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ABSTRACT

In this work, we propose a hybrid model for Li-ion battery
discharge and aging prediction that leverages fleet-wide data
to predict future capacity drops. The model is built upon an
hybrid approach merging physics-based and empirical equa-
tions, as well as neural network models in a recurrent neural
network cell. The hybrid physics-informed neural network
can predict voltage discharge cycles given the loading profile,
and estimate the used capacity of the battery under random-
loading conditions by tracking aging parameters connected
to the residual capacity of the battery. By merging informa-
tion on the battery aging parameters with existing fleet-wide
aging data, the model can predict the future residual capacity
of the battery that is being monitored, and therefore enable
predictions of voltage discharge curves far ahead in the bat-
tery life cycle. We validated the approach using the NASA
Prognostics Data Repository Battery data-set, which contains
experimental data on Li-ion batteries discharged at random
loading conditions in a controlled environment. The approach
also allows the identification of discrepancies between the
battery aging trend and the trend observed at the fleet level, so
that batteries behaving differently from the rest of the fleet can
be subject to closer monitoring and further testing to refine
predictions.

1. INTRODUCTION

Lithium-ion batteries are commonly used to power small and
large electric vehicles, including both ground vehicles, like
hybrid and electric cars driven by thousands of people every
day, and future unmanned aircraft vehicles (UAVs) (Friedrich
& Robertson, 2015; Madavan et al., 2016; Russell, 2019).
Therefore, the ability to model both the state of charge as
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well as battery health is very important for safe, reliable and
affordable operation of vehicles fleets. Even though models
based on first principles are accurate and trustworthy, the
complex electro-chemistry that governs battery discharge and
aging makes it hard to build and use such models for in-time
monitoring of battery conditions. Moreover, the careful tuning
or estimation of high-fidelity model parameters hampers the
straightforward deployment in the field (Karthikeyan, Sikha,
& White, 2008). Alternatively, reduced order models have
the advantage of capturing the macroscopic dynamic behavior
without the need for heavy computation, at the cost of some
precision loss.

Reduced-order physics-based models are built by carefully
simplifying the physics/chemistry such that computational
cost is dramatically reduced while the overall behavior of the
system is still captured. This approach can lead to a number
of parameters to be estimated based on data as well as residual
model-form uncertainty; a property shared with machine learn-
ing models. The latter are solely built on the basis of data, and
can still capture unexpected non-linearities. The drawback is
that, to generalize well, traditional machine learning tends to
require large number of data points hard to retrieve in many
scientific and engineering fields like, for example, the field of
battery discharge and especially degradation prediction.

In this paper, we present a hybrid modeling approach for
tracking and forecasting battery aging based on ‘‘as-used’’
conditions. Our approach directly implements a reduced-order
model based on Nernst and Butler-Volmer equations within
a deep neural network framework. While most of the input-
output relationship is captured by reduced-order models, the
data-driven kernels reduce the gap between predictions and
observations. The hybrid model aims at estimating the overall
battery discharge, and a multilayer perceptron (MLP) strate-
gically placed within empirical equations models the battery
internal voltage. Battery aging, resulting in a residual capacity
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drop, can be described by an increase in internal resistance
and a drop in the amount of available Li-ions. Thus, we built
a model using MLPs to predict battery performance far ahead
in the future based on the cumulative energy drawn from the
battery over time. We address the issue of building and up-
dating the aging model by reducing the need for reference
discharge cycles, which would be beneficial to operators since
it eliminates the need to take the batteries out of commission.
We compensate for the lack of reference discharge cycles us-
ing a probabilistic model that leverages previously available
fleet-wide information on the degradation of similar batteries.

We validate our approach using data publicly available through
the NASA Prognostics Center of Excellence Data Repository
(Bole, Kulkarni, & Daigle, 2014b). Results showed that our
hybrid battery prognosis model can be successfully calibrated,
even with a limited number of observations, and the model
can help optimizing battery operations by offering long-term
forecast of battery capacity. The construction of the model
and all computations showed in this paper were performed
using Python programming language and the deep learning
frameworks Keras (Chollet, 2015) and Tensorflow (Abadi
et al., 2015). Other libraries we utilized include Matplotlib
(Hunter, 2007), Numpy and Scipy (Virtanen et al., 2020).

The remaining of the paper is organized as follows. Section
2 presents a brief review of the core reduced-order battery
model and the data-set utilized. Section 3 details our hybrid
physics-informed neural network model, and Section 4 shows
the approach to predict future battery degradation based on
fleet-wide data and the results of the numerical experiments.
Section 5 concludes the paper.

2. REDUCED-ORDER MODEL AND AVAILABLE DATA

We employed a reduced-order model developed in (Daigle
& Kulkarni, 2013) and further refined in (Bole, Kulkarni, &
Daigle, 2014a). It is based on the work presented in (Karthikeyan
et al., 2008). The main goal of this model is to work in real-
time; it simplifies the complex battery electro-chemistry so
that voltage predictions can be carried out using nonlinear
ordinary differential equations rather than partial differential
equations. We briefly summaries the main equations of the
model hereafter and refer to (Daigle & Kulkarni, 2013) for a
thorough description. The battery output voltage is defined
by:

V = VU,p − VU,n − V0 − Vη,p − Vη,n ,
which will serve as output of the physics-informed model. The
model uses Nernst’s equation for the equilibrium potential:

VU,i = U0 +
RT

mF
ln

1− xi
xi

+ VINT,i ,

where the electrode (negative or positive) is indicated by the
subscript i = {n, p}; U0 is the reference potential; R is the
universal gas constant; T is the electrode temperature; m

is the number of electrons transferred in the reaction; F is
the Faraday constant; x is the mole fraction for the Lithium-
intercalated host material; and VINT,i is the internal voltage
and activity correction term, null in ideal conditions. Details
about VINT will be provided hereafter.

The mole fraction is computed as the ratio between the amount
of Li-ion q in electrode i, and the amount of available (moving)
Li-ions qmax:

xi = qi/q
max , and qmax = qn + qp .

In order to accommodate the concentration gradient at the
surface of the electrode, the total volume of the battery is split
into two control volumes, bulk and surface, and the concentra-
tions of Li-ions are calculated accordingly (Daigle & Kulkarni,
2013). The diffusion rate from the bulk to the surface is:

q̇bs,i =
1

D
(cb,i − cs,i) ,

where D is the diffusion constant and subscripts refer to bulk
b, surface s, and negative or positive electrode i, respectively.
One of the challenges of this reduced-order model is the de-
scription of the internal voltage VINT,i. It was originally de-
scribed by fitting experimental data to the the Redlich-Kister
expansion (Karthikeyan et al., 2008):

VINT,i(xi; Ai) =
1

mF

Ni∑
k=0

Ak,i(
(2xi − 1)k+1 − 2xik (1− xi)

(2xi − 1)1−k

)
.

The mole fraction xi is the independent variable, the coeffi-
cients Ak,i are identified through data-fitting, and the number
of elements in the sum Ni is empirically-derived.

The solid-phase Ohmic resistance, electrolyte Ohmic resis-
tance, and current collector resistance can be lumped together
into R0 to calculate the voltage drop: V0 = iappR0, where
iapp is the applied current.

The amount of available Li-ions qmax, and the lumped internal
resistance R0 utilized to compute the voltage drop are directly
tied to battery aging, as one decreases and the other increases
with the usage of the battery. They will be utilized as proxies to
predict the internal degradation of the battery, and for the sake
of brevity, we will refer to qmax and R0 as aging parameters
henceforth.

2.1. Data Description

The Randomized Battery Usage Data-set (Bole et al., 2014b)
we utilized for validation contains data from battery discharge
experiments in a controller environment (including constant
environment temperature). It has been widely utilized in the
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Figure 1. Example of constant (top panel) and randomized
(bottom panel) loading discharge cycles from the NASA Prog-
nostics Data Repository - Randomized Battery Usage Data-set.

PHM domain, and therefore, we report only a brief summary
hereafter.

All batteries compose of a single cell, with a maximum volt-
age of approximately 4.2 V when fully charged, and all tests
stopped when the output voltage reached 3.2 V. During the
constant-loading tests, batteries were subject to 1 A current
draw, while during the random-loading tests, the input cur-
rent was randomized between 1 and 4 A, using a uniform
distribution. Each sample was held constant for 300 seconds.
So, i = 1A during the constant-loading experiments and
i ∼ U [1, 4]A during the random-loading experiments. Figure
1 shows an example of constant (top) and random (bottom)
loading discharge cycle.

3. HYBRID PHYSICS-INFORMED NEURAL NETWORKS:
BATTERY CELL

We utilized a modeling approach proposed in past research
(Nascimento & Viana, 2020; Nascimento, Fricke, & Viana,
2020; Viana, Nascimento, Dourado, & Yucesan, 2021), where
the physics-based and empirical equations of the model are em-
bedded within a recurrent neural network (RNN) cell (Goodfel-
low, Bengio, & Courville, 2016). The cell applies transforma-
tion to the state vector sequentially, similarly to a state-space
formulation:

[yt ht]
> = f(ut,yt−1,ht−1) .

The subscript t represents the time discretization, y ∈ IRny

are the observable states, h ∈ IRnh are the internal states,
u ∈ IRnu are input variables, and f(·) defines the transitions
between time steps (function of input variables and previous
states) of hidden states and output. The hidden state vector
h includes temperature, Li-ions available on each electrode
(divided in surface and bulk), voltage drop and surface overpo-

tential. Input u is the required current i, and the output vector
contains the output voltage V only:

h = [T, V0, Vη,n, Vη,p, qb,n, qb,p, qs,n, qs,p]
> ,

u = u = i , and y = y = V .

Figure 2 shows the RNN cell with physics-based and empirical
equations from the original reduced-order model (blue blocks),
MLPs utilized to model the interval voltage curve as a function
of the mole fraction (green blocks), and aging parameters (the
latter will also be tracked using MLPs that will be described
later in the paper). The cell design resembles the one of the
physics-based model, and the data-driven blocks (MLPs) are
strategically placed within the model to mitigate the effect
of model uncertainty by reducing the gap between between
observed values and model predictions. The cell composes
of two functions. The first is to estimate the hidden state of
the battery ht given ht−1 (called ‘‘Battery states’’ in Figure
2) and ut (‘‘Current’’). The second function estimates the
state-space output, i.e., output voltage Vt (‘‘Voltage’’), from
the hidden state ht. The right panel of Figure 2 shows three
voltage discharge cycles from randomized-input tests, and
how the RNN cell predicts Vt given ht−1, ut.

The data-driven blocks utilized to estimate the internal voltage
on the positive p and negative n electrodes are two indepen-
dent MLPs, receiving the mole fraction of the corresponding
electrode as input:

VINT,p = MLPp(xp;wp,bp) , and
VINT,n = MLPn(xn;wn,bn) .

Vectors w·, b· define trainable weights and biases of the two
data-driven models. From the insights obtained from the first
model in (Daigle & Kulkarni, 2013) and (Bole et al., 2014a),
we used a one neuron hidden layer with linear activation for
the negative side of the electrode, thus assuming that VINT,n
and xn are (at most) linearly related. The positive side of
the electrode, however, is characterized by a more complex
relationship between input and output. Thus, we used a 2
hidden-layer network with 8 neurons in the first hidden layer,
4 in the second, and one neuron in the output layer. All hidden
neurons have hyperbolic tangent activation function; see Table
?? for a summary of the MLP architectures. It should be
noticed that trainable parameters as well as interval voltages
are not observable, thus the training applies to elements deeply
hidden in the model.

4. FLEET-WIDE APPROACH TO DEGRADATION MOD-
ELING

4.1. Tracking Aging of a Single Battery

We first observed that the relationship between the interval
voltage VINT,i, i = {n, p} and the concentration overpo-
tential xs,i, i = {n, p} is not affected by aging, or at least,
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Figure 2. Battery hybrid RNN cell (left panel) and RNN implementation for time series prediction of output voltage given the
input current (right panel).

Figure 3. Constant-loading discharge curves used to train the
internal voltage MLP models (top plot) and model predictions
on a separate test set (bottom plot) with corresponding mean
square error.

the effect appears negligible for the precision required for
our life prediction purposes. Therefore, we utilized the first
constant-loading discharge curves to train the interval voltage
models. Table 1 details the design of each MLPs used for
both VINT,p and VINT,n. During this first training stage, the
aging parameters of the battery were fixed to their default
values obtained using reference discharge curves, assuming
that the operator or manufacturer can run at least one reference
discharge test per battery before its deployment in the field.
Figure 3 shows the voltage discharge curves utilized for the
training of VINT,i, i = {n, p} (top plot) and the predictions
on a test set of the same type (bottom plot). The parameters
of the internal voltage models wi, bi, i = {n, p} are then
fixed, so that their values will not change during usage.

Layer VINT,p (positive side) VINT,n (negative side)
# neurons activation # neurons activation

#1 8 tanh 1 linear
#2 4 tanh
#3 1 tanh

Table 1. Configuration of multilayer perceptrons used to ap-
proximate the behavior of the internal voltage (‘‘tanh’’ and
‘‘lin’’ are the hyperbolic tangent and linear activation func-
tions, respectively).

Layer Mean Variance
# neurons Activation # neurons Activation

#1 4 elu 1 linear
#2 2 elu
#3 1 linear

Table 2. Configuration of variational multilayer perceptrons
used for both qmax and R0. ELU stands for exponential linear
unit.

The degradation of the battery will, instead, be tracked using
the aging parameters (qmax and R0). To appreciate the corre-
lation of the selected aging parameters with the actual capacity
of the battery (estimated from standard reference discharge
cycles available in the data-set), Figure 4 shows capacity C
and qmax as a function of E on a double y-axis1. The neural
networks to track qmax and R0 as a function of E are both
variational MLPs (Graves, 2011; Kingma & Welling, 2014)
and are further detailed in Table 2.

1R0 is also strongly correlated to C but it has not been shown for the sake of
brevity.
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Figure 4. Decrease of maximum capacity (left y-axis) and
qmax (right y-axis) as a function of the cumulative energy
drawn from the batteries.

4.2. Fleet-Based Aging Model

The goal of our fleet-wise approach is to exploit the correlation
between C and {qmax, R0} to predict aging and future perfor-
mance at any amount of cumulative energyE used, leveraging
existing data from a fleet of similar battery types. To do so, we
assume that aging data from a fleet of batteries have already
been collected (in the form shown in Fig. 4). Thus, the first
challenge lies in tuning a fleet-wide model to predict future
C values for the battery that is being used, and such a predic-
tion is updated as more usage data from the monitored battery
are collected. However, batteries operating in the field are
typically discharged with random loading conditions, while
accurate values of qmax, R0 can only be estimated using ref-
erence discharge cycles, where the applied loading is steady
and very low. Data coming form the field cannot be directly
utilized to estimate the trend of available qmax vs. E.

Figure 5 shows the used capacity for Battery #4 from the dis-
charge curves under random loading conditions (small red
dots), compared against the more reliable estimates of the
actual residual capacity from the reference discharge tests at
constant loading (large black dots). If we were to estimate
aging by estimating qmax during random-loading cycles, there
would be a large degree of uncertainty on how much capacity
is left in the battery, which could be interpreted as uncertainty
affecting the mole fraction value x on the positive electrode
at the end of a full discharge cycle, as illustrated in Figure 6.
By leveraging the assumption made above (that the battery
is part of a fleet and aging data from those other batteries
are available), we built aging models of all batteries in the
data-set using variational inference, thus obtaining average
and standard deviation of all weights in the MLPs mapping
cumulative energy to the aging parameters (for more informa-
tion about variational inference for neural networks, the reader
is referred to (Graves, 2011)). Particularly, we built individual
aging models for each battery, which correlates C to E, and

Figure 5. Battery capacity used from random-loading dis-
charge curves (small red dots) and reference discharge tests
(large black dots)

use ensemble averaging to predict the fleet behavior using
future values for E. Afterwards, we used a scaling factor to
estimate qmax from C, and then build a linear model, which
we called γ model, to correlate qmax to R0. For both models,
the independent variable is the amount of energy drawn from
the battery E, Figure 7. The models are described implicitly
by the following equations:

qmax(E) = C(E)α , and R0(E) =
qmax(E)

γ(E)
,

where γ(E) is the linear model connecting the two aging pa-
rameters (Figure 7, right panel), and α is the scaling factor
connecting qmax(E) and C(E). At this stage, we ignored the
scatter of the data-points {E, qmax/R0}, but future imple-
mentations may easily include the uncertainty caused by the
linear approximation.

4.3. Updating Battery-specific Aging Model with Random
Discharge Data

The next step of the proposed fleet-wide approach to discharge
modeling is the filtering of the model forecast after the battery
is deployed in the field and subject to random-loading dis-
charge cycles. The goal is to merge the capacity estimate from
the fleet-wide ensemble model, and the capacity estimates
from the operation of the battery that is being monitored. To
do so, we filter data at constant cumulative energy E, as sum-
marized in Figure 8. The red dots represent the estimate of the
used capacity during operations (as already observed in Figure
5). The green lines represent the predicted mean (thick) and
confidence intervals (dashed) of the fleet-wide model, without
information on the current battery capacity. The green area
shows the fleet distribution at the specific cumulative energy
value, and the red distribution represents the values of used
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Figure 6. Random loading-induced uncertainty in capacity
and xp estimates. The scatter of used capacity under random
loading conditions drives the scatter of qmax (top panel).

capacity collected up to that point. The purple distribution
on the right panels, together with the purple lines, represent
the filtered fleet distribution and the filtered prediction as
described below.

We track the cumulative energy drawn from the battery during
operation, and after a few discharge cycles have occurred,
we compute the distribution of the battery ‘‘used capacity,’’
which is lower than or, at most, equal to, the available capacity
of the battery (In the example case shown in Figure 8, we col-
lected data up to E = 0.5 kWh to compute the used capacity
distribution). Then, we compare such a distribution with the
available capacity distribution from the fleet-wide ensemble
model, at that same level of cumulative energy used. We use
a sampling-based approach, drawing N samples from each
distribution. Then, we filter the fleet-wide ensemble model
distribution according to the following criterion: if the sample
from the fleet-wide distribution is larger than the sample from
the battery usage distribution, than keep the former; otherwise,
discard it. The filtering can be summarized by this simple
statement: if C(i)

b < C
(i)
f , then accept C(i)

f , and discard it
otherwise. The subscripts b and f refer to battery and fleet
distributions, respectively, and the superscript (i) indicates

the i-th sample, ∀ i = 1, . . . , N . The resulting, filtered distri-
bution of available capacity is the one used to predict aging at
later stages of the battery life (purple distribution in Figure 8),
where we used N = 10, 000.

This approach allows us to forecast the values of the aging
parameters at higher values of cumulative energy, and thus
make predictions of the future voltage discharge curves, as
shown in Figure 9, where the forecast refers to E = 2 kWh
for Battery # 4, which data were collected up to 0.5 kWh (blue
distribution) and 1.5 kWh (red distribution). The figure was
build upon the assumption that the loading conditions at 2
kWh (i.e., current draw profile) are perfectly known. In this
particular case, the predicted average voltage drop does not
change from 0.5 kWh to 1.5 kWh, however, the confidence
intervals shrink significantly as more data have been recorded,
and so there is less uncertainty on the future behavior of the
battery at 2 kWh.

4.4. Detection of Anomalous Aging Patterns

Some batteries may experience different aging behavior with
respect to the rest of the fleet. The reasons are multiple, such
as, e.g., manufacturing variability of internal components and
different environmental conditions the batteries are subject
to during operation. This uncertainty can induce a different
aging behavior since the very beginning of the battery life, as
well as in later stages of the life cycles. In those situations,
predictions from fleet ensemble-averaging are likely to be
inaccurate. Battery # 6 in the data-set is just an example, as
visible in Figure 4 and 7 (left panel). In order to monitor how
well the battery aging aligns with the behavior observed at the
fleet level, we built an indicator based on the battery delivered
power.

The indicator is built on the area under the curve (AUC) of
error between the predicted and the actual power delivered by
the battery (estimated by multiplying the input current by the
output voltage, V I). The resulting AUC is a measure of error
in the discharge cycle energy, in Wh and while the model is
predictive of the behavior of a given battery, error distribution
is expected to be stationary. Therefore, as an indicator that the
model is drifting, we monitor the changes in the energy error
distribution as the battery accumulates usage.

Figure 10 shows the approach, where the changes in the Bat-
tery #4 power AUC with respect the first 0.25 kWh of cu-
mulative operation. Figure 10a shows the error distribution
for Battery # 4 in forms of slices at different cumulative en-
ergy (top panel), and as energy error vs. E (bottom panel).
We further computed two distribution distance metrics, the
Kolmogorov-Smirnov (KS) test and the Kullback-Leibler (KL)
divergence to evaluate the discrepancy between Battery # 4
and the rest of the fleet, and the result is shown in Figure 10b.

The proposed approach leads to a model for Battery # 4 that
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Figure 7. Variational model regressions for all 8 batteries in the data-set (left panel) and γ model to correlate R0 to qmax.

(a) Filtering at 0.5 kWh.

(b) Filtering at 1.5 kWh.

Figure 8. Filtering process using the distribution of available
capacity from the fleet-wide ensemble model. The two panels
refers to distributions filtered at 0.5 kWh (a) and 1.5 kWh (b).

is predictive (meaning, small changes in energy error dis-
tribution) for much of the useful life, as indicated by both
KS-statistic and KL-divergence. Both metrics do not show
significant deviations from their reference values up to 2.0
kWh. After that, the model that used only a single reference
discharge for calibration starts drifting significantly, indicat-
ing the need of additional reference discharge cycles for re-
calibration of the model.

To validate the approach, we performed a cross-validation
study of the KL-divergence2 as a function of the cumulative
energy for all 8 batteries in the fleet (i.e., the data-set). We
first extracted Battery # 1 from the fleet, calculated the error
distribution between the rest of the fleet and Battery # 1, and
then computed the KL-divergence for the entire degradation
profile. The process is repeated for all batteries in the set
and results are shown in Figure 11. We can observe that
for most batteries, KL-divergence values appear to be very
consistent until around 2 kWh, where the nonlineary of the
{E,C} curves kicks in. This confirms the consistency in fleet
behavior.

We also noticed that the approach can successfully detect
batteries that are outliers with respect to the fleet. Battery
# 6 shows large KL-divergence values early in its life, and
that is expected by looking at the data-points collected from
reference discharge cycles visible in Figure 4. This is also the
case of Battery # 1, which shows discrepancies with the fleet
behavior early in the process. The divergence in the energy
error distribution happens since the early degradation data are
used as reference to update the model; resulting into prediction
errors in later stages of the degradation process. For these two
batteries, the KL-divergence indicates the need of reference
discharge cycles for re-calibration of models earlier than other

2We also cross-validated the results using the KS-statistic obtaining similar
results, and therefore were not included in the paper for the sake of brevity.
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(a) Capacity and qmax distributions at 2.0 kWh.

(b) Discharge cycle predictions at 2.0 kWh.

Figure 9. Aging and discharge forecast: capacity and qmax
distributions (a), and prediction of voltage discharge cycle
using model filtered with data up to 0.5 and 1.5 kWh (b).

batteries in the fleet.

4.5. Discussion on Assumptions and Drawbacks

The approach presented here relies on the assumption that a
number of existing batteries have been monitored and their
available capacity during operation was estimated accurately.
If that were not the case, then the output of the fleet-wide
model would be characterized by larger uncertainty, thus hin-
dering the performance of the prediction.

Another important assumption regards the random loading
conditions the monitored battery is subject to. The battery
data-set utilized here contains discharge data at random cur-
rent values, such that for a certain amount of cases, the used
capacity is relatively close or approaches the available capac-
ity. This can be observed in Figure 8, as some samples (red
dots, used capacity of the battery) are relatively close to the
average fleet-wide estimate of the available capacity. Instead,
in case the battery were repeatedly subject to lower loading

(a) Discharge cycles Energy (AUC of Power curve) error distri-
butions (top) and evolution over Cumulative Energy (bottom).

(b) Kolmogorov-Smirnov statistic (top) and Kullback–Leibler
divergence (bottom).

Figure 10. Discharge cycles Energy (AUC of Power curve)
error distributions over Cumulative Energy (a) and distance
metrics (b).

conditions (for example, a UAV typically flying at speed and
environmental conditions well below the capability of its bat-
tery), the fleet-wide distribution would remain unfiltered, and
the predictions of future voltage discharge curve would be
driven by the fleet information only.

Lastly, all batteries are subject to similar, although random,
loading profiles. These discharge cycles were designed to
bring the battery voltage down to 3.2 V (see Fig. 2). In the
field, batteries could be recharged even if they were not fully
or consistently depleted. This could introduce further errors in
the modeling assumptions and contribute to premature diver-
gence of models.

5. SUMMARY AND CLOSING REMARKS

In this paper, we demonstrated the use of a hybrid physics-
informed neural network model to perform battery discharge
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Figure 11. Kullback-Leibler (KL) divergence cross-validation.

and aging predictions using fleet-wide capacity data, thus
reducing the need for reference discharge cycles required for
precise estimates of battery residual capacity. The model
leverages existing data from a fleet of similar batteries to
accurately predict its aging behavior, without the need to
decommission the battery for ad-hoc testing.

This work shows the potential of the hybrid model, where
most of the model is driven by physics-based and empirical
equations, while neural network blocks describes the relation-
ships between hidden variables that are yet not well under-
stood or characterized by large inter-specimen variability, and
thus data-driven ‘‘blocks’’ can compensate for discrepancies
between model predictions and observed behavior. The ad-
vantage of this hybrid model when compared to pure machine
learning approaches, is that a limited amount of data is needed
to train and calibrate the networks.

The aging modeling allows the prediction of the battery dis-
charge behavior (in terms of voltage drop as a function of the
input current) far-ahead in the future, thanks to the ensem-
ble averaging of existing aging data from a fleet of similar
batteries. The introduction of distance metrics like KS test
and KL-divergence allows the detection of aging patterns start
diverging (on a battery-specific basis), thus raising flags for
ad hoc testing to refine aging predictions for those particular
specimens.

The approach is easily scalable to more complex models, for
example, of the entire UAV power-train composed of DC
motor, electronic speed controller, and battery. Further steps
of this research will aim at relaxing some of the hypothesis
this approach is based upon already discussed in the previ-
ous section, and extending the model to other power-train
elements and testing it on representative data from laboratory
experiments.
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