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ABSTRACT

Autonomous and autonomic systems have started to de-
velop machine learning (ML) methods for prognostics and
health management (PHM) directly at the platform level.
Remaining-useful-life (RUL) estimation, also known as
Time-to-failure (TTF) estimation, using streaming sensor
data is critical for PHM as it can help to decide and schedule
appropriate courses of action (COAs). This work casts the
RUL-estimation problem as a classification problem over
a finite-time horizon. Rather than using a winner-take-all
method to develop a RUL estimator, we propose a top-K
estimator that considers the RUL values corresponding to the
K-largest probabilities yielded by the classifier to develop
our estimator. The top-K RUL values can be used to drive
the execution of conservative or aggressive PHM strategies,
or be tracked over time to develop robust RUL estimators that
leverage the history of RUL estimates. The performance of
the proposed RUL estimators is illustrated on a dataset from
NASA’s Prognostics Center of Excellence.

1. INTRODUCTION

Modern manned and unmanned vehicles are composed of
complex systems that must work together to transform a fuel
source into propulsion, provide navigation capabilities, and
a rudimentary set of safety features, at a minimum. Any in-
dividual component malfunction within these systems may
cause a cascading failure effect that could jeopardize the
safety of the systems and its ability to accomplish the in-
tended purpose. Technically, failures can be characterized
as obsolescence, catastrophic and degradation. As parts pass
their manufacturing end-of-life period, the lack of replace-
ment parts forces subsystems or entire platforms to become
obsolete. Sudden failures, such as the loss of a stall sensor
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during takeoff, have immediate catastrophic consequences.
Degradation occurs when the functionality of a system be-
comes gradually compromised. Left unattended degrada-
tion failures can lead to catastrophic system failures. Sys-
tem degradation can be identified by continuous monitoring
of the system state, as part of a system-wide Condition-Based
Maintenance (CBM) strategy. CBM can be further extended
into forecasting the future state as part of Condition-Based
Maintenance Plus strategies via advanced Prognostic Health
Management (PHM) applications.

Prognostics is the process of correlating and processing sen-
sor data to estimate RUL, also known as Time-to-failure
(TTF), based on the history of system states (Patil, Das,
Goebel, & Pecht, 2008). Detection of current and future ma-
chinery degradation failure can be applied to predict the RUL
in support of autonomous and autonomic systems. Auton-
omy allows missions to operate with no directions from hu-
mans and autonomicity is used to complete the mission under
a self-managed operation (Sterritt, 2009). Both autonomy
and autonomicity require adequate situational awareness of
the system’s own state to make effective mission decisions.

Traditional RUL estimation approaches have been based on
statistical survival analysis, which attempts to characterize
the probability of survival of a system up to a given time
(Kumar & Klefsjö, 1994). This family of methods often uses
a Weibull distribution, whose parameters must be estimated
for a given system, to model the survival probability with its
expected value as a RUL estimate (Jing & Min, 2016). ML
and Artificial Intelligence are widely used in autonomous and
autonomic PHM systems for RUL estimation and fault detec-
tion (van der Laan & Rose, 2011). Many different prognostics
measures have been applied with varying degrees of success
to determine the RUL of individual systems and whole plat-
forms. Their operational success has been largely dependent
upon the failure modes considered and the sensor capabilities
available (Saxena et al., 2008).

The advent of advanced data collection and processing ca-
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Figure 1. ML classifier flow.

pabilities in a variety of autonomous systems has motivated
the development of ML methods that attempt to use time-
series data for RUL estimation, see (Aggarwal et al., 2018)
and references therein. Two common methods for RUL esti-
mation based on ML are: (1) to evaluate the RUL estimation
problem as a regression problem where a single output rep-
resents the predicted RUL of the system; or (2) to create a
classifier where each class represents a RUL estimate for the
system. The process of using ML for RUL estimation can
be represented as a sequential process comprising data col-
lection, data preprocessing, and classification. As depicted in
Fig. 1 for the case when a classifier is used, the input data are
comprised of measured time-series data segments. These data
points are first processed to remove redundant information,
reduce the noise, and extract the aggregate features useful for
classification. Next, the data is also normalized and standard-
ized to mitigate numerical instabilities that often affect the
training of the classification block. Finally, the preprocessed
data are moved to the classification block, yielding a classifi-
cation label for the time-series data segment. Although many
classification algorithms have been developed, such as deci-
sion trees, support vector machines, and K-nearest neighbors
(Hastie, Tibshirani, & Friedman, 2017), using ML methods
on time-series data remains a challenging problem because of
the high dimensionality inherent to the time-series data them-
selves. Long short-term memory (LSTM) networks, a type of
recurrent neural network, have recently yielded state-of-the-
art results for classification and forecasting of time-series data
(Vincent & de Brebisson, 2015; Sezer, Gudelek, & Ozbayo-
glu, 2020).

In this paper, we model the RUL estimation problem as a clas-
sification problem over a finite time-horizon. The framework
developed in this paper can be applied to any classifier that
yields a probability distribution over classes as its output. The
classification labels correspond to a RUL estimate if a failure
is predicted to occur during the time-horizon considered, or
correspond to a no-failure-expected indicator if a failure is
not expected. Rather than considering a single point RUL es-
timate, our approach uses the top-K (K-largest) probabilities
to identify the top potential RUL values. Our studies reveal
that a RUL estimator that always selects the RUL value asso-
ciated with the class assigned the largest probability value by
the classifier as its RUL estimate, i.e., using the winner-take-
all rule, can yield inconsistent results over time. The top-K
RUL estimator provides the top-K probability profile which
can be averaged to mitigate the estimation ambiguity present
in a winner-take-all approach. Lower and upper bounds RUL
estimates can also be obtained from the top-K RUL estima-

tors from the minimum and maximum operations of the RUL
values. These RUL bounds are used to develop aggressive
and conservative PHM policies and will play a critical role in
the execution of timely and effective mitigation fault behav-
iors for the system.

The main contributions of this work are that: (i) it proposes an
approach to RUL estimation based on a classification frame-
work that combines multiple single-point estimates to com-
pute a family of estimators in support of the selection of dif-
ferent mitigation behaviors based on the aggressiveness de-
sired for the PHM application; (ii) it develops a family of
model-comparison metrics that capture the notion of false
negative and false positive counts, and allows control over the
criticality from both RUL estimation and autonomy software
integration perspectives; and, (iii) it proposes a method for
processing RUL estimates to mitigate inconsistencies across
sequential estimation periods.

The paper is organized as follows. In Section 2, the general
problem is defined. Section 3 introduces a quantized RUL es-
timator and a family of top-K RUL estimators is developed.
Section 4 discusses how to evaluate multi-classification tem-
poral prediction. Section 5 presents the numerical results of
our proposed method applied to a real data set using a LSTM
classifier. Section 6 provides a method for sequential process-
ing of RUL estimates. Finally, Section 7 concludes the paper
and discusses future research directions.

2. PROBLEM FORMULATION

We consider a system with S sensors where each sensor gen-
erates a time series of sensor measurements (xs,t : t =
1, 2, . . .) of arbitrary length, with xs,t ∈ R denoting the
measurement obtained from the s-th sensor at time index
t. Measurements are taken synchronously across all sen-
sors at a fixed sampling interval Tp ∈ R+. Let xs :=
[xs,1, . . . , xs,T ]′ ∈ RT , with T ∈ N, denote a vector contain-
ing the time series data measured by sensor s over a window
of T samples and X := [x1, . . . ,xS ] ∈ RT×S the system-
wide measurements over the same sampling window where
(·)′ is the transpose operator. Each X is associated with a
tuple (tf , ν), where tf ∈ R+ ∪ {∞} denotes a censoring
random variable and ν ∈ R+ a reference measuring time for
when X was measured. If a system failure occurred, tf de-
notes the time at which the system failure occurred. Other-
wise, X is said to be censored and tf is set to∞. In the latter
case, a system failure is still expected to occur, but its exact
occurrence time remains unknown.

The RUL for X is defined as

y = tf − ν (1)

with y ∈ R+ ∪ {∞}. Since in practice reliable RUL predic-
tions over long time horizons can be unreliable, we define the

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

censored RUL estimate over a fixed prediction time horizon
Tp as

γ(y) :=

{
y y ≤ Tp
∞ y > Tp

(2)

where the choice of Tp is application-domain dependent. Its
value should capture the dynamics of the degradation process
of the system that precedes a system failure and the reaction
time required by the system in order to trigger appropriate
fault mitigation procedures. To simplify notation, we use ȳ =
γ(y) as a shorthand for censored RUL values.

Given a training set X := {(Xm, ȳm)}Mm=1 with M training
examples, where Xm denotes the m-th sensor data matrix
and ȳm its corresponding censored RUL value, our goal is to
learn a mapping h : RT×S → {−1, 1} × [0, Tp] ∪ {∞}. For
a new X, h identifies whether a failure would occur in the
immediate time horizon defined by Tp and provide an esti-
mate for the RUL. A classification label θ(X;W1) ∈ {−1, 1}
identifies impending failures with θ(X;W1) = 1 indicating
that the RUL estimate for X is in the interval [0, Tp] and
θ(X;W1) = −1 that the RUL estimate for X is in the interval
(Tp,∞). RUL estimates are given by the function f(X;W2).
The setsW1,W2 denote the learnable parameters for h.

OnceW1 andW2 have been learned the censored RUL pre-
diction for X is ŷ = h(X;W1,W2) where:

h(X;W1,W2) =

{
f(X;W2) θ(X;W1) = 1

∞ θ(X;W1) = −1
(3)

Characterizing h requires one to tackle a joint binary classi-
fication and regression problem. The classification problem
will identify whether a failure will occur within the interval
[0, Tp]. In the case where a failure is deemed to occur within
the interval [0, Tp], the regression problem estimates the cor-
responding RUL. Otherwise, the RUL is set to∞ to indicate
that no failure is expected to occur within the Tp prediction
horizon.

Estimates Ŵ1, Ŵ2 for W1,W2 can be obtained as the solu-
tion of the following optimization problems:

min
W1

M∑
m=1

L(1{ȳm∈[0,Tp]} − 1{ȳm>Tp}, θ(Xm;W1)) (4a)

min
W2

M∑
m=1

1{ȳm∈[0,Tp]} ‖ȳm − f(Xm;W2)‖22 (4b)

where L : R × R → {0, 1} is a 0-1 loss function defined
as L(a, b) = 0, if a = b, and L(a, b) = 1, if a 6= b, with
a, b ∈ R, and 1{ξ} = 1 if ξ is true and 1{ξ} = 0 otherwise.
Here, ‖ · ‖2 denotes the `2-norm operator. The regression
problem in Eq. (4b) uses training pairs from X whose ȳm is
not∞.

3. A QUANTIZED RUL ESTIMATOR

In this section we introduce a joint problem formulation for
identifying whether a system failure will occur over a fixed
time horizon and, if so, estimating the corresponding RUL.
Rather than using a two-step approach as described in Eq. (4),
we formulate the RUL estimation problem as a classification
problem with N + 1 classes, namely C := {1, . . . , N + 1}
The interval (0, Tp] is divided into N subintervals. Although
other interval partitioning strategies are possible, for ease of
presentation we consider an equal-length, non-overlapping
partitioning of (0, Tp] in which the n-th subinterval in the
partitioning is ((n − 1)Tp/N, nTp/N ]. The RUL estimate
associated with the n-th subinterval is defined as the largest
value in the interval, i.e., dn = nTp/N . The (N + 1)-th class
identifies a situation in which a failure will not occur in the
time horizon (0, Tp].

In order to train a classifier, we modified the censored RUL
values in X to generate class labels for every training exam-
ple:

φ̄m =


N∑
n=1

n1{ȳm∈((n−1)Tp/N,nTp/N ]} ȳm 6=∞

N + 1 ȳm =∞
(5)

Note that the sum in the first row of Eq. (5) always yields
one nonzero term, which corresponds to the index of the
subinterval that ȳm belongs to. Given the modified training
set XC := {(Xm, φ̄m)}Mm=1, we seek to learn a mapping
Ω : RT×S → P , where P ⊂ RN+1 denotes the set of proba-
bility vectors p ∈ RN+1 over the classification labels for the
elements of C, which are captured by the random variable Φ̄
that represents the classification label. Thus, the n-th entry of
p corresponds to the probability of n being the correct label
for X, i.e., pn := Pr(Φ̄ = n|X; Ω) where the dependency of
pn on Ω is shown explicitly.

A maximum a posteriori (MAP) estimator can be used
to choose a classification label for a new X as φ̄ =
arg maxn Pr(Φ̄ = n|X). Once available, a class-label esti-
mate φ̄ ∈ C can be mapped to a RUL-value estimate via the
mapping f : C → R, which is defined as:

f(φ̄) =

{
dφ̄ φ̄ ∈ C − {N + 1}
∞ φ̄ = N + 1

(6)

Although single-point RUL estimators based on p can be de-
veloped, the performance of such estimators can yield in-
consistent results as the number of classes considered grows
large. Intuitively, slowly occurring degradation can cause the
entries of p corresponding to neighboring RUL values to be
similar. This is an artifact of the arbitrary partitioning of
(0, Tp] to N intervals which can yield class overlap. Thus,
a small perturbation in X can cause its classification label to
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be the one corresponding to a different class. The next section
introduces a class of RUL estimators that uses the RUL values
corresponding to the top-K values of p to mitigate the effect
of inconsistent classification labeling on the RUL estimates.

3.1. RUL Estimation via a Top-K Classifier

In classification problems with a large number of classes, the
traditional top-1 classification performance can yield incon-
sistent results. In the case of probabilistic classifiers, this be-
havior is reflected as one that yields multiple high-value pn’s
with similar magnitude. In the context of RUL estimation,
inconsistent RUL estimates can impair the ability of the sys-
tem to trigger effective mitigation behaviors. Late triggering
of mitigation behaviors can fail to prevent a system failure,
while early triggering of mitigation behaviors can detrimen-
tally impact the tasks being executed by the system.

In this section we propose a top-K classifier that uses the
K-largest entries of p as a proxy to select the top-K most
likely RUL values {di1 , . . . , diK}. Top-K classifiers have
been used in the context of image processing to develop ro-
bust image classifiers (Chang, Yu, & Yang, 2017). Top-K
classification rules are well motivated for classifiers trained
by minimizing the cross-entropy loss. In this case, it has
been shown that the cross-entropy loss is top-K calibrated
for any K (Lapin, Hein, & Schiele, 2016, Prop. 4). A top-K
calibrated classifier will, in the limit of infinite training data,
achieve the Bayes optimal top-K classification error. Other
loss definitions specifically tailored for top-K classification
with efficient numerical optimization characteristics can also
be considered (Berrada, Zisserman, & Kumar, 2018; Lapin,
Hein, & Schiele, 2015).

As noted above, this could be achieved with many differ-
ent classifiers, however an LSTM-based model has been
shown to perform well with extracting temporal relationships
and provide effective results for RUL predictions, especially
when trained using Cross Entropy Loss (Zheng, Ristovski,
Farahat, & Gupta, 2017). The LSTM classifier will be used
for the numerical tests in Section 5.

A fundamental question in this case is how the RUL values
corresponding to the top-K classification labels should be
used to construct a RUL estimator. The top-K RUL estima-
tors dRULK are proposed as follows:

dRULK
mean =

K∑
k=1

wkdik (7a)

dRULK

min = arg min
k
{dik : k = 1, . . . ,K} (7b)

dRULK
max = arg max

k
{dik : k = 1, . . . ,K} (7c)

where the weights {w1, . . . , wK} satisfying wk ∈ [0, 1] ∀k
and

∑K
k=1 wk = 1.

Algorithm 1 RUL Estimator via Top-K Classifier

Require: A mapping Ω : RT×S → P and K.
1: Let X ∈ RT×S denote a new sensor-data matrix.
2: Compute p = Ω(X) ∈ RN+1.
3: Let {pi1 , . . . , piK} denote the top-K entries of p and
{di1 , . . . , diK} their corresponding RUL values.

4: Set PK =
∑K
k=1 pik and compute wk := pk/PK , ∀k.

5: Compute dRULK
mean via (7a).

6: return RUL estimate dRULK
mean .

Equation (7a) computes a convex combination of the top-K
RUL estimates. Equation (7b) defines a more aggressive RUL
estimator (i.e. one that will yield the shortest RUL) when
compared with Eq. (7a). Equation (7c) can be justified in the
cases where the early execution of corrective behaviors may
not cause a significant penalty to the system goals when com-
pared with the occurrence of a failure, such as the in-flight
failure of an engine. Equation (7c) defines a more conser-
vative RUL estimator that is applicable when the impact of
the failure on the system can be tolerated for a period of time
or, in the case that an autonomous platform, when the on-
going activity is more important that platform failure. Such a
conservative estimate will give the system more incentive to
schedule fault-mitigation behaviors with minimal impact to
the system goals. An underlying assumption is that the top-
K classifications will converge over time to a single value as
the failure grows more imminent.

The RUL estimators in Eq. (7) can be further extended as
follows:

• Setting wk = pik/PK , ∀k, with PK :=
∑K
k=1 pik .

• Estimating a failure occurrence interval [dRULK

min , dRULK
max ]

via Eq. (7b) and Eq. (7c).

Algorithm 1 summarizes the proposed RUL estimation algo-
rithm via a top-K classifier using Eq. (7a) and the first bullet
above. Similar algorithms can be obtained for Eq. (7b) and
Eq. (7c) after modifying Procedure 4 of Algorithm 1 appro-
priately. The following section discusses various metrics for
assessing the performance of the estimators in Eq. (7).

3.2. Implications of the Selection of the K Value

The choice of parameter K impacts the performance of the
top-K RUL estimator. The appropriate choice for K is in-
fluenced by the specific classifier design, the resolution of
the RUL estimator defined by Tp/N , and the dynamics of
the degradation within the time-series data. Multiple K val-
ues may be optimized using a cross-validation procedure with
the evaluation metrics proposed in Section 4. For a classifier
with inconsistent RUL estimates, one would expect to see an
initial decrease in classification error as the value for K is in-
crease, which is reversed after a threshold for K is crossed.
The number of target classes also plays a role in the selection
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(a) Unimodal PMF (b) Multimodal PMF

Figure 2. Sample class PMF’s generated by a 50-class clas-
sifier. Each class index maps to a well-defined RUL value as
described in Eq. (5).

of K. The relative importance of each class increases as the
number of classes decreases. Thus, a RUL estimator using
a classifier with a larger number of classes may benefit from
using a larger K.

The probability mass function (PMF) can be used to charac-
terize the output of the classifier. If the PMF is unimodal, as
shown in Fig. 2a, all of the top probabilities will be very close
to the original estimate and the improvement will be minor.
If the PMF is multimodal, as shown in Fig. 2b, the benefit of
using the top K probabilities increases.

The following methods for selecting K are proposed as po-
tential starting points:

• Static K Value -K is selected via a cross-validation pro-
cedure that would follow the classifier’s validating pro-
cess. The RUL-estimator error can be used as an indica-
tor to identify at what point increasingK might no longer
improve the quality of the RUL estimator. An example
of using a static K value is demonstrated in Section 5.

• Dynamic K Value - A dynamic K value can be used
to overcome artifacts in X and can, thus, outperform a
static choice for K. K can be updated using the entropy
of the classifier PMF (H := −

∑N
n=1 pn log(pn)), which

characterizes the information content of the distribution,
i.e., the amount of uncertainty in the outcome of a ran-
dom variable from the distribution . A high (low) entropy
value indicates a more (less) informative distribution and
suggests the selection of a large (small) value for K.

4. EVALUATION METRICS FOR QUANTIZED RUL ES-
TIMATORS

Classification performance metrics such as accuracy, preci-
sion, recall and classification error can be used to assess the
performance of RUL estimators proposed in Eqs. (6) and (7).
These metrics can be extended to assess the performance of
the top-K RUL estimators in Eq. (7) by mapping the corre-

Figure 3. Binary classification confusion matrix.

sponding estimate to C via

φ̄RULK =


N∑
n=1

n1{dRULK∈((n−1)Tp/N,nTp/N ]} dRULK 6=∞

N + 1 dRULK =∞
(8)

where dRULK denotes one of the estimators in Eq. (7). These
metrics summarize the performance of the classifier while
presuming that all classes are equally important and can be
used to drive the selection of tuning parameters or the type of
classifier implemented. Although valid single-point metrics,
these metrics do not take into account the temporal aspect of
the RUL estimation problem or the fact that failing to cor-
rectly estimate low-value RULs is more critical than failing
to predict high-value RULs.

A confusion matrix captures the error distribution of the clas-
sifier per class. It can be applied to both binary and multi-
class classification problems when the true classification la-
bels are available. For a binary classification problem, the
confusion matrix shows four different classification counts,
namely true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) as shown in Fig. 3.
A TP (TN) indicates a sample in the positive (negative)
class was classified correctly, and an FP (FN) a sample in
the negative (positive) class that was classified as positive
(negative). The multi-class classification model of the con-
fusion matrix can then be extrapolated as follows (Krüger,
2016), see Fig. 4. Per row n ∈ C, the confusion matrix
E ∈ N(N+1)×(N+1) comprises a 1 × (N + 1) vector whose
n′-th entry is

∑
m:cm=n 1{n̂m=n′}. The entries of the n-th

row of E, with the n-th entry removed, correspond to the FN
count for class n. Similarly the entries of the n-th column of
E, with the n-th entry removed, correspond to the FP count
for class n. Let 1 denote a vector of ones with appropriate
dimensionality, diag(E) as an (N + 1) × (N + 1) matrix
comprising the main-diagonal entries of E on its main diago-
nal, and (·)′ as the transpose operator. Thus, the (N + 1)× 1
vector α := (E − diag(E))1 captures the FN count profile
and the (N + 1) × 1 vector β := (E − diag(E))′1 captures
the FP count profile yielded by h (as defined in Eq. (3)).

Quantized RUL estimators can be compared on the bases on
these two profiles and their accuracy scoreA ∈ [0, 1] through,
e.g., the Euclidean distance between Θ := (‖α‖2, ‖β‖2, 1−
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Figure 4. N -ary classification confusion matrix.

A) and the ideal score tuple (0, 0, 0). This approach, how-
ever, ignores the temporal aspect of the RUL estimation prob-
lem and the fact that a false negative estimate that predicts a
RUL that is smaller than true RUL is preferable to one that
predicts a RUL that is larger than the true RUL. The former
case would give the system a chance to react to an impending
failure while the latter one would not.

In the context of RUL estimation, given a class n all FN val-
ues assigned to classes n′ > n should be weighed more than
those assigned to classes n′′ < n. This can be achieved for
each n by using a masking function defined entry-wise as:

gn(n′) =

{
λ1 n′ < n

λ2 n′ ≥ n
(9)

with scalars 0 < λ1 < λ2. Let G := [g1, . . . ,gN+1]′, with
gn := [gn(1), . . . , gn(N + 1)]′, denote the resulting masking
matrix. Then one can define an adjusted profile αadj := [G ◦
(E− diag(E))]1, where ◦ denotes the Hadamard product. A
similar argument can be used to argue that for a given class n
FPs assigned to classes indexed by n′ with n′ < n should be
weighed more since they will convey an unnecessary sense
of urgency for action to system. With these observations, it
is possible to define adjusted FP αadj and FN βadj profiles.
Then, the tuple (‖αadj‖2, ‖βadj‖2, 1−A) can be used to assess
the quality of the Quantized RUL estimator by assessing its
Euclidean distance from the tuple (0, 0, 0) as before.

5. NUMERICAL TESTS

In order to place this problem into a real-world context, we
consider an autonomous platform monitoring a number of
subsystems throughout a mission. This section illustrates the
top-K RUL estimation framework proposed in this paper us-
ing a specific classifier implementation applied to the turbo-
fan data obtained from the NASA’s Prognostics Center of Ex-
cellence (PCoE) (Ramasso & Saxena, 2014).

5.1. Turbofan Dataset Description

In order to provide a numerical demonstration for the top-K
RUL estimation framework developed in this work, we use
the turbofan data as provided by NASA’s Prognostics Cen-
ter of Excellence (PCoE) (Ramasso & Saxena, 2014). This
dataset was originally used for a data challenge circa 2008,
and then released for public access and development of data-
driven models for predictive analytics. The training data rep-
resents run-to-failure for turbofan components while the test
data set is composed of partial failure trajectories. The goal
of the data challenge was to identify remaining useful life at
the end of each trajectory. In our case, the classifier is a deep
neural network that takes the turbofan data and outputs a se-
ries of probabilities for each potential class of output.

5.2. LSTM-based Classifier Description

Inspired by the work in (Chaoub, Voisin, Cerisara, & Iung,
2021), we chose an LSTM-based classifier to process the tur-
bofan time-series data. LSTMs are a type of recurrent neu-
ral networks that use “computational gates” with feedback
connections to control the information flow across the net-
work, and thereby to remember information at different time
scales. Our LSTM-classifier comprises both LSTM cells and
two multilayer perceptron (MLPs) layers. The initial MLP re-
ceives all the raw sensor data and transforms it into a feature
representation for the LSTM cell. This initial MLP consists
of three dense layers and learns useful representations for the
normalized raw data. Hyperbolic tangent activation functions
are used between each dense layer. The LSTM cell processes
the data across the sequence length of the given trajectory
and captures structural dependencies across the output of the
first MLP block. The LSTM processed data is then passed
to the second MLP, which uses hyperbolic-tangent activation
functions between each dense layer but not after the output
layer. The final layer of the second MLP provides an array
of dimension number of sequence by number of classes from
which class predictions for each sequence step in time can
be extracted. The final MLP layer is extended by a softmax
layer that maps the logits output of the MLP into [0, 1] val-
ues, which can be interpreted as probabilities. For a given
X, the trained LSTM defines Ω and the output of its softmax
layer corresponds to the p over the quantized RUL horizon.
In the next section an LSTM is used together with Algorithm
1 to estimate the RUL for several data trajectories from the
turbofan dataset.

5.3. Numerical Tests on Turbofan Dataset

The LSTM classifier described in Section 5.2 receives full
engine run-to-failure trajectories as inputs and predicts the
RUL at each time step. Each engine trajectory is a different
length and over-sampling the minority classes destroys the
time-series nature of the data. In an effort to mitigate this,
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the mean sequence length of the trajectories was 206 with
a standard deviation of 40. Trajectories within 206 +/- 40
are selected leaving 179 trajectories. Of these 40 were held
aside for testing and the other 139 were used for training.
Across all 179 trajectories, each sensor data column is min-
max normalized together before splitting them up into their
own trajectories. During both training and testing, only one
trajectory is passed to the model at a time.

For the purpose of demonstration, only the full run-to-failure
sequences, i.e., those traditionally used as training data, were
considered, such that the gold RUL (the true RUL at each
prediction point) is known for evaluation purposes. The goal
of the classifier is to predict the RUL at each cycle of a given
test sequence until failure occurs. The set of gold RUL values
for a given test sequence is linearly decreasing to zero in each
case. The softmax function is applied to the set of logits for
each class at each sequence step, resulting in an array made
up of the 252 classes (total possible predictions) and 125 cy-
cles as the time horizon. Therefore, Tp = 125 is considered
to be the end of the prediction horizon.

The set of top-K probabilities and the corresponding RUL
values can then be extracted per time index t as shown in
Fig. 5. Only one set of sample trajectories for the top-3 prob-
abilities is shown. The performance of the RUL estimators is
assessed via

ρ(d̂) =

√√√√ 1

T

T∑
t=1

[d̂(X(t))− d(t)]2 (10)

where T represents the sequence length (prediction time hori-
zon), d̂(t) the estimated RUL value at time t, and d(t) the
true RUL value at time t. Equation (10) defines the trajec-
tory RUL-estimate root-mean-squared error (RMSE) for the
estimator d̂. What is notable about this test is that using
the largest probability to choose the RUL estimate is better
than using the second-largest probability. However, using the
third-largest probability is the best choice when measured via
the trajectory RMSE, which in this test yielded 5.496, 5.562,
and 5.180 for the RUL estimates corresponding to the first,
second and third probabilities, respectively.

Fig. 6 shows the improvement of the top-3 RUL estimator
in Eq. (7a) over one that uses the class associated with the
largest probability to estimate the RUL. Most of the RUL pre-
dictions along the trajectory were improved when the top-3
RUL estimator was used. Further, Fig. 7 shows the minimum
and maximum RUL predictions at each prediction point along
the trajectory. Table 1 shows the 10-best trajectory projec-
tions based on the RMSE, where 40 testing trajectories were
used. The Trajectory number in Table 1 is the order of the
run used in testing. The best RUL estimate dBEST

K , defined as
the RUL estimate in the set {di2 , di3 , dRULK

mean , dRULK

min , dRULK
max }

yielding the best trajectory, was compared to the RMSE

Figure 5. Top 3 probabilities for one trajectory.

Figure 6. Top 3 probabilities averaged for one trajectory.

yielded by di1 . As the RUL estimates yielded by the top-3
probabilities are evaluated against the gold RUL, it is clear
that the top probability is not always the best choice. Note
that in most cases the RUL estimators in (7) yielded a better
RMSE than the MAP estimate di1 .

In order to compare the models described in Section 4, two
different classifier models were considered. The two models
share a common architecture and training data, but use a dif-
ferent number of training epochs. The first model (Model 1)
was trained using 95 epochs while the second model (Model
2) was trained using 35 epochs. Both models were evaluated
using the six full-engine trajectories. The resulting confusion
matrices are shown in Fig. 8.

The ‖α‖2 and ‖β‖2 values for each model are computed and
the tuples are shown in Table 2 along with their Euclidean
distance from the ideal score tuple. Both the confusion ma-
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Table 1. Trajectory RMSE values obtained using the RUL estimates in Eq. (7) and estimators that always choose the RUL
values corresponding to the each of the first, second and third largest probabilities. Each estimator was applied sequentially to
each entry of the time-series trajectory as defined in Eq. (10). The best RUL estimates obtained per trajectory are highlighted
in green.

Trajectory ρ(di1) ρ(di2) ρ(di3) ρ(dRULK
mean ) ρ(dRULK

min ) ρ(dRULK
max ) ρ(di1)− ρ(dBEST

K ) % Improvement
37 4.251 4.147 3.900 4.014 4.400 3.925 0.351 8.26
21 5.153 5.382 5.139 5.084 4.006 6.303 1.147 22.26
25 5.246 5.600 5.238 5.149 5.811 5.075 0.171 3.26
10 5.174 5.371 5.389 5.223 4.343 6.250 0.831 16.06
22 5.496 5.562 5.180 5.368 4.311 6.410 1.185 21.56
24 7.262 7.450 6.875 7.171 6.102 8.193 1.160 15.97
38 8.386 8.238 7.679 8.186 7.217 9.127 1.169 13.94
18 10.701 10.565 10.293 10.483 10.786 10.304 0.408 3.81
28 11.790 11.673 11.233 11.481 12.763 10.343 1.145 12.27
8 12.257 12.207 12.309 12.177 13.470 10.985 1.272 10.38

Figure 7. Minimum and maximum bounds for the RUL pre-
dictions.

trices and the Euclidean distances for each model show that
Model 1 outperforms Model 2.

6. SEQUENTIAL RUL ESTIMATOR

The sequential methods incorporate prior RUL estimates to
mitigate the impact of inconsistent outcomes due to the “in-
stantaneous” noise and anomalous sensor data. Time se-
ries forecasting algorithms (TSFAs) can be used to gen-
erate history-base prediction of the RUL that can then be
combined with the outcome of the top-K RUL estimator in

Table 2. Evaluation metrics obtained for Models 1 and 2.

Model ‖α‖2 ‖β‖2 1-A ‖Θ‖2
Model 1 64.078 149.853 0.933 162.981
Model 2 65.131 198.514 0.958 208.928

Eq. (7a) (Suradhaniwar, Kar, Durbha, & Jagarlapudi, 2021).
Common TSFAs include Kalman filters, Autoregressive pro-
cesses, Moving Average processes, etc.

Given a sequence of the past RUL estimates, a Kalman pre-
dictor can be used to obtain a RUL value forecast, termed
dRUL

Kalman. Once the new top-K RUL estimate dRULK
mean becomes

available, the sequential RUL estimate can be computed as

dRUL
TSFA = ζdRUL

Kalman + (1− ζ)dRULK
mean (11)

with ζ ∈ [0, 1] being a tuning parameter that adjusts the
emphasis placed on the top-K and Kalman estimates. In
practice, we consider a sliding window of size Φ containing
the historical top-K RUL estimates for the previous Φ de-
cision epochs, namely {dRULK(τΦ−1)

mean , . . . , d
RULK(τ0)
mean } where

dRULK(τi) denotes top-K RUL estimate at decision epoch τi,
i ∈ {0, . . . ,Φ − 1}. A conceptual example of this approach
is shown in Fig. 9.

Other methods, such as a Vandermonde polynomial extrap-
olation, can yield a RUL prediction by fitting a polynomial
to a set of past RUL estimates to extrapolate the future RUL
value. Methods using extrapolations make fewer assumptions
on the dynamics and distribution of the data, but may require
a larger set of RUL estimates for training. A demonstration
of the sequential RUL estimator described in this section is
outside the scope of this paper.

7. CONCLUSION AND FUTURE WORK

This paper proposed methods to account for the drawbacks of
the traditional classifiers used for RUL estimation. The RUL
of the platform is either considered to be ∞, in the case of
no detectable degradation or degradation over a time consid-
ered too long to be accurate, or the time to a future failure.
This RUL estimation problem was cast as a general classi-
fication problem for which a MAP estimator can be devel-
oped. Although this estimator can yield acceptable results, it
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(a) Trained for 95 epochs (b) Trained for 35 epochs

Figure 8. Confusion matrices for Model 1 and Model 2.

Figure 9. Sequential RUL estimator example with w = 3.

becomes sensitive to small perturbations and outliers as the
number of classes considered by the classifier increases. As
a way to mitigate this problem, a method that considers the
top-K probabilities instead of just the largest one to estimate
RUL was proposed. The value for K may be fixed, or vari-
able based on the dynamics of the system. Three different
top-K estimators were proposed. The weighted average es-
timator yielded the better estimation in terms of RMSE. The
minimum-value estimator supported mission critical assess-
ments (e.g., platform safety) such that repairs can be accom-
plished prior to failure. The maximum-value estimator placed
higher emphasis on the completion of mission objectives (i.e.,
trying to accomplish as much as possible prior to the execu-
tion of an appropriate fault mitigation behavior).

Next, an approach for assessing and comparing RUL estima-
tors based on a confusion matrix was developed. Typical met-
rics such as accuracy, precision, and recall work only as long

as the classifier output is perfectly correlated to the true RUL.
In real-world cases, two models may be vastly different in
terms of RUL estimation, with one only a single minute off at
a given time estimate and the other an hour off, yet both could
score similarly on accuracy, precision, and recall. Combined
with a custom masking function that serves to penalize late
predictions (those that would occur after a platform failure), a
metric for comparing RUL estimators was proposed. Finally,
examples of the proposed methods were evaluated against the
well-known Turbofan dataset from NASA’s PCoE to demon-
strate the benefits of the top-K RUL estimator.

Future work is expected to develop heuristics for dynamic se-
lection of the top-K values based on their proximity to the
top values. Numerical evaluation of Kalman prediction for
RUL prediction and tracking, and dynamic selection ofK are
both areas that could yield additional benefits for improving
predictive analytics. Additionally, we plan to consider clas-
sifiers whose objective function during training captures the
fact that a subsequent top-K decision rule is used for RUL
estimation.
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NOMENCLATURE

CBM Condition-Based Maintenance
FN False Negative
FP False Positive
LSTM Long Short Term Memory
MAP Maximum A Posteriori
ML Machine Learning
MLP Multilayer Perceptron
NASA National Aeronautics and Space Administration
PCoE Prognostics Center of Excellence
PMF Probability Mass Function
PHM Prognostics and Health Management
RMSE Root Mean-Squared Error
RUL Remaining Useful Life
TN True Negative
TP True Positive
TTF Time to Failure
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