Flgh
> 60 |
% \
™
g 40 / \
o AR e
IR A /y\
20 AR AN A SN
S XS AN
0 P R e
038 04 042 044 046 048 05 052 054

Ending State of Charge (%)

Figure 13. State of Charge Degradation Distributions

The position error standard deviation was chosen as a system
performance parameter because it is a measure of stability and
volatility that offers a different view of what is happening than
just looking at raw position error data. Here it is shown that
the distributions actually grows, indicative of a decrease in
stability. Given that the UAV had zero stop codes related to
motor degradation, position, stability, or control, one observa-
tion from this result is that battery degradation plays a bigger
role in overall UAV flight stability than is given credit for. It
is also seen that this growth is on a very small scale, so this
remains inconclusive. With a tightly coupled simulation envi-

ronment and data management framework, this can easily be
studied further.

10 Position Error (Standard Deviation) Evolution

1st Flight
25th Flight
30 50th Flight
= Flight 72
e |
= | ‘,
Z 20 |
1]
2]
2 [
o |
10 |
/S
S i - - - —

0 . - .
0.655 0.6 0.665 067 0.675

Position Error Standard Deviation (m)

Figure 14. Position Error Standard Deviation Distributions

These results were generated using the framework described
in this paper via standard SQL queries to the database. The
common interface provided by this framework ensures the dif-
ferent components’ data is automatically registered with the
database and allows for repeatability among experiments and
reuse of code, regardless of the vehicle under study or appli-
cation.

We now describe how the design meets our requirements.
UAV component and degradation models are easily declared
and composed, as are combinations of maps and trajecto-
ries. High-quality data is generated by ensuring the envi-
ronment and degradation models propagate component-level
health into system-level behavior. Metadata from the UAV
components, environment and data models is automatically
recorded. Monte-Carlo simulations generate per-flight data;
because of the data-logging requirements imposed on assets,
this data is inherently organized and structured.

The organization of the data imposed by the asset-process-data
paradigm ensures it can easily be used to evaluate PHM appli-
cations and research questions. For example, instead of ending
the sample after 10 failures, what if we change the battery?
How many battery changes will it take to notice the effects
of motor degradation? How does the position error evolve
over time after multiple battery changes and continuous mo-
tor degradation? Or, perhaps consider the evolution of battery
SOC degradation in Figure 13. How does this difference con-
tinue to grow as we fly other trajectories or change batteries?
Or in different wind or temperature environments? What if we
use different degradation models? These are all great research
questions that are of high interest to the PHM community.

This architecture for data management will enable researchers
to dig deeper into these questions with greater ease, and with a
high degree of confidence that their results are valid. It also fa-
cilitates using the data as input to machine learning tasks such
as model development for remaining useful life (RUL) pre-
diction, or decision making making, among many other uses.
This framework simplifies the entire simulation process takes
care of the tedious and error prone tasks of data management.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

8. CONCLUSION & FUTURE WORK

In this paper, an asset, process, and data management frame-
work for the research and development of PHM applications
has been proposed. This work was motivated by the lack of a
comprehensive simulation environment and data management
architecture that addresses requirements specific to PHM re-
search. Therefore, a requirements analysis into the specific
needs of PHM research and development was done and a
new framework has been developed from the ground up. The
framework was demonstrated with an end-to-end simulation
environment implemented in MATLAB®. Using this frame-
work, simulation changes are easily tracked, generated data is
inherently organized, and data integrity is guaranteed. Collab-
oration is also facilitated when different researchers are using
the same framework, making it easier to share code, reproduce
results, and build off others work. We demonstrate the use of
this framework with a data generation experiment and are left
with a couple of different open ended questions that, with this
simulation architecture will soon be studied.

Part of the continuation of research will be directed at improv-
ing the fidelity of simulation environment with better degrada-
tion and process models (i.e. implementing a Dryden or Von
Karman wind gust model as opposed to stochastic sampling
of magnitude and direction values), and better simulation of
take-off and landing which have different power demand pro-
files than hovering or cruising at altitude. Then there is also
improvements with incorporating risk and reward information
for decision making applications, among countless other ex-
tensions and improvements that could be made.

Of more interest to the general PHM community is the future
work on the framework itself. Does it generalize to other types
of PHM simulation use cases, vehicles, or systems? Does
it scale to dozens, hundreds, or even thousands of vehicles?
Does the framework behave well in real-world operation, and,
are there time constraints that need to be considered? Can this
framework be used to automate the evaluation and testing of
different prognostics algorithms on the same system? There is
certainly no shortage of research questions to address, using
this framework.

ACKNOWLEDGMENT

* NASA grant 80NSSC19M0166 from the NASA Shared
Services Center
* NASA OSTEM Fellowship 20-0154.

REFERENCES

Daigle, M., & Kulkarni, C. (2013). Electrochemestry-based
battery modeling for prognostics. In Annual conference of
the prognostics and health management society.

Darrah, T., Kulkarni, C. S., & Biswas, G. (2020). The effects
of component degradation on system-level prognostics for
the electric powertrain system of uavs. In Aiaa scitech 2020
forum. doi: 10.2514/6.2020-1626

Darrah, T., Quifiones-Grueiro, M., Biswas, G., & Kulkarni,
C. (2021). Prognostics based decision making for safe and
optimal uav operations. In Aiaa scitech 2021 forum.

Gorospe, G. E., Kulkarni, C. S., Hogge, E., Hsu, A., & Ownby,
N. (2017). A study of the degradation of electronic speed
controllers for brushless dc motors..

Jackey, R., Plett, G., & Klein, M. (2009). Parameterization
of a battery simulation model using numerical optimization
methods. SAE International.

Kavraki, L., Svestka, P, Latombe, J.-C., & Overmars, M.
(1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation.

Li, R., Verhagen, W. J., & Curran, R. (2020). A systematic
methodology for prognostic and health management sys-
tem architecture definition. Reliability Engineering System
Safety, 193.

Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., ...
Shang, W. (2018). Temperature effect and thermal impact
in lithium-ion batteries: A review. Progress in Natural Sci-
ence: Materials International, 28.

Magid, E., Keren, D., Rivlin, E., & Yavneh, I. (2006). Spline-
based robot navigation..

Moir, L., & Seabridge, A. (2012). Design and development of
aircraft systems (Vol. 67). John Wiley & Sons.

National Academies of Sciences, E., & Medicine. (2020). Ad-
vancing aerial mobility: A national blueprint.

Osmié, N., Kuri¢, M., & Petrovi¢, 1. (2016). Detailed oc-
torotor modeling and pd control. In 2016 ieee international
conference on systems, man, and cybernetics (smc).

Plett, G. L. (2015). Battery Management Systems Volume 2:
Equivalent-Circuit Methods. Artech House.

Quinones-Grueiro, M., Biswas, G., Darrah, I. A. T., & Kulka-
rni, C. (2021). Online decision making and path planning
framework for safe operation of unmanned aerial vehicles
in urban scenarios. Aerospace Journal (to appear).

Saha, B., & Goebel, K. (2007). Battery data set. NASA Ames
Prognostics Data Repository.

Schacht-Rodriguez, R., Ponsart, J., Garcia-Beltran, C.,
Astorga-Zaragoza, C., Theilliol, D., & Zhang, Y. (2018).
Path planning generation algorithm for a class of uav mul-
tirotor based on state of health of lithium polymer battery.
Journal of Intelligent and Robotic Systems, 91:115-131.

Teubert, C., Daigle, M. J., Sankararaman, S., Goebel, K., &
Watkins, J. (2017). A generic software architecture for
prognostics (gsap). International journal of prognostics and
health management.

Valavanis, K. P., & Vachtsevanos, G. J. (2015).

In Handbook of unmanned aerial vehicles (chap. Quad-
copter Kinematics and Dynamics). Springer.

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Wang, B., Wang, D., Ali, Z.

, Ting, B., & Wang, H. (2019).
An overview of various kinds of wind effects on unmanned
aerial vehicle. Measurement and Control.

Xuan, J., Wang, X., Lu, D., & Wang, L. (2017). Research
on the safety assessment of the brushless dc motor based on
the gray model. Advances in Mechanical Engineering.

APPENDIX
Parameter Desc Value
ct rotor thrust coef. 8.5486x10~°
cq rotor drag coef. 1.367821077
cd translational drag coef. 1.0
mass total mass 1.8kg
.0429
b inertia matrix .0429 kg —m?
.0748
Asy cross sectional area 9m
Az cross sectional area Sm
Ay cross sectional area .Sm
l arm length 0.45m
Table 4. Airframe Parameters
Parameter Desc Value
Rx coil resistance .8Q
Ke back EMF 0068
Tf friction torque le~®
Df viscous dampening 1.6e77
d drag constant 1.71e78
j inertia 4.9¢70
* degradation parameter
Table 5. Motor Parameters
Parameter Value
Qx 15000mAh
n .9929
0% .1199
M 0 1674
M le~®
Ry .0112Q
Ry 2.83¢*Q
4 12.93uF
Vo 4.2v
* degradation parameter
Table 6. Battery Parameters
process_type_id process_subtypel process_subtype2 asset_type_id asset_type asset_subtype
1 battery capacitance 3 battery discrete-eqc
2 battery internal resistance 3 battery discrete-eqc
3 motor internal resistance 2 motor de
4 wind gust 1 airframe octorotor
model_source process_id process_description degradation_model_source parameters
plett_2015 1 discrete cycle based NASA prognostics dataset {qdeg”: [15.0, 14.99 ...]1}
plett_2015 2 discrete cycle based NASA prognostics dataset {’rdeg”: [.0011, .0011 ...]}
generic 3 discrete, mission-based artificial nonlinear profile {"mdeg”: [.2371, 2372 ...]}
osmic_2016 4 simulated wind gusts trial & error {"x”: [1.0, .25, 7’y ..}

Table 7. Process data Table

11

	PHM_2021_UAV_Testbed_Framework_Paper_Revised.pdf
	PHM_2021_UAV_Testbed_Framework_Paper (6).pdf

