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ABSTRACT 

Prognostic approaches commonly try to predict the 

Remaining Useful Life (RUL) based on machine health status 

by either directly establish a mapping or setting up a failure 

threshold to determine the End-of-Life (EoL). On the one 

hand, determining a failure threshold is crucial but subjective 

for most reported cases. Machine operation risks, which are 

intuitional but difficult to quantify, can be used to bridge the 

gap between prediction and determining a multivariate 

failure threshold. On the other hand, historical machine life 

information is rarely considered together with the condition 

indicators for such prognostic tasks. Building multivariate 

failure thresholds based on quantifiable operation risks for 

prognostic tasks is the general topic that is rarely studied due 

to the following challenges: 1) How to quantify operation 

risks under multiple variables? 2) How to determine the 

multivariate failure thresholds? 3) How to make reliable 

extrapolations of future conditions? To address these 

questions, as the extension of our previous work (Jia, Li, 

Wang, Li, & Lee, 2020), this paper proposes 1) a Gaussian 

Copula model-based risk quantification method to determine 

multivariate failure thresholds, and 2) a Similarity enhanced 

Blackwellized Particle Filter (RBPF) to predict future system 

conditions. Two examples of establishing tri-variate and bi-

variate failure thresholds are given. The proposed 

methodology is validated on the aero-engine RUL prediction 

task based on the C-MAPSS dataset from the PHM society 

data competition 2008. The result suggests that the proposed 

methodology has better explainability and practicability with 

comparable prediction capability. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) methodologies 

and techniques have been widely studied in academia and 

practiced by the industry in recent years. The prognostics 

seek to predict the RUL based on machine operating status 

described by measurements from condition monitoring (CM). 

One popular way is to build a direct mapping (e.g., a deep 

learning regression model) from machine status to 

RUL(Khan & Yairi, 2018; Y. Wang, Zhao, & Addepalli, 

2020). The other primary method type, such as Stochastic 

Process Method (SPM), Similarity-Based Method (SBM), 

and State-Space Method (SSM), could primarily rely on a 

failure threshold to determine the EoL (Cai, Feng, Li, Hsu, & 

Lee, 2020; Haoshu Cai, Xiaodong Jia, et al., 2020; H. Cai et 

al., 2020; Jia et al., 2019). The study to resolve systematically 

setting up failure thresholds for prognostic tasks are rarely 

found since, in most cases, such threshold is set empirically 

by human experience or based upon some simple statistic 

distributions (P. Wang & Coit, 2007). As emphasized in our 

previous work (Jia et al., 2020), operation risk is an essential 

criterion for critical systems and essential input of 

maintenance planning. However, it is not easy to be 

quantified based upon operating conditions. It would be 

practical for practitioners to set up a failure threshold to 

determine EoL based on a quantifiable operation risk.  

Multivariate survival analysis could be applied to quantify 

operation risk based on reliability and operating condition, 

which generally takes life and its covariates to analyze the 

expected duration of time until machine failure. Effective 

models include multivariate distribution,  competing risks 

models (Prentice et al., 1978), Cox Proportional Hazards 

Model (Breslow, 1975), and Copula Model (Clayton, 1978). 

Our previous work (Jia et al., 2020) proved that COX 

Proportional Hazard Model has the over-dominant issue and 

multivariate Weibull distribution has the independence 
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assumption of input variables. Since machine life can be 

correlated to some indicator of aging over time, the 

independence assumption does not always hold.  

To address these challenges, this study proposes 1) a 

Gaussian Copula model-based risk quantification method to 

determine multivariate failure thresholds, and 2) a Similarity 

enhanced Blackwellized Particle Filter (RBPF) to predict 

future system conditions. The proposed Gaussian Copula 

Model could establish the joint effects of life and multiple 

variables. Life is essentially used in reliability analysis, and 

other variables can be health indicators or raw sensory 

readings. Based on the proposed risk model, a systematic 

methodology for RUL prediction is proposed. Two cases of 

establishing bi-variate and tri-variate failure thresholds are 

demonstrated and discussed. The proposed RUL prediction 

methodology is validated on the aero-engine RUL prediction 

task based on the C-MAPSS dataset from the PHM society 

data competition 2008.  

The rest of the paper is organized as follows. Section 2 gives 

a literature review of the Copula Model and its application. 

Section 3 elaborates the proposed methodology. Section 4 

illustrates the benchmarking results based on the public 

datasets. The conclusions are given in Section 5.  

2. LITERATURE REVIEW 

As most widely used to depict dependence relations in 

economics (Trivedi & Zimmer, 2006), clinical chemistry and 

finance (Cherubini, Luciano, & Vecchiato, 2004), 

quantifying risks in insurance (McNeil, Frey, & Embrechts, 

2015), and establishing process control chart (Busababodhin 

& Amphanthong, 2016), Copula models create a link 

between multivariate joint distributions and univariate 

marginal distributions (Glidden, 2000; Nelsen, 2007; Patton, 

2012). Regular Copula Models can be classified into T-

student Copula (from which Gaussian Copula is derived) and 

Archimedean Copulas, which include Frank, Gumbel, 

Clayton (Clayton, 1978), and Joe Copula distinguished by 

different Copula functions(Kumar, 2019; Nelsen, 2007). As 

the most prominent Copula model, Gaussian Copula could 

easily expand to high dimensionality (more than three) 

compared with the most asymmetric bivariate Copulas. 

However, Gaussian Copula could only model linear 

correlation and not account for tail dependence (Klein, Kneib, 

Marra, & Radice, 2020). Such tail dependence can be 

modeled using Clayton in bivariate cases. In a general 

categorization scale, copula models can be classified as fully 

parametric, semiparametric (Chen & Fan, 2006) and 

nonparametric (Genest & Segers, 2009). Maximum 

Likelihood Estimation (MLE) or multi-stage MLE can be 

directly used to estimate model parameters for the parametric 

models such as Gaussian Copula and T-student Copula 

(Lindskog, 2000). As for parametric models such as Clayton 

and Frank, numerical optimization of log-likelihood function 

is expected to estimate model parameters(Bouyé, Durrleman, 

Nikeghbali, Riboulet, & Roncalli, 2000).  

Bivariate Copula is more common and abundantly studied 

than high-dimensional Copula models, limiting the choice 

when multiple variables exist. A suitable Copula model is 

generally case-sensitive (Busababodhin & Amphanthong, 

2016). However, it still provides a powerful tool to build the 

joint influence of life and other health indicators towards risk 

quantification. As reviewed in (Jia et al., 2020), 

methodologies of determining failure threshold rarely take 

risk into consideration. Some proposed methods are very 

complex and inflexible (Jiang, 2010) (Javed, Gouriveau, & 

Zerhouni, 2013). To address these challenges, this study 

proposes a Gaussian Copula model-based risk quantification 

methodology to assist in establishing multivariate failure 

threshold for prognostic tasks. 

3. METHODOLOGY 

3.1. Methodology Overview 

 

Figure 1. Methodology workflow of predicting RUL of 

engines based on multivariate failure threshold and 

Similarity enhanced RBPF 

 

The workflow of the proposed methodology and its 

application on C-MAPSS Engine RUL prediction is shown in 

Figure 1.  

1) Obtain HI from health assessment: As suggested in 

(Jia et al., 2020), Principal Component Analysis is 

conducted on Run to Failure (R2F) readings of sensor #2, 

#3, #4, #11, #17, which are selected using Fisher 

distance and Mann-Kendall test. The obtained 1-
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dimensional principal component is treated as the health 

indicator. 

2) Train Fault Detection and Classification Model: The 

C-MAPSS dataset consists of two failure types: FAN 

degradation and High Pressure Compressor (HPC) 

degradation, which can be easily clustered by the K-

means method. The obtained label is used for training a 

Fault Detection and Classification (FDC) model, which 

is further applied to determine the failure threshold 

model for testing data. 

3) Train Risk Quantification Model: The risk 

quantification model calculates the operation risk given 

the machine operation time and HI. Two models are 

trained for FAN degradation and HPC degradation 

failure mode, respectively. The multivariate failure 

threshold can be obtained based on the given risk value. 

The detailed procedure and discussion will be given in 

Section 3.2. 

4) Predict Future HI: This step extrapolates the partially 

degraded HI trajectories from the testing samples using 

a similarity enhanced RBPF. The future HI values are 

estimated together with the prediction uncertainties. The 

EoL can be determined by applying the risk-based failure 

threshold. Details of HI prediction are given in section 

3.3. 

3.2. Train Risk Quantification Model 

The system operation risk can be addressed in terms of failure 

time (reliability) and its covariates (other indicators of 

operation status) in the presence of dependence. Dependent 

failure times are typical when system components degrade 

over time. As for some critical systems, safe is defined as 

when the machine is reliable in terms of time and healthy in 

terms of functionally. Risk can be therefore defined as not 

being able to survive and remain healthy. The mathematical 

expression of the risk in this study is described in Eq.(1). 

 
𝑅 =  1 − 𝑆(𝑡, 𝑥1, … , 𝑥𝑛)  

    =  1 − 𝐏𝐫𝐨𝐛(𝐿 ≥ 𝑡, 𝑋1 ≥ 𝑥1, … , 𝑋𝑛 ≥ 𝑥𝑛) 
(1) 

Where 𝐿  denotes the Life and 𝑋1, … , 𝑋𝑛  are indicators 

(crucial process measurement) of operation status, 

respectively, 𝑡, 𝑥1, … , 𝑥𝑛  represents the current time and 

current indicators’ value. 𝑆(∙)  is the survival function 

meaning the joint probability of survival. The risk 𝑅  is 

defined as 1 − 𝑆(∙). 

Variables’ dependencies affect ways of calculating the joint 

probability of survival are classified. The joint cumulative 

distribution function (d.f.) can be calculated simply as the 

product of the marginal cumulative d.f. when all variables are 

independent, which is however, not always valid. The 

degradation tendency of some components could have strong 

correlations with machine life. Some degradation pattern can 

also be reflected by different sensors. The potential complex 

dependencies make the independent assumption of indicators 

and time not always hold when calculating the joint 

probability. Copula model provides a simple but effective 

solution to calculate such complex joint probability.  

Let 𝐻 be an (𝑛) dimensional d.f. with continuous marginal 

d.f. 𝐻𝑋1, 𝐻𝑋2, … , 𝐻𝑋𝑛 , then the copula model of 𝐻  can be 

defined as Eq. (2). 𝐶(𝐻𝑋1(𝑥1), 𝐻𝑋2(𝑥2), … , 𝐻𝑋𝑛(𝑥𝑛))  is a 

multivariate d.f. with margins 𝐻𝑋1, 𝐻𝑋2, … , 𝐻𝑋𝑛. To construct 

such a multivariate d.f. using a copula model, one can 1) 

specify a marginal univariate distribution for each variable 

and 2) choose a copula to provide a correlation structure 

between variables. 

 
𝐻(𝑥1, 𝑥2, … , 𝑥𝑛)
= 𝐶(𝐻𝑋1(𝑥1), 𝐻𝑋2(𝑥2), … , 𝐻𝑋𝑛(𝑥𝑛)) (2) 

In this case, the Gaussian copula model is used to construct 

the joint distribution due to its simplicity (Gaussian 

assumption) and high dimensional capability (for tri-variate 

and higher). The general form of Gaussian copula is shown 

in Eq.(3), in which 𝜌 is the correlation parameter. To train 

and test a Gaussian copula model, the probability-integral 

transformations (to uniformity) should first be performed to 

map the raw variables into the unit cube [0,1]𝑛 (Lindskog, 

2000). Afterward, the model parameter 𝜃 can be estimated 

based on 𝑆 samples by maximizing Eq.(4) using MLE. In this 

case 𝑓𝑛  is the density function of Gaussian distribution for 

each variable. The obtained model can be future used to 

calculate any joint probability as shown in Eq.(5) according 

to the Sklar properties (Sklar, 1996) 

 
𝐶(𝑢1, 𝑢2, … , 𝑢𝑛; 𝜌)
= Φ𝜌(Φ

−1(𝑢1), Φ
−1(𝑢2), … ,Φ

−1(𝑢𝑛)) (3) 

 

ℓ(𝜃) =∑∑ln𝑓𝑛(𝑥𝑛
𝑠 ; 𝜃𝑛)

𝑁

𝑛=1

𝑆

𝑠=1

+ 

∑ln𝐶(ΦX1(𝑥1
𝑠; 𝜃1),ΦX2(𝑥2

𝑠; 𝜃2), … ,ΦXN(𝑥𝑁
𝑠 ; 𝜃𝑁))

𝑆

𝑠=1

 

(4) 

 𝐶𝑛(𝑢, 𝑣) = 𝐶(1,… ,1, 𝑢, 𝑣, 1, … ,1) (5) 

To illustrate the training procedure and discuss the key 

features of the proposed risk quantification model, a tri-

variate example is shown based on life, sensor #2 and sensor 

#4 (denoted as ‘Sensor 1’ and ‘Sensor 2’ for simplicity) from 

C-MAPSS dataset. These two representative sensors are 

selected based on the distribution disparity at healthy and 

faulty operation status as shown in Figure 2 (a) and (b). The 

faulty data generally follow a normal distribution. 

 

𝑅 =  1 − 𝐏𝐫𝐨𝐛(𝐿 ≥ 𝑡, 𝑋1 ≥ 𝑥1, 𝑋2 ≥ 𝑥2) 

= 𝐻𝐿(𝑡) + 𝐻𝑋1(𝑥1) + 𝐻𝑋2(𝑥2) 

−𝐻𝑋1,𝑋2(𝑥1, 𝑥2) − 𝐻𝑋1,𝐿(𝑥1, 𝑡) − 𝐻𝑋2,𝐿(𝑥2, 𝐿) 

+𝐻𝑋1,𝑋2,𝐿(𝑥1, 𝑥2, 𝑡)  

(6) 
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 The operation risk can be calculated using Eq.(6) in which 

𝐻𝐿(𝑡) = 𝐏𝐫𝐨𝐛(𝐿 < 𝑡) is the marginal cumulative d.f. of life 

at 𝑡. 𝐻𝑋1,𝑋2(𝑥1, 𝑥2) is the joint cumulative d.f. of 𝑋1 and 𝑋2 

at (𝑥1, 𝑥2). 𝐻𝑋1,𝑋2,𝐿(𝑥1, 𝑥2, 𝑡) is the joint cumulative d.f. of 𝐿,  

𝑋1 and 𝑋2 at (𝑡, 𝑥1, 𝑥2). 

The sensor readings at EoL are collected and used to train the 

tri-variate Gaussian copula model. Based on the copula 

model, the marginal d.f. and bivariate joint cumulative d.f. 

can be obtained according to Eq.(5). The risk value can be 

therefore calculated given a vector of input [𝑥1, 𝑥2, 𝑡]. Based 

on this risk quantification model, a multivariate failure 

threshold appeared as a (𝑛) dimensional surface at different 

risk values from [0,1]. Figure 4 shows the failure threshold of 

FAN degradation at risk level 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 

respectively. The EoL can be easily determined for an 

extrapolated degradation trace.  

  

(a) (b) 

  

(c) (d) 

Figure 2. The distribution of data used for training the 

risk quantification models, where (a) and (b) are 

distributions of healthy and faulty data for Sensor 1 and 

Sensor 2; (c) is the distribution of EoL, and (d) is the 

distribution of HI at healthy and faulty. 

 

Several conclusions can be drawn from Figure 3: 1) As the 

tolerable risk increase, the threshold surface expands in all 

directions, covering more EoL data used for training; 2) the 

shape of the threshold surface is dominated by one variable 

on the rims and jointly determined by all variables at the 

central area; 3) The percentage of training EoL data within 

the threshold is lower than the risk value, indicating even at 

the risk of 0.99, there is still substantial historical machines 

alive. This is caused by the strict definition of risk which is 

the contrary event of ‘healthy and alive’. This definition suits 

the critical system or critical failure mode where one failure 

could lead to dangerous consequences. It can also be 

addressed that each sensor is equally weighted with life in 

this model, which can be too strict for some cases. The 

proposed risk quantification method could be a powerful tool 

to determine multivariate failure threshold when considered 

sensors are equally critical and indicate the system’s health 

status in a certain manner. Otherwise, to avoid such tight 

assumptions, applications could consider health assessment 

in advance and build a bi-variate risk quantification model 

rather than a high-dimensional risk quantification model.   

 

In practice, the standard of choosing tolerable risk varies 

from case to case and largely depends on expert experience. 

When historical R2F data is available, a suitable risk level 

could be determined by the cross-validation strategy, where 

the data is split in multiple folds for training and validating 

the risk quantification model. Since the EoL information is 

available, practitioners could quickly obtain the 

corresponding risk level for further use. To apply this 

methodogy for data competition tasks like the C-MAPSS 

RUL prediction in the case study, the risk level could be 

tuned as a hyperparameter for better prediction accuracy. In 

this case, 75% is selected to achieve the most balanced 

prediction performance on all four datasets.  

To obtain suitable failure thresholds for the C-MAPSS RUL 

prediction, this study built a bi-variate risk quantification 

model based on HI and life, as shown in  Figure 2 (c) and (d). 

(a) 

 

(b) 

 

Figure 3. Risk quantification model of a) FAN 

degradation mode and b) HPC degradation mode given 

by the Gaussian Copula model. 
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It could also benefit the model since the faulty distribution of 

HI is much thinner and separated from the healthy 

distribution compared with Sensor 1 and Sensor 2. The 

obtained 2-d failure threshold for FAN degradation and HPC 

degradation are shown in  Figure 3 (a) and (b). The HPC 

degradation has a relatively longer tail in terms of life.  

3.3. RUL Prediction using Similarity Enhanced RBPF 

RBPF is used in the proposed work for making robust 

extrapolation of future HI with uncertainty based on partially 

degraded data. Compared with the traditional Particle Filter 

and Kalman Filter, RBPF is capable of carrying out analytical 

marginalization to enhance filtering and extrapolating 

performance (Särkkä, Vehtari, & Lampinen, 2007).  

 𝑦 = 𝑎 ⋅ exp(𝑏 ⋅ 𝑡) + 𝑐 (7) 

 

{
 

 
𝑐𝑡 = 𝑐𝑡−1 + 𝜖𝑐
𝑏𝑡 = 𝑏𝑡−1 + 𝜖𝑏

𝑥𝑡 = (𝑥𝑡 − 𝑐𝑡) ⋅ 𝑒
𝑏𝑡⋅Δ𝑡 + 𝑐𝑡 + 𝜖𝑢

𝑦𝑡 = 𝑥𝑡 + 𝜖𝑦

 (8) 

Eq.(7) is built to regulate an exponential degradation trend 

where 𝑎, 𝑏, 𝑐  are the unknown parameters and 𝑦  is the 

observed HI at time 𝑡. The RBPF can be therefore built as 

Eq.(8) to predict HI, in which 𝑥𝑡 is estimated HI at 𝑡, 𝑏𝑡 , 𝑐𝑡 
are model parameters at 𝑡 . The 𝜖𝑐 , 𝜖𝑏 , 𝜖𝑢  and 𝜖𝑦  in Eq.(8) 

follow Gaussian distribution with zero-mean and whose 

variances are tuned to the best model performance. 

The implementation of the RBPF includes two steps: filtering 

and extrapolating. During the filtering step, the unknown 

model parameters 𝚯 = {𝑏, 𝑐, 𝑥, 𝜎𝑢, 𝜎𝑦}are estimated based on 

the partial degradation. Based on the estimated 𝚯𝑡 at current 

time 𝑡, the prediction can be obtained by extrapolating the 

state equation (3rd equation) in Eq.(8).  

For each testing sample, the initialization of 𝚯 could 

significantly impact extrapolation integrity and uncertainty. 

To make a reasonable initialization, a similarity matching 

based approach is introduced to obtain critical RBPF 

parameters 𝑏, 𝑐 and  𝜎𝑏 , 𝜎𝑐 . The workflow of the proposed 

Similarity enhanced RBPF is as following: 

1) Estimate {𝜼s }𝑠=1,...,𝑆 for each historical R2F record using 

MLE, where 𝜼𝑠 = {𝑏𝑠, 𝑐𝑠}  and 𝑆  denotes the number of 

historical R2F records.  

2) For each partially degraded testing sample, matching a 

similar R2F trace and record its 𝜼𝑠 . The R2F trace is 

considered similar when a window’s Euclidian distance to the 

testing data is smaller than a small number 𝜀 . A set of 𝐾 

similar parameters{𝛈s}𝑠=1,..,𝐾 is obtained for each sample. 

3) Estimate  𝑏, 𝑐, 𝜎𝑏 , 𝜎𝑐 based on {𝛈s} and obtain initial 𝚯 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. The illustration of obtained tri-variate (Sensor 1, Sensor 2, Life) failure threshold at risk level (a) 0.1, (b) 0.3, 

(c) 0.5, (d) 0.7, (e) 0.9, (f) 0.99. The black dots are reference EoL data beyond the current threshold and grey crosses are 

reference EoL data within the current threshold 
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4) For each testing unit with partial degradation data, 

initialize 𝑁  particles with 𝚯 . At the end of the filtering 

process, 𝑁  different filtering results at current time 𝑡  are 

obtained, which is denoted as  {𝚯𝑠.𝑝
𝑡 }

𝑝=1,…,𝑁
  

5) Extrapolate the future trend by using entries in 

{𝚯𝑠.𝑝
𝑡 }

𝑝=1,…,𝑁
 as the starting point of the HI prediction. And 

use the failure threshold to determine EoL. 

 

Figure 5. Workflow of RUL prediction based on similarity 

enhanced RBPF. 

4. RESULTS & DISCUSSIONS 

The proposed methodology for risk quantification and failure 

threshold determination is validated on the RUL prediction 

task on the C-MAPSS dataset. The prediction performance of 

proposed methods shows superiority over benchmarked 

methods from some recent literature in terms of Root Mean 

Squared Error (RMSE) and Score calculated using Eq.(9). 

The benchmarked methodologies include deep 

Convolutional Neural Network (DCNN) and Long Short-

Term Memory (LSTM) from (Li, Ding, & Sun, 2018), Deep 

Belief Networks (DBN), Multi-Objective Deep Belief 

Networks Ensemble (MODBNE), Random Forest (RF), 

Gradient Boosting (GB), Support Vector Machine (SVM) 

and Least absolute shrinkage and selection operator (LASSO) 

reported from (Zhang, Lim, Qin, & Tan, 2016), and 

RULCLIPPER from (Ramasso, 2014). As noticed by 

literature, a constant value 𝑅𝑒𝑎𝑟𝑙𝑦  (set to 125) is assigned as 

target RUL before the degradation period. When 𝑅𝑒𝑎𝑟𝑙𝑦  is 

applied, the largest prediction RUL is limited to 125. For 

illustration, the prediction result of 75% risk level is 

summarized in Table 2 and Table 3 together with the obtained 

best result. 

 

 

Figure 6. RUL prediction for test unit 23 in FD001, which is 

a FAN degradation 

 

Figure 7. RUL prediction for test unit 400 in FD003, which 

is a HPC degradation 

 

𝑆𝑐𝑜𝑟𝑒 =

{
 

 ∑ 𝑒−(
𝑑𝑖
13
) − 1, for 𝑑𝑖 < 0

𝑃

𝑖=1

∑ 𝑒(
𝑑𝑖
10
) − 1

𝑃

𝑖=1
, for 𝑑𝑖 ≥ 0

 

𝑅𝑀𝑆𝐸 = √
1

𝑃
∑ 𝑑𝑖

2𝑃
𝑖=1   

where 𝑑𝑖 = 𝑦𝑖 − 𝑦𝑖
∗ (estimate RUL − True RUL) 

(9) 

Dataset Failure Mode Conditions 𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 

FD001 HPC 1 100 100 

FD002 HPC 6 260 259 

FD003 HPC, FAN 1 100 100 

FD004 HPC, FAN 6 249 248 

Total -- -- 709 707 

Table 1. Summary of C-MAPSS Dataset 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 8. The change of prediction score by varying the tolerable risk level. (a)-(d) indicates the prediction score for 

FD001 to FD004 when no 𝑹𝒆𝒂𝒓𝒍𝒚 is applied. (e)-(h) indicates the score for FD001 to FD004 when 𝑹𝒆𝒂𝒓𝒍𝒚 = 𝟏𝟐𝟓 

 

  Proposed 

Method (Best | Risk) 

Proposed 

Method 

(Risk: 75%) 

MODBNE DBN RF GB SVM LASSO 

FD001 
RMSE 17.44 

76% 
17.65 15.04 15.21 17.91 15.67 40.72 19.74 

Score 415.39 420.40 334 417 479 474 7703 653 

FD002 
RMSE 23.61 

86% 
29.09 25.05 27.12 29.59 29.07 52.99 37.13 

Score 3869.2 9356.27 5585 9031 70465 87280 316483 276923 

FD003 
RMSE 25.5 

47% 
30.97 12.51 14.71 20.27 16.84 46.32 21.38 

Score 2073.4 222670.86 421 442 711.13 576 22541 1058 

FD004 
RMSE 33.2 

68% 
31.53 28.66 29.88 31.12 29.01 59.96 40.7 

Score 18436 42880.46 6557 7954 46567 17817 141122 125297 

𝑅𝑒𝑎𝑟𝑙𝑦 NA NA NA NA NA NA NA NA 

Table 2. Prediction Result Comparison with Benchmark Methods (𝑹𝒆𝒂𝒓𝒍𝒚 Not Applied) 

 

  Proposed 

Method (Best | Risk) 

Proposed 

Method (Risk: 75%) 
DCNN LSTM RULCLIPPER 

FD001 
RMSE 15.63 

76% 
15.79 12.61 13.52 13.27 

Score 415.39 420.40 273 431 216 

FD002 
RMSE 14.9 

94% 
14.88 22.36 24.42 22.89 

Score 3971.5 9356.27 14459 10412 2796 

FD003 
RMSE 15.67 

78% 
15.85 12.64 13.54 16 

Score 478.5 485.05 284 347 317 

FD004 
RMSE 17.67 

98% 
17.53 23.31 24.21 24.33 

Score 5671 9145.20 12466 14322 3132 

𝑅𝑒𝑎𝑟𝑙𝑦 125 125 125 125 125 

Table 3. Prediction Result Comparison with Benchmark Methods (𝑹𝒆𝒂𝒓𝒍𝒚 Applied) 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

8 

Figure 6 and Figure 7 illustrate how the proposed bi-variate 

failure threshold determines the EoL and predict RUL using 

the RBPF based extrapolations. Some significant findings are 

as follows: 1) the failure threshold determination model of   

FAN and HPC degradation have a significant difference in 

terms of life, which justify the importance of FDC before 

quantifying operation risks; 2) the extrapolated HI has 

reasonable exponential shape and uncertainty range, 

suggesting the effectiveness and necessity of applying the 

similarity enhanced RBPF; 3) the prediction uncertainty of 

HI can be easily converted to RUL prediction uncertainty 

with the failure thresholds as contour lines; 4) the EoL point 

has a high change appearing in the complex joint, which 

shows the necessity of depicting the correlation of HI and life 

and justified the capability of copula model for such tasks; 5) 

the ground truths can be spotted in the rational middle of all 

risk levels, indicating the effectiveness of the proposed 

methodology. 

The effects of varying tolerable risk on the prediction score 

are illustrated in Figure 8. It can be seen from (a)-(d) when 

𝑅𝑒𝑎𝑟𝑙𝑦  is not applied, an optimal score is found for FD001 to 

FD004 when the risk levels are 76%, 86%, 47%, 68%. This 

suggests that practitioners can flexibly obtain such a useful 

failure threshold based on practice operation risk. This risk 

value can statistically reflect the probability of survival under 

healthy status. Comparatively, the optimal scores are found 

on relatively higher risk levels when 𝑅𝑒𝑎𝑟𝑙𝑦  is applied. This 

is because 𝑅𝑒𝑎𝑟𝑙𝑦  generally removes the penalty of scores 

when a longer RUL is predicted, which could accept a higher 

risk level. The risk level for each dataset to achieve the best 

score is summarized in Table 2 and Table 3 which compare 

the RMSE and score performance of the proposed method 

against benchmark methods with 𝑅𝑒𝑎𝑟𝑙𝑦 = 0 and 125.  

As seen from Table 2 where 𝑅𝑒𝑎𝑟𝑙𝑦  is not applied, the 

proposed model has comparable score performance 

compared with the best among other methods on FD001 and 

FD002. It can be highlighted that the prediction Score of 

FD002 is 3869.2, which is significantly better than all the 

other methods. When 𝑅𝑒𝑎𝑟𝑙𝑦  is applied, as suggested in Table 

3, the proposed methodology holds comparable score 

performance with all the benchmarked deep learning 

methods throughout FD001 to FD004. The major advantage 

of the proposed methodology over deep learning is its 

explainability, practicability, and lower requirement on data 

volume. The overall performance on each dataset is much 

better in RMSE and score compared with our previous work 

in (Jia et al., 2020). However, the proposed methodology 

does not show better accuracy on FD001 and FD003 than the 

benchmarked deep learning methods. This is because the 

training data for building the risk quantification model and 

the similarity base are unbalanced where more historical 

records are available under multiple operation conditions (6 

conditions in FD002 and FD004). This could introduce a bias 

towards multiple conditions where the machine degrades 

faster. Therefore, the overall prediction of RUL on FD001 

and FD003 is conservative. Generally, the score performance 

is slightly worse on FD003 and FD004 than FD001 and 

FD002 due to the combination of multiple failure modes and 

operation conditions. The FDC model’s misclassification 

could select wrong model for failure threshold determination, 

causing conservative or radical prediction results. The 

assumption of exponential degradation could make some 

parameters very sensitive to addressing the HI curve before 

the degradation started. This could also cause radical 

prediction on the HPC failure model when selecting a 

relatively larger risk level. The proposed method can be 

future improved using a more accurate FDC model and 

complex degradation function for RBPF extrapolation. 

Building a local model for each dataset could also increase 

prediction performance by addressing the data imbalance 

issue. However, this would increase modeling complexity 

and reduce the data used for training each model.  

5. CONCLUSION 

This paper proposes a Gaussian Copula model based 

multivariate risk quantification model to determine the 

failure threshold for RUL prediction tasks. A systematic 

methodology for RUL prediction is proposed based on the 

failure threshold determination method and the similarity 

enhanced RBPF extrapolator. The work discussed the pros 

and cons of the proposed risk quantification method with a 

tri-variate and a bi-variate example. The obtained bi-variate 

failure threshold is further validated on the aero-engine RUL 

prediction task using the C-MAPSS dataset. Several essential 

conclusions are achieved: 

1) The proposed risk quantification model can easily quantify 
machine operation risk based on multiple input factors 
without variables’ independence assumption. 
2) The proposed failure threshold can effectively convert the 
predictive distribution of HI into the predictive distribution 
of RUL.   
3) The tolerable risk can be flexibly tuned accordingly. If low 
risk can be tolerated, the life indicator dominates the 
threshold. If higher risk can be tolerated, the health indicator 
dominates the threshold.  
4) The similarity enhanced RBPF could make extrapolation 
more reliable. It can still work well with limited reference 
data. 
5) For a particular case, The RUL prediction performance 
could reach its optimal by varying the tolerable risk in RUL 
prediction tasks. 
As for future work, the bivariate Copula model can be 

updated to those with better tail character (such as Clayton, 

Joe, etc.) to enhance the tails dependence of life. The 

definition of risk can be further studied to suit for the non-

essential case with multiple variables. The proposed 

methodology can be further validated on the newly published 

C-MAPSS 2 dataset from the 2021 PHM Conference Data 

Challenge. 
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