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ABSTRACT

Recent developments in lithium-ion (Li-ion) storage technol-
ogy have enabled a revolution in the automotive industry.
Fully electric vehicles (EVs) operate under the most diverse
combination of driving and environmental conditions affect-
ing the autonomy range. In other words, an equal State-of-
Charge (SOC) on two same model EV does not mean the
same traveling distance since the conditions such as the State-
of-Health (SOH) of the battery, type of driver and even the
type of route will influence the EV performance. Typically,
SOC estimation algorithms are proposed and validated under
controlled laboratory conditions. However, when real con-
ditions are present, it is necessary to incorporate new tools
capable of handling the diverse variability present in all the
conditions. For instance, the elevation profile of the route
influences the current that the battery pack delivers or regen-
erates, and the performance on the same route can be affected
by the SOH. One of the main concerns for EV owners is that
once a battery pack is installed, it becomes almost impossible
to perform laboratory tests under controlled conditions.This
paper proposes a novel Particle-Swarm-Optimization-based
(PSO) method to characterize the battery pack of an EV when
driven under real traffic conditions. The data was obtained
by a real-driving experiment, which consists on driving the
EV in a complete discharge cycle on a highway. During
this experiment, the initial SOC was 100%, and the EV was
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driven through a highway where the driving conditions were
almost uniform making it possible to characterize the SOC
curve. The obtained model is then validated when the EV
was driven in different types of routes. The obtained results
show that the proposed approach can estimate the SOC satis-
factorily. In this regard, this type of real-driving experiment
can be performed by any driver, and by combining the partic-
ular results with the proposed approach, the users can person-
alize the SOC estimation model to their vehicles, and even
more, create their own knowledge base of their EV perfor-
mance through time. Therefore, the real-driving experiment
can be replicated when needed to update the model parame-
ters, thus allowing a better understanding of the actual SOH
of the battery pack. Furthermore, by combining the obtained
model with the elevation profile of a given route, the user can
assess where to stop in case that a recharge is necessary.

1. INTRODUCTION

Due to climate change and the urge to reduce carbon emis-
sions Electric Vehicles (EVs) are one of the most popular
alternatives to reverse this situation. Literature reports that
the global market sales for this type of vehicles has increased
from 2.26 million units in 2019 to a total of 3.24 million dur-
ing 2020 (Irle, 2020). Furthermore, when data from sales
from 2010 to 2018 is used to define a logistic growth model,
the prognosis results show that by year 2032 all passenger ve-
hicles will represent near 30% of the fleet (Rietmann, Hügler,
& Lieven, 2020).

Recent developments in lithium-ion (Li-ion) storage technol-
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ogy have triggered a new revolution in the automotive indus-
try, although electric vehicles (EVs) are affected by the most
diverse combination of driving and environmental conditions
affecting the autonomy range and the overall performance.
Two of the most used indicators when using any type of bat-
tery are the State of Charge (SOC), and the State of Health
(SOH). The SOC indicates the available energy stored in the
battery, and typically is indicated as a percentage from the to-
tal energy that can be stored. For instance, a fully charged bat-
tery is represented as 100% SOC, and those fully discharged
as 0% SOC. When a fully discharged battery is present, it
can be stated that it reached its End-of-Discharge (EoD). The
SOH is also represented as a percentage from the nominal ca-
pacity and the availability that the battery has to store energy.
The SOH has a major influence on the range capacity of a
vehicle, because a battery can always be charged up to 100%
SOC although the autonomy will depend on the SOH. Dif-
ferent conditions of usage such as charging and discharging
profiles, temperature, elevation profiles, and ways of driving
will influence both the SOC as the SOH (Choi & Lim, 2002)
(Pérez et al., 2017). For example, two vehicles with the same
SOC and different SOH will have very different autonomies.

One of the concerns that drivers have before purchasing an
EV is the fear of getting stranded before arriving to charg-
ing location. This phenomena, called range anxiety, as well
as not trusting EV technology have major influences on the
rate at which this technology becomes more popular (Tantuau
& Gavrilescu, 2019). When reading an EV dashboard it is
more common that the driver trust more the remaining driving
range than the actual SOC when making decisions on where
to charge, although the autonomy is an estimated value de-
pendent on the SOC (Pevec et al., 2019).

Different approaches have been proposed to estimate the SOC
on Li-ion cells (Xiong, Cao, Yu, He, & Sun, 2017). Typi-
cally the proposed methods are based on laboratory tests and
controlled conditions during the discharge process. Although
some other methods have been proposed for estimating the
SOC of EV, they require special considerations that not nec-
essarily can be obtained by a regular driver.

This paper proposes a novel method to characterize the bat-
tery back of an EV through a Particle-Swarm-Optimization
(PSO) scheme and a proposed driving profile. The proposed
driving schedule was performed with a Nissan Leaf driven
continuously in a major highway, and dealing with real traffic
conditions. The obtained results were then validated by com-
paring the real SOC obtained from the EV computer, with
a PF-based SOC estimation framework. This PF-based esti-
mator was initially designed for Li-ion individual cells, and
this paper extends this original methodology to an EV battery
pack. The article is organized as follows: Section 2 mentions
the situation of the electric vehicle market and the importance
of battery health monitoring systems. In Section 3, the theo-

retical concepts are presented. Section 4 states the character-
istics of the case study developed, and Section 5 discusses the
results obtained. Finally, Section 6 presents the conclusions
of the work.

2. ELECTRIC VEHICLES BACKGROUND

In recent years the use of EVs has increased significantly due
to the effort of various government policies to minimize car-
bon dioxide emissions. For example one of the actions is
the introduction of laws and regulations for the use of EVs
by that provide a variety of benefits to the users such as tax
discounts, and preferred public parking (Gómez-Gélvez, Mo-
jica, Kaul, & Isla, 2016). As a result, the electric vehicle mar-
ket has increased the compound annual growth rate by 26.8%
between the years 2021 to 2030 (Markets & Markets, 2021).
The guidelines established by various countries evidence this
situation; such is the case of Chile and Costa Rica, where it is
expected that by 2050, all public transportation will be zero
emissions (Gómez-Gélvez et al., 2016).

EVs can be classified into three categories depending of the
nature of the energy source. The main types are: Battery
Electric Vehicles (BEVs), Hybrid Electric Vehicles (HEVs),
and Plug- in Hybrid Electric Vehicles (PHEVs) (Gómez-
Gélvez et al., 2016).

• BEVs: The motor is powered only from an electric bat-
tery.

• HEVs: These type of cars have an electric battery and a
combustion engine. The battery is charged by the com-
bustion engine and regenerative breaking.

• PHEVs: Similar to the HEV, but in this case the battery
can be charged when plugged to a charger.

The introduction of electric vehicles has been notorious in
the last five years in Latin America. For example, in Costa
Rica, the total EV fleet grew almost 100% during 2020 and
the first semester of 2021, for an estimated total of 2000 units.
Between 2018 and 2019, Chile had a 68% increase in the
number of EVs, and currently, there is an approximate fleet of
900 units. Other countries, such as Panama, have had a slower
process, but even so, the presence of EVs can be evidenced
(ONU Environment Programme, 2019) (Ochoa, 2020).

Regarding public transportation, Chile has the largest fleet
outside of China with more than 500 electric buses servic-
ing the country. Panama implemented a plan between 2018
and 2019, obtaining promising results (Gómez-Gélvez et al.,
2016). This plan lead to the purchase of 35 units to be in-
corporated into public transport. On the other hand, Costa
Rica initiated in 2021 an experimental phase of EV in public
transport.

Although their increasing popularity, the cost of EVs is still a
major constraint for most users. A very important percentage
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of the total cost of the EV is the battery pack, literature defines
this value somewhere between 30% to 50% of the total cost
of the EV (Orchard, 2017). For this reason, and in order to
avoid a premature damage to the battery pack, EVs require a
Battery Management System (BMS) and a Thermal Manage-
ment System (TMS). The BMS is in charge of controlling that
way in which energy flows in the battery, either in charging
mode as well as in discharge mode. Also it monitors all the
other important indicators, such as SOC, SOH, temperature,
current, and speed to mention some. Estimating the SOC and
SOH has received significant attention since the information
they provide on the percentage of available energy and the
degradation rate contribute significantly to decision-making
in the operation and use of the EVs. Currently diverse are the
studies that have been presented to the student the different
techniques for the estimation of both indicators considering
the evaluation of individual cells or the battery pack (Xiong
et al., 2017) (Rahimi-Eichi, Ojha, Baronti, & Chow, 2013).

Different techniques can be used in BMS to estimate the
SOC. For example, it is possible to classify the techniques
into four large groups: Conventional method, Adaptive fil-
ter algorithm, Learning algorithm, and Non-linear observer
(Hannan, Lipu, Hussain, & Mohamed, 2017). Basically, the
selection of the method will depend on its precision and accu-
racy in the estimation process. Moreover, they also establish
the challenges that arise in estimating SOC, including cell un-
balancing, model characterization, and the sensitivity of the
equipment that performs the measurements of the variables
(voltage, current, temperature). In other efforts, the authors
estimate the SOC using the Unscented Kalman Filter consid-
ering the Autocovariance Least Squares technique (El Din,
Hussein, & Abdel-Hafez, 2018). Also in this work, the au-
thors propose using a battery cell model that uses Artificial
Neural Network to determine the parameters dynamically. Fi-
nally, in (Li, Guo, Qi, Guo, & Li, 2020), the authors compare
the SOC estimation using the Adaptive Filter algorithm and a
battery model that allows the online selection of parameters.
Through these works, it is evidenced that the SOC estima-
tion is a critical parameter in BMS since the accuracy of its
measurements affects decision-making in EVs.

3. THEORETICAL BACKGROUND

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization
method inspired by collective behaviors observed in na-
ture, such as bird flocking or fish schooling searching for
food (Sun & Liu, 2013). Proposed initially by (Eberhart
& Kennedy, 1995; Kennedy & Eberhart, 1995), PSO is
a stochastic population-based algorithm used for solving
nonlinear-nonconvex optimization problems (Bansal, 2019).

The PSO algorithm uses a set of individuals, called particles,
to explore the space of an objective function aiming to find

the optimal solution, called global best (gbest). At each it-
eration step, the PSO algorithm “moves” the particle swarm
through the search space by adjusting each particle’s position
and velocity, thus allowing the particles to be attracted to the
position of the gbest.

The typical PSO algorithm is initialized with a set of ran-
dom candidate solutions (the particles), where a position and
a velocity vector characterizes each particle. Then, at each
iteration step the particles move through the search space of
dimension d to find the global minimum solution adapting
their positions and velocities. The best solution of each parti-
cle (pbesti) and the current global best solution of all particles
(gbest) are also stored at each iteration. Two stopping criteria
are used to stop the search process: i) when the iteration steps
reach a maximum value and ii) when the global best solution
reaches a predefined tolerance. Finally, the result of the op-
timization problem corresponds to the gbest value computed
by the PSO algorithm (Martı́nez-Ledesma & Jaramillo Mon-
toya, 2020).

As previously stated, each particle is characterized by a po-
sition and a velocity vector, updated at each iteration step.
Considering vid(t) the velocity and xid(t) the position of the
particle i in the d−dimension search space at the iteration
step t, the equations that update these two vectors are defined
in Eq. (1) and Eq. (2), respectively (Shi & Eberhart, 1998):

vid(t+1)= ω ·vid(t) + c1 ·φ1 ·(pbest(t)−xid(t)) +

c2 ·φ2 ·(gbest(t)−xid(t))
(1)

xid(t+1)= xid(t) + vid(t+1), (2)

where ω is the so-called inertia weight, which allows bal-
ancing the exploration and exploitation of the search space,
c1 and c2 are the so-called cognitive and social components,
respectively. These two coefficients control the degree of in-
fluence that gbest and pbest should have on the velocity and
position of the particles. Moreover, φ1 and φ2 are two random
vectors sampled from a d−dimensional uniform distribution
on the [0, 1] interval, which contribute to keeping the diversity
in the particle swarm at adequate levels (Freitas, Lopes, &
Morgado-Dias, 2020; Martı́nez-Ledesma & Jaramillo Mon-
toya, 2020).

The main steps of the PSO algorithm are arranged in the
pseudo-code illustrated in Algorithm 1 (Sun & Liu, 2013;
Yang, 2021).

3.2. Bayesian filtering and Particle filters

Bayesian filtering (BF) is a probabilistic method to recur-
sively estimate the posterior probability density function
(PDF) of the state vector xk at each time step k given a set of
measurements z1:k (Särkkä, 2013). Specifically, the BF prob-
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Algorithm 1 Particle swarm optimization

1: Definition of the objective function f(x)
2: Parameters initialization (swarm size n, ω, c1, y c2)
3: Random initialization of the position (xid) and the ve-

locities (vid) of the particle swarm
4: Find gbest from min{f(x1d), ..., f(xnd)}
5: while (stopping criteria are not met) do
6: for (all n particles) do
7: Update the velocity vector (vid(t+ 1))
8: Compute new position vector (xid(t+ 1))
9: Find the current pbest

10: end for
11: Find the current gbest
12: t = t+ 1

13: end while

lem aims to compute the posterior PDF p(xk|z1:k) in real
time. In realistic scenarios, the dynamics of the state vec-
tor xk are usually non-linear, time-variant and disturbed by
non-Gaussian uncertainties, which entails that there is no op-
timal closed-form solution for the BF problem (Ristic, Aru-
lampalam, & Gordon, 2003).

For these scenarios, Particle Filters (PFs) are a type of al-
gorithms used to compute a sub-optimal solution for the BF
problem. PF algorithms are based on Monte Carlo simula-
tion, and seek to represent the posterior PDF p(xk|z1:k), at
each time step k, by a set of Np random samples with asso-
ciated weights. These samples are called particles and are
represented by Eq. (3):

{x(i)
k , w

(i)
k }

Np

i=1,

Np∑
i=1

w
(i)
k = 1. (3)

To compute the optimal solution, PF sequentially acquires the
set of particles from an alternative q(·) distribution, called
importance PDF. Therefore, the posterior PDF p(xk|z1:k) is
represented by (Arulampalam, Maskell, Gordon, & Clapp,
2002):

p(xk|z1:k) =

Np∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (4)

where the weights w(i)
k are updated according to:

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

(5)

The selection of the q(·) PDF is directly related to the PF per-
formance, thus it should be considered in the filter design and
implementation (Orchard & Vachtsevanos, 2009). For exam-

ple, the basic PF implementation, the Sequential Importance
Sampling (Arulampalam et al., 2002), selects the q(·) PDF
equal to the prior state PDF, such that:

q(xk|x(i)
k−1, zk) = p(xk|x(i)

k−1). (6)

Thereby, the weights w(i)
k are computed using the likelihood

of the new measurements.

3.3. State-of-Charge model

Previous works (Espinoza, Pérez, Orchard, Navarrete, &
Pola, 2017; Pola et al., 2015) have proposed an empirical
state-space model for the SOC characterization of Li-ion bat-
teries in discrete time. The process model allows assuming
the battery pack operation by an equivalent circuit made up of
only two states: x1 represents the internal battery impedance
|Zint| [Ω], whereas x2 corresponds to the SOC. Equations (7)
and (8) detail the state-space process model:

x1(k + 1) = x1(k) + ω1(k) (7)

x2(k + 1) = x2(k)− [VL + (V0 − VL) · eγ·(x2(k)−1)+

α · VL · (x2(k)− 1)+

(1− α) · VL · (e−β − e−β·
√
x2(k)+ζ)−

i(k) · x1(k)] · i(k) ·∆t · E−1crit + ω2(k)

(8)

Regarding the state-space measurement model (i.e., the sys-
tem output), this is related to the voltage signal v(k) [V ], de-
tailed in Eq. (9):

v(k) = VL + (V0 − VL) · eγ·(x2(k)−1)+

α · VL · (x2(k)− 1) + (1− α) · VL·

(e−β − e−β·
√
x2(k)+ζ)− i(k) · x1(k) + ν(k),

(9)

where i(k) (discharge current in Amperes [A]) and ∆t (the
sample time in seconds [s]) are the input variables. V0, VL, α,
β, γ, and ζ are the parameters that capture the non-linear be-
havior of the voltage signal in open-circuit conditions. These
parameters are estimated offline. Ecrit represents the total en-
ergy that the battery pack can deliver, and ω1 and ω2 are the
process noises, while ν represents the measurement noise.

3.4. PSO-based parameter estimation

The offline estimation of the measurement model parameters
defined previously considers a slightly modified version of
the model detailed in Eq. (9). This modified version is shown
in Eq. (10):
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V ∗(SOC, I,θ) = θ1 + (θ2 − θ1) · eθ5·(SOC−1)+

θ3 · θ1 · (SOC − 1) + (1− θ3) · θ1·

(e−θ4 − e−θ4·
√
SOC+ζ)− I · θ6,

(10)

where the SOC and the current I are data vectors. The pa-
rameters vector θ corresponds to the parameters set to be es-
timated. It is worth noting that the SOC data vector can be
computed based on the voltage (V ) and the current (I) data
vectors acquired from a real-driving test experiment.

Considering then the data vectors V , I , and SOC of length
M obtained from a real-driving test experiment, the parame-
ter estimation is formulated as the optimization problem de-
fined by Eq. (11), solved through the PSO algorithm.

min J(θ) =
1

M

M∑
i=1

||V ∗i (SOC, I,θ)− Vi||2 (11)

4. PROPOSED METHODOLOGY

The procedure presented in this article can be divided into
three different steps. The first step consisted in performing
a driving test with practically no stops in a major highway
in order to capture the discharge dynamics of the EV battery
pack. Since most methods proposed in the existing litera-
ture are oriented to laboratory tests that characterize the dis-
charge process of regular Li-ion cells, characterizing an EV
battery pack without the assistance of laboratory equipment
becomes a challenging process since it becomes almost im-
possible to replicate these types of tests. For this reason, in
this article it is proposed an extensive drive oriented to cap-
ture most of the discharge dynamics of an EV battery pack
in a continuous manner. The second step consisted in apply-
ing an evolutionary algorithm, PSO specifically, to estimate
the SOC model parameters as described in Section 3.4. Fi-
nally, the third step is oriented to the validation of the ob-
tained model. For this, two different routes with distinct driv-
ing conditions are selected. The first route consists on driving
the EV through one of the country’s most challenging uphill
mountain roads, whilst the other is a prolonged descent from
one of the country’s highest mountain peaks and driving back
to the city, specifically to the University Campus. It is impor-
tant to understand that this extensive drive test is proposed as
an alternative in which a particular user can characterize any
EV battery pack. With the collected information in these two
routes, the SOC is estimated with the PF-based scheme, as ex-
plained in Section 3.2 and then compared to the ground truth
given by the EV computer. The Mean Absolute Error (MAE)
and the Mean Squared Error (MSE) were used as metrics to
evaluate the performance of the proposed algorithm.

5. CASE STUDY

For this case study a 2018 Nissan Leaf was considered. The
battery capacity has a nominal value of 30 kWh, the obtained
SOH retrieved from the cars computer is approximately 80%
and the odometer displays 6500 km of use.

The discharge dynamics of the battery are obtained using a
proposed extensive drive test. This test consists on driving
the Nissan Leaf starting at 100% SOC and driving it in high-
way conditions (to avoid any additional power consumption
that are present when driving in city conditions), until the bat-
tery is almost completely discharged (any value below 10%
SOC). This driving test was done on a regular business day
to capture all the possible existing traffic conditions. Fur-
thermore, while performing this drive test, the driver tried to
keep the speed as constant as possible so the required current
from the battery is as uniforms as possible. In other words,
since laboratory discharge conditions for a Li-ion cell require
a constant discharge current, this extensive drive test tries to
emulate a similar discharge process. During the test, the am-
bient temperature at the departure site was nearly 20 ◦C at
8:00 a.m, and at the arriving location approximately 35 ◦C at
noon. Also, the retrieved battery pack temperature informa-
tion had similar values during the test, and it followed a linear
trend, starting at 22 ◦C and finishing at 34 ◦C.

The performed driving test started at the Faculty of Engineer-
ing of the University of Costa Rica in San Jose, and the des-
tination at the beginning was not certain since is was depen-
dent on the available range. Although, it was known that the
discharge location was going to be along one major highway
due to the availability of charging stations. At the beginning
of the test the dashboard indicated an autonomy of 170 km
and it was completely charged. Due to the geographic con-
ditions of the country and the location of the starting point
(the city has an elevation of 1222 meters above sea level),
the first part of the test consisted of a descent until reach-
ing practically the sea level (near the Pacific coast), and once
this point was reached the rest of the test was performed in a
practically plain highway. For practical reasons even though
the route has small slopes it is virtual impossible to find a
complete plain highway unless the car is driven in a race
track, or along a specifically designed road, or even just if the
discharge is performed hovering on a chassis dynamometer
with no slopes programmed. In this case, the stored energy
was enough to arrive to the city of Liberia in the Northern
Pacific of the country. At this point, the SOC was nearly
5%, and the total traveling distance was approximately 220
kilometers, more than the initial autonomy displayed in the
dashboard at the beginning of the test. This difference is a
consequence of a combination of the kinetic energy recovery
system and efficient driving. The main characteristics of the
route followed in the proposed extensive drive test are shown
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in Table 1. Figure 1 illustrates the elevation profile of San
Pedro-Liberia route.

Table 1. Main characteristics of the San Pedro-Liberia route.

San Pedro-Liberia route.

Distance traveled [km] 223

Min elevation [m] 23

Max elevation [m] 1249

Travel time [h] 4.492

San Pedro location 9◦ 56.703′ N 84◦ 2.720′ W

Liberia location 10◦ 38.633′ N 85◦ 26.990′ W

0 50 100 150 200
Distance [km]

0

200

400

600

800

1000

1200

1400

El
ev

at
io

n 
[m

]

Figure 1. Elevation profile of the San Pedro-Liberia route.

Figure 2 illustrates the obtained discharge curve. Although it
is not the typical discharge curve obtained under controlled
conditions, the obtained data is enough for characterizing the
dynamics of the battery. Remember that this paper used two
different routes to validate the proposed model.

The first route, has a length of approximately 30 kilometers,
see Table 2. As mentioned before, this route in the way it is
driven is one of the most challengers due to the steep slopes
present. For many years this was one of the most used routes
when returning from the Pacific Coast to the Central Valley.
Due to the mountain conditions on this road, it is not possible
to reach highway speeds but the demanded current when as-
cending limits the regenerative capacity of the vehicle making
it one of the most energy expensive portions of the country´s
road network, see Figure 3.

The next route used for validation is a prolonged descent.
The initial point was the main entrance of the Irazú Volcano
National Park and the final destination was the University of
Costa Rica main campus. In this case the route has a length
of approximately 45 km, and the the altitude at the staring
point is nearly 3255 meters above sea level. Table 3 shows
the main characteristics of this route. As shown in Figure 4
the condition of this road is that it can be characterized as a
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Figure 2. Voltage and Current profile of the San Pedro-
Liberia route.

Table 2. Main characteristics of the El Roble-San Mateo
route.

El Roble-San Mateo route.

Distance traveled [km] 30

Min elevation [m] 8

Max elevation [m] 271

Travel time [h] 0.738

El Roble location 9◦ 59.298′ N 84◦ 44.432′ W

San Mateo location 9◦ 56.260′ N 84◦ 31.609′ W
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Figure 3. Elevation profile of the El Roble-San Mateo route.

very long descent with practically a constant slope along the
route. This particular condition makes it interesting to assess
the capability of the model to capture the dynamics of the
discharge curve when there is a notable regenerative effect.
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Table 3. Main characteristics of the Irazú-San Pedro route.

Irazú-San Pedro route.

Distance traveled [km] 49

Min elevation [m] 1220

Max elevation [m] 3274

Travel time [h] 0.994

Irazú location 9◦ 58.728′ N 83◦ 50.102′ W

San Pedro location 9◦ 56.202′ N 84◦ 3.114′ W
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Figure 4. Elevation profile of the Irazú-San Pedro route.

6. RESULTS

The first step to validate our case study was to implement the
methodology for parameter tuning using PSO. First, the route
San Pedro-Liberia was used to obtain the resulting parameters
shown in Table 4. Subsequently, the discharge voltage and the
voltage vs SOC fitting curve were obtained with the parame-
ters found, see Figure 5. The parameter |Zp| is used only as
an initial condition for the estimation of the state x1. For this
data set, the MAE was 0.901, and the MSE was 1.318.

The second step was to obtain the voltage, internal
impedance, and SOC estimate considering the discharge
current for the two routes proposed in the case study. In both
cases, the SOC estimation follows the same trend in the long
term as the ground truth. Furthermore, both the estimated
SOC and the SOC given by the EV on-board computer are
bounded within the confidence intervals.

Figure 6 illustrates the current consumption, voltage, internal
impedance and SOC corresponding to the El Roble-San Ma-
teo route (Figure 3). The current consumption graphic shows
that the difference in altitude in the route implies a higher cur-
rent consumption, and the steepest portions of the route might
induce to large errors in the SOC estimation. In general, the
SOC estimation has a good performance when compared to
the SOC computed by the on-board computer.

The results for the Irazú-San Pedro route are shown in Figure

Table 4. Optimized parameters.

Parameter Value

VL 396.654

V0 394.896

α 0.161

β 3770.184

γ 20.639

ζ 2.4462

|Zp| 0.060
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Figure 5. Fitted Voltage curve.

7. The current consumption for this route varies among dif-
ferent negative values for most of the trip. This situation is ex-
plained by the elevation profile of the route (Figure 4), mainly
in downhill. Also, this causes the estimation of the SOC to
be overestimated due to the energy recovered through the re-
generative breaking. On the other hand, in the uphill parts
of the route where the current profile is positive, the estima-
tion of the SOC is inaccurate. This situation can be attributed
to the discrepancies over the computed SOC by the on-board
computer. Nevertheless, the SOC estimation follows the same
trend as the information given by the EV.

Table 5. Results of estimation error.

Route MAE SOC MAE V MSE SOC MSE V

I - SP 10.351 0.362 110.845 0.230

R - SM 1.868 0.398 4.931 0.272
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Figure 6. Current consumption, Voltage, Internal impedance and SOC estimation to the El Roble-San Mateo route.

Figure 7. Current consumption, Voltage, Internal impedance and SOC estimation to the Irazú-San Pedro route.

8
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As mentioned before, the MAE and MSE are the selected
metrics to evaluate the performance of the algorithms. The
results obtained for both routes are shown in Table 5. The
metrics reflect that the algorithms have a better performance
for the El Roble-San Mateo route since the Irazú-San Pedro
route has a steep downhill slope, which shows the regener-
ative braking effect. However, the model presented in this
work does not incorporate this variant, which opens the door
to carry out studies on how to incorporate these characteris-
tics into existing models.

In the results found, it can be observed that the proposed al-
gorithms are capable of adjusting to the characteristics pre-
sented by the different routes. This situation is still evident
in the Irazú-San Pedro route. Thus, despite overestimating
the SOC, the algorithm can follow the trajectory according to
the ground truth. The results also highlight that for other pro-
files with a high discharge component such as the El Roble-
San Mateo route, the model has excellent precision and con-
fidence. The main reason for this is that existing models have
adequately characterized the battery discharge processes, thus
allowing an adequate estimation of the SOC.

However, it is necessary to explore alternatives that will en-
able the regenerative effect to be included to guarantee the
proper SOC estimation regardless of the route trip.

7. CONCLUSIONS

This paper proposed calculating the parameters of a previ-
ously reported SOC model through a PSO framework for on-
line SOC estimation in EVs based on particle filters, with the
particularity that a real driving test was designed for this pur-
pose. The test consisted in completely discharging a Nissan
Leaf battery pack while driving non-stop between two cities
on a mostly plain highway to maintain a constant speed dur-
ing most part of the trip.

Afterwards, two routes with different elevation profiles were
used to validate the behavior of the SOC estimation using the
tuned model. The results showed high accuracy in the SOC
estimation when the route did not present regenerative break-
ing effects due to brakes. Nevertheless, in the route where
the regenerative effect was considerable, the SOC estimation
was not as accurate, which marks the way for future works
that propose an improved SOC model capable of including
the regenerative breaking effects.

In the light of the results, the proposed approach can be ap-
plied any time when a real-driving experiment can be per-
formed. Therefore, the model parameters can be updated
when needed by the users to obtain a tuned SOC model, ac-
cording to the current SOH of the battery pack.
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