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ABSTRACT

This article reports on anomaly detection performance of
data-driven models based on a few selected autoencoder
topologies and compares them to the performance of a set of
popular classical vibration-based condition indicators. The
evaluation of these models employed data that consisted of
baseline gearbox runs and the associated runs with seeded
bending cracks in the root of the gear teeth for eight differ-
ent gear pairings. The analyses showed that the data-driven
models, trained on a subset of baseline data, outperformed
classical condition indicators as anomaly detectors and may
show promise for damage assessment.

1. BACKGROUND

Condition monitoring of gearboxes aims to increase compo-
nent life, vehicle readiness, and reduce operation and main-
tenance costs. Vibration-based Conditional Indicators (CIs)
that reliably track damage severity are sought, allowing, not
only detection, but life predictions. There are several excel-
lent comprehensive reviews of vibration-based CIs (Lebold,
McClintic, Campbell, Byington, & Maynard, 2000; Samuel
& Pines, 2005; G. Jinks, 2016; Sharma & Parey, 2016b). Of
particular interest to this study are NP4 is the normalized kur-
tosis of the signal power computed from Wigner-Ville trans-
form (Polyshchuk, Choy, & Braun, 2002); NA4, a kurtosis of
the residual signal (Zakrajsek, Townsend, & Decker, 1993),
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FM4 (Stewart, 1977), M6A/M8A (Martin, 1989), and Energy
Ratio and Crest Factor (Swansson, 1980).

The focus of this paper is the gear tooth root crack failure
mode. Gear tooth root cracks manifest as changes in gear
mesh stiffness which changes the gearbox’s vibration charac-
teristics. Both analytical models (Chaari, Fakhfakh, & Had-
dar, 2009; Chen & Shao, 2011; Liang, Zuo, & Hoseini, 2015)
and numerical models (Cooley, Hood, & Wang, 2021) have
been developed to better understand the relationship between
crack size and the resulting acceleration. (Nenadic, Woden-
scheck, Thurston, & Lewicki, 2011) conducted a series of ex-
periments to develop a database of seeded fault experiments
that carefully tracked crack size and gearbox housing accel-
eration. This data serves the purpose of model validation and
diagnostic algorithm development. While analytical mod-
els have suggested a monotonic change in classical CIs with
crack growth, this was not consistently observed in our ex-
periments across multiple test gears (Nenadic et al., 2013).
This inconsistency has also been observed by others. For ex-
ample, (Sharma & Parey, 2016a) calculated condition indica-
tors for three spur gears tests with different crack sizes. Wire
Electrical Discharge Machine (EDM) was used to introduced
different sized flaws into two of the gears and results were
provided for different speed fluctuations. They found that the
classical CIs did not perform well with increasing damage
for all speed fluctuations. They introduced two new CIs, PS-I
and PS-II that were able to track the test cases and showed
promise, however only one gear at each damage level was
tested. (Bechhoefer & Butterworth, 2019) also found many
CIs performed poorly on their own when analyzing three un-
damaged gearboxes and one with a cracked spiral bevel gear
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tooth. They created several health indexes (HIs), derived from
different combinations of 88 CIs. They found that using the
CIs with the largest statistical separability increases the sen-
sitivity of the HI to the crack.

This works attempts to improve on classical CI performance
using machine learning tools, in particular, the autoencoder
topology, to develop data driven condition indicators used to
detect fatigue induced gear tooth cracks in spur gears across
multiple baseline and damage cases.

The principal prognostic health management (PHM) capabil-
ities are, in increasing order: anomaly detection , diagnostics,
and prognostics (Vachtsevanos, Lewis, Roemer, Hess, & Wu,
2006; Goebel et al., 2017). The lowest level of PHM capa-
bility, anomaly detection is very important in its own right,
and can, over-time, be used to attain higher levels of PHM
capability (Sikorska, Hodkiewicz, & Ma, 2011).

A successful implementation and deployment of an autoen-
coder predates the emergence of deep learning (Japkowicz,
Myers, & Gluck, 1995). More recently, autoencoder-based
anomaly detectors have been shown to have considerable
promise because, unlike classical classifiers that demand bal-
anced datasets, their training can be based on data associated
with normal operation, which comes in abundance, as op-
posed to data associated with failures, which is difficult to
come by (Eklund, 2018; Yan & Yu, 2015). The performance
of autoencoders was compared to classical CIs.

2. DATA GENERATION

Data used for the modeling and evaluation was custom-
generated over a sequence of gearbox runs. The block di-
agram in Figure 1 depicts the test process at a high level.
The process consisted of the following steps: 1) break-in
(low-torque, low-speed) eight hour run, 2) baseline (nominal
torque, nominal speed) two hour run 3) crack initiation, 4)
crack verification, 5) installation of crack-propagation (CP)
sensors, and 6) crack propagation until failure. Cracks were
initiated using a fatigue tester, using the previously-developed
process described in (Nenadic et al., 2011).

The main dataset consists of eight tests, each denoted by the
label of the gear with a cracked tooth, viz. Gear 207 for gear
pair 207/208 and Gear 209 for pair 209/210, etc. All the
gears were the same new NASA-designed spur gears (NASA,
1994). The number of gears employed in the experiment was
limited by the time required to successfully conduct the labor-
intensive experiments that require multiple gearbox assem-
blies following a detailed checklist of measurements, crack
initiation, and crack verification (see Figure 1). Acceleration
data, along with the tachometer and CP sensor data, was cap-
tured at 100 kHz sampling rate and saved in separate files
representing one-second of data. The accelorometer place-
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Figure 1. Block diagram of the test process.

ment was based on a previous study that employed the same
gearbox (Nenadic et al., 2013).

Figure 2 depicts the operating conditions associated with a
two-hour baseline test: the torque and speed are held constant
but the temperature exhibits a transient as no oil preheating
was employed.
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Figure 2. Operating conditions during a typical baseline run:
torque, speed, and temperature.

Figure 3 shows the acceleration and tachometer data associ-
ated with the dashed line in Figure 2. The data was sampled
at 100 kHz for 1 second.
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Figure 3. Acceleration and tachometer sampled at 100 kHz.

The fixture is equipped with multiple accelerometers, as
shown in Figure 4, but only accelerometer 4 was used in this
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Figure 4. Gearbox with accelerometer locations. Only ac-
celerometer 4 was used in the study.

study because it has been previously shown that this loca-
tion is the most sensitive to crack detection on the test stand
(Nenadic et al., 2013).

The propagation test employed the same operating conditions
as the baseline test, however, the duration varied due to dif-
ferent failure times. Failure is defined as when all strands are
broken on both CP sensors.

An example of a propagation test that lasted 54 minutes is
given in Figure 5. Also shown are both CP sensor outputs
that were processed and interpreted as damage levels, DL1

and DL2.
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Figure 5. An example of a crack-propagation test.

3. MODELING

The vibration data was processed using time synchronous av-
eraging (TSA), which used a tachometer to average over mul-
tiple shaft rotations, effectively converting time-domain data
into angle domain data in the range 0 ≤ θ < 2π. An ac-
celerometer vector, a(t), with length of 100,000, associated
with one second of operation, was compressed into the TSA
vector xTSA(θ) with a length of 4,096 points. Twenty-four
revolutions were used for the average.

a(t)→ xTSA(θ) (1)

TSA compresses and smooths raw accelerometer data and is
a preprocessing step employed by many common vibration
CIs (e.g. FM0, NA4, FM4, M6A, NP4, etc.) (Lebold et al.,
2000) and it was employed as the input of autoencoders in
this study.

To facilitate data-driven development, the data associated
with each baseline and propagation test was organized in
HDF5 files that contained a matrix of TSA data along with
contextual data of torque, rotational speed, temperature, DL1

and DL2.

Two main type of autoencoders were explored; those employ-
ing fully-connected (FC) layers and those employing con-
volutional layers – convolution and max-pooling, often re-
ferred to as Convolutional Neural Networks (CNNs). In
both cases the activation functions employed by hidden layers
were ReLU and the output activation was linear, as typically
used in regression problems. Exploration of modeling topolo-
gies also included global symmetric and asymmetric autoen-
coder structures. Exploration of modeling topologies also in-
cluded global symmetric and asymmetric autoencoder struc-
tures. These two topologies were selected because they were
found to be effective for anomaly detection (see e.g. (Eklund,
2018)). The autoencoders were then trained to encode the
TSA vectors into progressively shorter vectors and to decode
them back into a TSA vector estimate. It is important to note
that these are not the only topologies of interest. For exam-
ple, given the similarity between vibration data and speech,
and because of their successes in speech applications, Re-
current Neural Networks (RNNs) - specifically Long Short-
Term Neural networks (LSTMs) (Hochreiter & Schmidhuber,
1997) or gradient recurrent units (GRUs) (Cho et al., 2014)
- are also good candidate topologies for gearbox analyses.
Another type of neural networks of interest are transform-
ers (Vaswani et al., 2017). However, experimentations with
RNNs and transformers were not a part of the present study.

The performance metric employed was the Mean-Squared
Error MSE, which was computed once per TSA acquisition,
corresponding to 1 second of operation.

MSE = ||xTSA − x̂TSA||2

=
1

N

N∑
k=1

(xTSA[k]− x̂TSA[k])
2
,

(2)

where x̂TSA is the autoencoder estimate and N=4,096 is the
number of points in the TSA signal. Figure 6 shows a typical
autoencoder output compared to the input.

Section 4.1 describes the analyses of these errors in regards to
the ability to distinguish between baseline and propagation.
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Figure 6. The figure shows reconstructed TSA data (orange)
plotted over the input (blue). The bottom subplot shows a
zoomed in view of the data.

4. EVALUATION

The performance of autoencoders as anomaly detection was
evaluated and compared to the related performance of classi-
cal CIs. The evaluation of the reference classical CI perfor-
mances, autoencoders, and their comparison are presented in
the next three sections.

4.1. Condition Indicator Performance

Commonly used, classical, vibration-based CIs served as the
reference for performance evaluation.
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Figure 7. Example of AUC computation, where CI is NA4,
evaluated on Gear 209.

Figure 7 shows a comparison of normalized histograms be-
tween data taken from the two hour baseline run (blue) and
that from the subsequent crack propagation run (orange). In
this specific example, the selected CI was NA4. An absence
of overlap would indicate excellent anomaly detection capa-
bility. The bottom plot is the corresponding Receiver Oper-
ating Characteristic (ROC) curve (Fan, Upadhye, & Worster,
2006). The Area Under the Curve (AUC) of the (ROC) is
used for the single valued performance metric, consistent
with an earlier study (Nenadic et al., 2013). Broadly, ROC
and AUC are popular for comparing classifiers in machine
learning and pattern recognition. AUC was selected because
anomaly detection process can be seen as a binary classifier
that distinguished the healthy from a degraded state of a gear.

Figure 8 shows the same information for ten CIs, organized
as columns, evaluated for eight baselines and eight associated
crack-propagation tests, organized in rows. The AUC values
are also given.

It is interesting to note that several CIs exhibited great per-
formance on some but not all tests. For example, RMS dis-
tinguished propagation from baseline on Gear 211 and Gear
209, but not on the others; whereas kurtosis performed the
best of all CIs on Gear 217, but had a considerable overlap
for Gear 209.

4.2. Autoencoder Performance

The autoencoders were trained on baseline data only. During
our analyses, we experimented with multiple topologies of
fully-connected, and convolutional layers, and hybrids (net-
works that employ both fully-connected and convolutional
layers) for autoencoders. The performances of these varia-
tions were very similar: they all seem to outperform classical
CIs. The results of one hybrid topology of autoencoder-based
anomaly detector are displayed in Figure 9. The encoder con-
sisted of 7 fully connected layers with ReLU activations, fol-
lowed by a single convolutional layer and max pooling. The
output of the encoder was 32 features each of length 16. The
decoder consisted of concatenating the features into a single
512 length feature vector, and passing it through a single lin-
ear layer to reconstruct the 4096 input points. The model was
referred to as a asymmetric FC/CNN model with a linear de-
coder. An Adam optimizer was used with a learning rate of
η = 10−3. The model was trained to 500 training steps, but
the best model was achieved around 150 training steps. No
regularization was used in this computational experiment.

The figure shows a series of models with one model per col-
umn and the gear it was evaluated on in the rows. The his-
tograms represent autoencoder Mean-Squared Error (MSE)
associated with baseline and the same error associated with
propagation.

Each model was trained on progressively more baseline sub-
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Figure 8. Performance of commonly used classical CIs as anomaly detectors on eight gears. The numbers in the subplots
indicate AUC.

sets: the first model ”207” was trained on the subset of base-
line data from the test with Gear 207, the second model ”207
+ 209” was trained on data subsets coming from these two
baselines, etc.

Going across from left to right for a given test gear, the
general trend is that performance improves as more baseline
cases from other test gears are used in the training. How-
ever, going down each column, performance decreases for
the gears whose baseline data was excluded from the train-
ing. This would suggest that the models do not generalize
well from one gear to the next. It is also observed that a model
trained on an individual gear and evaluated on that same gear
had a wider separation between error distributions associated
with baseline and crack-propagation data, as shown in the
top-left histogram (Model ”207” evaluated on Gear 207).

4.3. Classical CIs vs Autoencoder

A concise comparison of different classical condition indica-
tors and two autoencoder-based models (one based on fully-
connected layers, and the other on convolutional layers) is
depicted in Figure 10. We plotted the metric AUC produced
by two autoencoders and 11 CIs. Each symbol in the graph
represents one gearbox experiment. The mean of the CIs
〈AUC〉gear over the gear experiments and the correspond-
ing median Median(AUC) were also indicated. The autoen-
coder models are based on training that included all 8 base-
line cases. They showed much better ability to distinguish
between baselines and crack propagations.

5. MULTIPLE BASELINE TESTS

5.1. Anomaly Detection

To ensure that the autoencoder anomaly detector did not learn
some spurious data associated with a specific run or gearbox

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 20XX

Ge
ar

20
7

207

baseline propagation

207+209 207+209+211
207+209+211

+213
207+209+211

+213+215
207+209+211

+213+215+217

207+209+211
+213+215+217

+219

207+209+211
+213+215+217

+219+221
Ge

ar
20

9
Ge

ar
21

1
Ge

ar
21

3
Ge

ar
21

5
Ge

ar
21

7
Ge

ar
21

9

0 20

Ge
ar

22
1

0 20 0 20 0 20
MSE

0 20 0 20 0 20 0 20

Figure 9. Autoencoders (one per column), trained on one or more baselines, as indicated on the top of columns, evaluated over
eight gear baseline and crack-propagation tests. Log-scales were used in the y-axes to better show the distribution tails.

CNN
Error

FCN
Error

Energy
ratio

NP4 NA4* Crest
factor

FM4 KurtosisM8A M6A NA4 RMS
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Gear 207
Gear 209
Gear 211
Gear 213
Gear 215
Gear 217
Gear 219
Gear 221
AUC gear

Median(AUC)

Figure 10. Comparison of AUCs across different models.

build, the modeling approach was further evaluated by de-
signing a 9th test featuring multiple baseline runs of a new
gear pairing.

Instead of one baseline run before a crack was seeded into
one of the gears, a total of 8 baselines were run for the new
gear pairing before propagation across multiple start/stop cy-
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cles and re-assemblies. These datasets were labelled B1 to
B8. Baselines B7 and B8 involve partial gearbox disassem-
bly for which the top gear was removed and reinstalled. The
number of baselines was somewhat arbitrary (and the fact that
it coincides with the number of crack propagation was just a
coincidence): the objective was to collect data on a number
of baselines, but at the same time to avoid unintended crack
propagation (due to '30% fatigue bending overload) before
gear tooth is equipped with a crack-propagation sensor.

Several different model variations using both fully-connected
and CNN layers were used. The models were trained on dif-
ferent subsets of baselines and many of those cases showed
very good performance. One such performance is illustrated
in Figure 11.

B1
B2

B3
B4

B5
B6

B7
B8

0 1 2 3 4 5
MSE

Pr
op

Figure 11. Distributions of MSE error for the eight baselines
and the propagation.

Figure 11 depicts the autoencoder MSE errors associated with
the eight baselines and single propagation datasets. This spe-
cific asymmetric autoencoder employed only five fully con-
nected layers (associated neurons are 4096-256-64-16-1024-
4096) and ReLU activation function for the hidden layers,
was trained on baselines 1, 3, and 6, and evaluated on all base-
lines and the propagation. Note that the topology of the au-
toencoder is asymmetric: the encoding sub-network, defined
by 4096-256-64-16, has three layers of weights, while the de-
coding sub-network, defined by 16-1024-4096 has two layer
of weights. This topology was found through experimenta-
tion and was selected by its ability to create error that tracks
damage level, as further described at the end of this section.
The best performance was attained using Adam as the opti-
mizer, zero dropout (although values up to 20% were exper-
imented with), learning rate of η = 10−4, and 100 epochs.
The plots show that the error associated with baselines not
involved in training is large than those that were used in train-
ing, but the propagation error is still larger.

Figure 12 shows the concatenated error distributions of all
baselines B1-B8 in the same axes with the MSE distribution

0 1 2 3 4 5
MSE

Baseline
Propagation

Figure 12. Distributions of the cumulative baseline and prop-
agation with ROC.

CP sensors Crack surface is curved

2D projection of 

the curved crack surface

The 2D projection of crack area is 
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Flat linearized 

approximation of the 

crack surface

Figure 13. Distributions of the cumulative baseline and prop-
agation with ROC.

associated with the crack propagation. The AUC is very close
to 1.

5.2. Damage Assessment

Figure 13 shows one of the two CP sensors used to measure
the surface crack length on each side of the gear near the root.
These values were used to calculate metrics referred to as
damage level 1 (DL1) for one side and damage level 2 (DL2)
for the other. The damage level equals the total number of
broken strands (Nenadic, Ardis, Hood, Thurston, & Lewicki,
2015). An example of a typical CP output was given in Fig-
ure 5 for which it took 54 minutes to break the 20 strands.
The crack was relatively symmetric, as evidenced by similar
progression as estimated by DL1 and DL2, with DL2 being
slightly delayed relative to DL1.

We observed that some of the models trained on various
baseline subsets (B1-B3-B5, B2-B4-B5, B1-B2-B3-B4-B5)
showed not only good anomaly detection, but also damage as-
sessment capability expressed by the surprisingly high Pear-
son correlation coefficient between the autoendoer’s MSE
during propagation and the estimated damage level. Figure 14
illustrates this correlation.
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Figure 14. An example correlation between damage levels
and Autoecoders MSE.

This behavior was not observed on any of the previous 8 tests
using only one uninterrupted baseline case. However, when
we trained autoencoders on only one of the eight baselines
of the multi-baseline experiment, we had success in training
an autoencoder with an MSE that highly correlated with DL
(ρ ≥80%). Many autoencoders had MSE with greater than
80% correlation to DL when trained on two or more base-
lines.

For illustrative purposes, we fitted linear models of DL vs.
MSE of the five model variations with highest Person cor-
relation coefficients, as shown in Figure 15. The dots cor-
respond to the DL vs. MSE scatters, the lines correspond
to the associated linear fits, and the shaded area to range of
the linear models. For example, the dashed line in the plot
suggest that for MSE = 2, the five models approximately in-
dicate the damage level in the range between 5 and 9, that is
DL ∈ [5, 9]|MSE = 2. The purpose of the linear fits was
not to propose damage level models, but just to show that the
autoencoder error of some models track damage fairly lin-
early. It is important to emphasize that no information of
fault and damage progression was used during training and
only two parameters were used to fit the error to the dam-
age level, slope and intercept. These results are preliminary:
while at this time it is not clear what are the conditions that
give rise to this automatic damage tracking, there seems to
be sufficient evidence that indicate that these correlations are
not spurious, or incidental. To be able to potentially use MSE
as a damage estimator, the conditions that give rise to this
phenomena must be clearly understood and assured.

6. CONCLUSION AND FUTURE WORK

Autoencoder-based, data-driven models showed improved
and more consistent performance than the classical CIs for the
first level of PHM capability, anomaly detection. To obtain
more reliable performance and reduce Type II errors (false
alarms), the autoencoder should be trained on multiple runs
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Figure 15. Five best linear models of damage level DL as a
function of autoencoder’s MSE. The shaded area signifies the
uncertainty or ”disagreement” among the model variations.

of the asset across all different operating and environmental
conditions of interest.

High Pearson correlation coefficients between autoencoder’s
MSEs and estimated damage levels during crack propagation
were observed across multiple models, suggesting that that
a higher level PHM capability can sometime spontaneously
arise.

After demonstrating the potential of autoencoder-based
anomaly detectors the next step in the PHM development
will be to examine their potential for the next level of capa-
bility, damage assessment. In addition to understanding the
conditions that give rise to spontaneous damage assessment,
the pre-trained autoencoders will be fine-tuned, using trans-
fer learning to learn damage level and crack-propagation
sensors as the ground truth of damage progression. In ad-
dition, alternative models using RNNs (LSTMs or GRUs)
or transformers will be explored for predicting damage, by
using a subset of damage progression for training and the
rest for validation. The team is also working to prepare the
dataset to be shared with the gear research community.
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