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ABSTRACT

With recent developments of energy efficient design and con-
trol for electric motors, electrical subsystems and compo-
nents have become integral parts of main actuators in vehicle
systems (e.g., steering and propulsion systems). To ensure
proper vehicle operations, it is important to make sure that
electrical power is properly transmitted through the power
circuit from vehicle power source to the electric motor. How-
ever, degradation in the power circuit health, which often
manifests itself as increased resistance, may affect power
transmission and degrade the system performance. For ex-
ample, in Electric Power Steering (EPS) systems, if the EPS
power circuit resistance is increased and the EPS is drawing
power to assist the driver, voltage at the EPS module will
drop significantly, causing the EPS to reset and, consequently,
Loss of Assist (LOA) incidents. As a result, it may suddenly
become very hard to steer the vehicle. While previous work
has partially addressed this issue by developing algorithms
that estimate resistance increase in EPS power circuits, this
paper further validates and refines the algorithms for vehi-
cle on-board and off-board implementations using test drive
data collected. Since on- and off-board implementations im-
pose different limits on signal sampling rates, a total of 250
and 465 minutes of data are respectively collected with var-
ious vehicle speeds and steering maneuvers. Moreover, a
fault mitigation strategy, referred to as EPS Anti-Loss-of-
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Assist (ALOA), is proposed that gradually and proactively
reduces EPS torque assist as resistance in the EPS power cir-
cuit increases so that the EPS voltage is kept above a reset-
ting threshold. Stationary steering tests and demonstrations
on parking lot maneuvers are conducted, which show that,
with the proposed fault mitigation strategy, negative effects
of increased EPS power circuit resistance can be mitigated
without noticeable changes in normal driving experience.

1. INTRODUCTION

1.1. Motivation

With increasing awareness of power consumption and fuel
economy, electric motors are increasingly being employed to
replace or augment traditional chassis actuators that consume
more power (Denton, 2004). For example, Electric Power
Steering (EPS) Systems (Badawy, Bolourchi, & Gaut, 1997;
Burton, 2002) replace most hydraulic steering systems in ve-
hicles ranging from compact cars to light duty trucks (Eki,
Teratani, & Iwasaki, 2007). Although electric motors may
not be able to provide enough steering assist in heavy duty
trucks, they may be used to augment hydraulic power steer-
ing systems for efficiency (Morton, Spargo, & Pickert, 2014).
Similarly, an electric motor may be included in a brake sys-
tem to increase brake effort (Hwang & Kwon, 2019). To
ensure such systems work properly, it is important to make
sure that electrical power is properly transmitted through the
power circuit from vehicle power source to the electric motor.
However, degradation in the power circuit health, which of-
ten manifests itself as increased resistance, may affect power
transmission and degrade the system performance. In this pa-
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per, we focus on EPS systems due to its direct influence on
vehicle dynamics and lateral control. However, general ideas
presented here may be applied to other electric components.

Consider Figure 1, where an EPS is connected to a power
source providing voltage VB , VC and VM are the voltages
seen by the EPS ECU from the power source loop and the
electric motor, respectively, IC and IM are the currents pass-
ing through the power connector and the motor, respectively,
RM is the motor internal resistance, ω is the EPS motor
speed, n is the gear ratio between the EPS motor and steer-
ing rack pinion, θ̇p is the pinion angular velocity, and T is
the assist torque provided by the EPS motor. The connection

Figure 1. EPS connected to power source.

between the EPS and power source includes power wires and
connectors, which may experience corrosion or other types of
faults and failures over time. The resistance RC models the
increased resistance due to degraded health of power circuit
(e.g., corroded connector). In conventional driving, the EPS
motor will provide additional torque to assist the driver, draw-
ing power (and current) from the power supply. The amount
of torque provided is based on the vehicle speed, driver input
torque, and other factors, depending on supplier implemen-
tation. If EPS is trying to provide a significant amount of
assist (power / torque) to the driver, the current drawn from
the EPS, IC , will be very large. If RC is increased due to
poor EPS power circuit health, a significant voltage drop will
be experienced at the EPS end. If the voltage is dropped be-
low a resetting threshold, the EPS, by design, will reset and
suddenly stop providing the assist torque. As a result, it will
suddenly become very difficult to steer the vehicle, and this
is commonly referred to as a Loss of Assist (LOA) incident.
The main goal of this paper is to develop solutions that not
only assess EPS power circuit health by estimating increase
in its resistance but also mitigate the negative effect of this
increase.

1.2. Previous Work

This subsection reviews related work on electrical connectiv-
ity fault diagnosis as well as fault diagnosis and prognosis
(D&P) for EPS systems.

As reviewed in (Du, Nagose, Bloom, & Julson, 2017), vari-
ous techniques to diagnose electrical connectivity issues have
been developed over the years (Chung, Amarnath, & Furse,
2009; Chung, Furse, & Pruitt, 2005; Furse et al., 2003; Furse,

Chung, Lo, & Pendalaya, 2006; Okada et al., 2015; Shi &
Kanoun, 2014; Smail, Hacib, Pichon, & Loete, 2011; Smail,
Pichon, Olivas, Auzanneau, & Lambert, 2010; Smith, Furse,
& Gunther, 2005; Tsai, Lo, Chung, & Furse, 2005; Will &
Rolfes, 2013). These techniques detect whether a wire be-
comes open, a connector is disconnected, or a wire is shorted
to the ground. For example, (Chung et al., 2009) detects
these issues by measuring properties such as inductance, re-
sistance, conductance, capacitance or impedance. References
(Will & Rolfes, 2013; Furse et al., 2006; Shi & Kanoun,
2014; Smail et al., 2010, 2011; Okada et al., 2015) measure
characteristics of transmission or reflection signals generated
from active or passive electrical signals through the circuit
to detect connectivity issues. Two fundamental techniques
have been developed, namely time-domain transmissometry
(TDT) and time-domain reflectometry (TDR). TDT (Will &
Rolfes, 2013) monitors the transmission characteristics of an
electrical signal to determine the fault severity, while TDR
(Furse et al., 2006; Shi & Kanoun, 2014; Smail et al., 2010,
2011; Okada et al., 2015) measures the amplitude and the
timing of the reflected signal to determine the location and the
type of the fault. Techniques using frequency-domain charac-
teristics to detect faults in electrical connectivity, referred to
as frequency-domain transmissometry (FDT) or frequency-
domain reflectometry (FDR) (Furse et al., 2003; Chung et al.,
2005; Tsai et al., 2005), have also been developed. While pre-
vious work focuses on electrical connection open and short
issues, this paper, however, focuses on estimating resistance
increase in the power circuit caused by, e.g., corrosion, and
subsequent mitigation actions.

As the EPS system is a main actuator for vehicle lateral con-
trol, fault D&P algorithms have been developed in previous
research to address potential faults / failures (Lin & Ghoneim,
2016; Lin & Du, 2018; Mohtat, Garner, Lin, & Mehrabi,
2020). In particular, (Lin & Ghoneim, 2016) developed meth-
ods to monitor the EPS motor health through parameter esti-
mation techniques as well as an algorithm to detect increase
in steering system friction, which is validated and refined
in (Mohtat et al., 2020). Reference (Lin & Du, 2018) pro-
vide a canary-based method to detect loose connections in
the EPS power circuit as well as a preliminary algorithm to
estimate resistance increase in the circuit. Using test vehicle
data, this paper validates and refines the previously developed
EPS power circuit resistance estimation algorithm (Lin & Du,
2018) for on- and off-board implementations. Furthermore,
using the estimated resistance, a strategy to proactively miti-
gate the negative effect of increased resistance is developed.
In particular, a supervisory controller concept that includes
EPS power circuit health assessment (resistance estimation)
and a strategy to mitigate the negative effects of steering LOA
described in Section 1.1 is developed.
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1.3. Outline of Paper

The rest of the paper is organized as follows. Section 2 devel-
ops the supervisory controller concept to estimate EPS power
circuit resistance and to mitigate LOA incidents due to re-
sistance increase, while Section 3 describes the test vehicle
setup. Section 4 reviews the EPS power circuit resistance es-
timation algorithm in (Lin & Du, 2018), describes the test
data collected, and validates and refines the algorithm for on-
and off-board implementations. Section 5 describes the strat-
egy to mitigate the negative effects of power circuit resistance
increase, stationary testing of the strategy, and demonstration
of it on parking lot maneuvers. Conclusions are given in Sec-
tion 6, and acknowledgement of assistance for this work is
given after the conclusion section. Driving maneuvers and
noise factors considered for the test data collection are de-
scribed in the Appendix.

2. EPS POWER CIRCUIT HEALTH ASSESSMENT AND
FAULT MITIGATION FRAMEWORK

The framework for EPS power circuit health assessment and
mitigation considered in this paper is shown in Figure 2,
where the supervisory controller consists of a health assess-
ment and a mitigation module. The health assessment module

Figure 2. Proposed supervisory controller.

computes the health of the EPS power circuit by estimating
the resistance in the circuit. Inputs to this module are sig-
nals necessary for this computation from the EPS system and
other vehicle subsystems via the vehicle control area network
(CAN) bus. The health assessment results, e.g., the estimated
resistance, is then used by the mitigation strategy to avoid
negative effects of steering LOA as the resistance increases.
While (Lin & Du, 2018) has developed an algorithm to es-
timate the EPS power circuit resistance, Section 4 validates
and refines these algorithms for on- and off-board implemen-
tations. Section 5 describes the fault mitigation strategy to
avoid steering LOA.

3. TEST VEHICLE SETUP

A test vehicle is instrumented to collect data for validating
and refining previously developed EPS power circuit resis-
tance estimation algorithms for on- and off-board implemen-
tations. Furthermore, it is also used to test and demonstrate
efficacy of developed fault mitigation strategy. In particular,
as Figure 3 illustrates, adjustable (variable) power resistors

are installed in series between the vehicle power source and
the EPS system of the test vehicle. The power resistors em-

Figure 3. Test vehicle setup.

ulate power circuit health degradation that manifest itself as
increased electrical resistances, and the amount of resistance
introduced can be selected as needed. For example, in vali-
dating and refining the power resistance estimation algorithm,
data was collected at four resistance levels with the labels and
injected resistances shown in Table 1. As Table 1 indicates,

Table 1. Resistance fault injection labels and values.

Fault level Injected Total
resistance (mΩ) resistance (mΩ)

Healthy (H) 0 20
R1 20 40
R2 40 60
R3 60 80

the nominal (healthy) resistance of the test vehicle EPS power
circuit is 20 mΩ and the variable resistor adds resistance to
the power circuit.

For on-board implementation of the EPS power circuit es-
timation algorithm, a dSPACE Micro-Autobox1 (MAbox) is
used to host the algorithm and to collect data from the EPS
and vehicle CAN bus as inputs to the algorithm. It also
hosts the fault mitigation algorithm and sends commands to
the EPS system. For off-board implementation of the resis-
tance estimation algorithm, a Vehicle Task Manager (VTM)
is used to collect and transmit data for off-board processing.
Advantages of on-board implementation include higher sam-
pling rates for accurate resistance estimations, while disad-
vantages include the computational resources required on the
EPS electronic control unit (ECU). Conversely, off-board im-
plementation does not require the additional computational
resources but lower sampling rates reduces the estimation ac-
curacy. Since off-board implementation of the resistance es-
timation algorithm is much less accurate than its on-board
implementation (see Section 4.4), off-board implementation
of fault mitigation algorithms is not considered here.

4. EPS POWER CIRCUIT HEALTH ASSESSMENT

This section describes the power circuit health assessment
module in Figure 2. In particular, the EPS power circuit resis-

1The Micro-Autobox is a product of dSPACE GmbH, and details of it can be
obtained from https://www.dspace.com/
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tance estimation algorithm developed in (Lin & Du, 2018) is
validated and refined for on- and off-board implementations.

4.1. Resistance Estimation Algorithm

We first review the resistance estimation algorithm developed
in (Lin & Du, 2018). Referring to Figure 1, the goal of the
algorithm is to estimate and detect increase in RC , the to-
tal resistance in the power circuit between the vehicle power
source and the EPS system. A quick inspection of Figure 1
indicates that the resistance RC can be estimated using the
equation RC = VB−VC

IC
. However, in typical production ve-

hicles, there is no sensor to read the current through the power
circuit (IC). Fortunately, this current can be approximated us-
ing other sensor measurements. Referring again to Figure 1,
power conservation is applied across the EPS ECU:

VCIC = VMIM , (1)

where, as described in Section 1.1, VC and VM are the volt-
ages seen by the EPS ECU from the power source loop and
the electric motor, respectively, and IC and IM are the cur-
rents passing through the power connector and the motor, re-
spectively. Noting that the power input to the motor circuit
is equal to the power output, the right-hand side of the above
equation can be expanded as:

VCIC = I2MRM + nT θ̇p + PL, (2)

where, as mentioned in Section 1.1, RM is the internal resis-
tance of the motor, T is the motor’s torque, nθ̇p is the angular
speed of the motor’s shaft, and PL is the power loss due to
ECU consumption and other noises. Assuming PL to be neg-
ligible when IM is large, the above equation can be used to
estimate the current through the connector, i.e., IC . Finally,
the equivalent connector resistance is estimated by applying
Ohm’s Law:

R̂c =
∆V

IC
=

VB − VC
I2MRM+nT θ̇p

VC

. (3)

The quality of the estimate can be improved using batch cal-
culations. Instead of calculating R̂C sample-wise (i.e., using
signals from a single time step and applying Eq. (3)), a least-
squares estimate is obtained by collecting a buffer of B sam-
ples and applying Eq. (4) below. This equation is derived by
applying ordinary least squares minimization:

Objective: minimize
B∑
i=1

(∆Vi −RCIC,i)2 over RC

⇒ 0 =
d

dRC
(

B∑
i=1

(∆Vi −RCIC,i)2)

⇒ R̂C =

∑B
i=1 ∆ViIC,i∑B
i=1(IC,i)2

. (4)

Enabling criteria are applied to ensure calculation only in-
cludes data from when the EPS motor is sufficiently activated
for the minimal-loss assumption, i.e., negligible PL, to hold.
The objective of tuning the algorithm, i.e., choosing batch
size and enabling conditions, is to reduce the minimum de-
tectable increase in resistance as much as possible.

4.2. Test Data Collected

Test data with the injected faults described in Table 1 are
collected. Two data acquisition systems are utilized for col-
lection, summarized in Table 2 below. Both acquisition sys-

Table 2. Data acquisition systems.

System Acquisition rate Purpose
dSpace 100 Hz On-board
Micro Autobox implementation
Vehicle Task ∼1 Hz Off-board
Manager (VTM) implementation

tems record signals (vehicle speed, lateral acceleration, steer-
ing angle and gradient, yaw rate, battery voltage, driver input
torque, EPS motor torques, and EPS motor current and volt-
age) needed for the algorithm. The algorithm is implemented
for both data sources to gauge its performances in on- and
off-board implementations. Although both acquisition sys-
tems are collecting the same data, the VTM data presents two
challenges that the MABox does not. First, since the acqui-
sition rate is lower, it is more time-consuming to collect the
needed amount of data for robust algorithm refinement. Sec-
ond, the VTM data collection process introduces latency be-
tween collected signals. New signal requests are not sent until
the previous signal has been received, introducing a delay on
the order of one hundred milliseconds between each signal.

A variety of steering maneuvers are recorded at all health
states described in Table 1, including spirals, turns, lane
changes, banks, sinusoidals, and organic driving. Noise fac-
tors such as tire type, tire pressure, passenger weight, and bat-
tery load are also varied from test-to-test. Detailed descrip-
tions of each test maneuver and noise factor are included in
the Appendix. A total of 102 individual tests are conducted,
summarized in Table 3. The data for each health state is split

Table 3. Resistance algorithm data collection.

Health state Change MABox VTM data
(vs. Healthy) data set (min) (min)

Healthy vehicle NA 136 119
Resistance: R1 +20 mΩ 72 117
Resistance: R2 +40 mΩ 72 110
Resistance: R3 +60 mΩ 70 119

into three categories – development, validation, and test. De-
velopment data are used for experimenting and refining the
algorithms, validation data are used for unbiased assessment
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of changes made during refinement and calibration of tuning
parameters (batch size and enabling conditions), and test data
are used for final assessment of algorithm performance. The
data are distributed approximately 60% to development and
20% each to validation and testing.

4.3. On-board Implementation

The resistance estimation presented by Eq. (4) is imple-
mented on both MABox and VTM data. The end-to-end algo-
rithm is summarized in Figure 4, where the output determines
whether there is resistance increase (Faulty) or not (Healthy).
The enabling conditions and batch size are chosen following
rigorous exploration of performance tradeoffs. The chosen
enabling conditions are the minimum to ensure that the EPS
system is active enough to assume negligible power loss in
the ECU. Algorithm accuracy improves with batch size at the
expense of increasing time-to-detection (T2D). Batch sizes
larger than 80 offered slightly improved accuracy with signif-
icantly longer T2D. The development set is used to experi-
ment with these parameters, and the validation set is used to
confirm the decision.

Figures 5 and 6 show the performance of the resistance health
indicator (i.e., the estimated resistance) on the MAbox test set
(i.e., on data that was not used in algorithm development). In
particular, Figure 5 shows the realized health indicator values
vs the ground-truth health state. Each point is the health indi-
cator output from one batch of data. The ROC curve in Fig-
ure 6 shows the classifier performance for separating healthy
from all faulty health states (i.e., the performance of detecting
a > 20 mΩ increase) in blue, and the performance of sepa-
rating healthy from R2 and R3 (i.e., detecting a > 40 mΩ
increase) in red. Tables 4 and 5 show improvement in results
from maturing the decision. Specifically, Table 4 shows the

Table 4. Confusion matrix pre-maturation for on-board im-
plementation.

Ground truth health state
H R1 R2 R3

Output 85 11 1 0Healthy
Output 8 206 299 365Faulty

Table 5. Confusion matrix post-maturation for on-board im-
plementation.

Ground truth health state
H R1 R2 R3

Output 84 3 0 0Healthy
Output 0 205 291 356Faulty

confusion matrix for the results pre-maturation, while Table
5 shows the confusion matrix after applying an “X for Y ”
maturation strategy with parameters X = 7 and Y = 10.
This maturation strategy considers the Y most recent results
to yield a more accurate determination of health, where Y is a
positive integer. A matured sampled is labelled as faulty only
if at least X of the most recent Y results are faulty, otherwise
it is labelled as healthy. Larger values of Y tend to yield more
accurate diagnostics at the cost of longer time to detection
given the need for more results before issuing matured out-
put. Smaller values of X will favor issuing a positive (faulty)
output (prone to false positives), and larger values of X will
favor issuing a negative (healthy) output (prone to false nega-
tives). These integer parameters can be optimized by exhaus-
tive search of complexity O(

∑N
n=1 n), where N is the max-

imum value considered for Y . In the current study, values of
X = 7 and Y = 10 were found to yield no false positives and
high true positive rates (i.e., low false negative rates), while
making decisions in a reasonable amount of time, on the de-
velopment data.

The algorithm performs very well after maturation, with 0%
false positive rate (FPR) and 99% true positive rate (TPR),
with false negatives only occurring at the R1 (+ 20 mΩ) fault
level. When this algorithm was run on organic driving data
(i.e. not constructed maneuvers but natural driving), it took
an average of 12 steering events to reach a matured decision.

A natural extension to the above binary diagnostic approach
(i.e., output either healthy or faulty) is to explore whether
the estimated resistance could be used as a health stage esti-
mate. Table 6 shows the raw (unmatured) results for a multi-
class classification applied to the development data. These re-
sults were derived using a three-threshold classifier to define
the four output classes, in which the three thresholds were
tuned to minimize misclassifications. The resulting accuracy
is 81%, which could be improved by employing a multi-class
maturation strategy.

Table 6. Multi-class confusion matrix for on-board imple-
mentation.

Ground truth health state
Predicted health state H R1 R2 R3

H 90 29 1 1
R1 2 163 1 1
R2 1 29 236 61
R3 0 29 32 298

4.4. Off-board Implementation

When the resistance detection algorithm is adapted to VTM
data, the performance declined significantly. The batch size
has to be reduced from 80 to 12 to accommodate for the sig-
nificantly reduced quantity of available data. This batch re-
duction, combined with latency in the VTM data collection
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Figure 4. End-to-end resistance estimation / increase detection algorithm.

Figure 5. Estimated resistance for on-board implementation.

Figure 6. ROC curve for on-board resistance classification.

method, are likely the two most significant factors in the de-
graded performance.

Various data-driven approaches to detecting a resistance in-
crease are experimented with to improve the performance us-
ing VTM data. The best performance comes from extending
the regression estimate from a one degree-of-freedom (DOF)
approach to a two DOF approach. With each batch of volt-
age (∆V ) and current (Ic) data, the least-squares slope (RC)
and intercept (VL) are calculated using Eq. (5). The voltage-
like intercept term VL captures power loss PL within the EPS
ECU (that was assumed negligible previously). The deriva-

tion follows an ordinary least-squares approach:

Objective: minimize
B∑
i=1

(∆Vi − (RCIC,i − VL))2

over RC , VL

⇒

[
d

dRC
(
∑B
i=1(∆Vi − (RCIC,i − VL))2)

d
dVL

(
∑B
i=1(∆Vi − (RCIC,i − VL))2)

]
=

[
0
0

]

⇒

[ ∑B
i=1(IC,i)

2
∑B
i=1(IC,i)∑B

i=1(IC,i)B

] [
RC
VL

]

=

[ ∑B
i=1 ∆ViIC,i∑B
i=1 ∆Vi

]
. (5)

A linear support vector machine (Figure 7) is then trained
to classify the system as healthy or faulty based on both the
intercept and slope of the current-voltage relationship. This

Figure 7. Classification of healthy (H) vs. faulty (R2, R3)
data using a two degree of freedom model.

increased the off-board algorithm performance in classifying
healthy from R2 and R3 to 99% TPR at 0% FPR after mat-
uration strategy is applied. Although the resistance detection
algorithm was able to achieve strong results for identifying 40
mΩ (R2 and R3) increases in resistance, the algorithm did not
exhibit as strong results as the on-board algorithm for detect-
ing 20 mΩ (R1) increases. As seen in Table 7, the R1 class
(+20 mΩ) is correctly identified as faulty with a TPR of only
74%. The results summarized here indicate that the on-board
algorithm can accurately detect a resistance increase as small
as +20 mΩ, whereas the off-board algorithm is able to detect
resistances increases as small as +40 mΩ.
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Table 7. Confusion matrix post-maturation for off-board im-
plementation.

Ground truth health state
H R1 R2 R3

Output 82 43 5 0Healthy
Output 0 125 165 205Faulty

Note that, although we have focused on detecting resistance
increase of, e.g., 20 or 40 mΩ, the idea can be generalized
to classifying different levels of resistance increase. The de-
tected / classified resistance increase level can then be used in
the fault mitigation strategy in Figure 2 and Section 5.

5. FAULT MITIGATION

This section describes the fault mitigation module in Figure 2
using the power circuit resistance estimation (or the detected
/ classified resistance increase level from Section 4) as input.
Since the goal is to avoid LOA incidents due to power circuit
resistance increase, the mitigation strategy is referred to as
EPS Anti-Loss-of-Assist (ALOA).

5.1. EPS Anti-Loss-of-Assist Solution

We first review operations of a typical EPS system under
nominal conditions. As shown in Figure 8, a desired torque
assist value is first determined by the EPS ECU based on
driver torque input, vehicle speed, and other factors. Sub-

Figure 8. A possible supervisory control strategy.

sequently, a controller is designed to meet the desired torque,
e.g., via feedback as shown in the figure.

As described in Section 1.1, LOA incidents result from EPS
system voltage being lower than a resetting value. Hence,
referring to Figure 1, the goal of EPS ALOA is to keep the
voltage, VC , at the EPS higher than a threshold value to keep
the EPS system from resetting. One way to achieve this is to
limit current draw, IC , to the EPS system. While there are
many ways to do this, e.g., limiting the desired torque or lim-
iting the PWM duty cycle, the approach we take in this paper
is empirical based. Specifically, we multiply the nominal de-
sired steering assist torque by a percentage determined from
a torque reduction curve and the estimated power circuit re-

sistance. One example is shown in Figure 9. As the figure in-

Figure 9. Torque reduction curve.

dicates, when the estimated resistance is less than 60 mΩ, the
EPS provides the torque assist that it is nominally designed to
give. As the estimated resistance increases above 60 mΩ, the
EPS decreases the assist torque linearly down to 50% of its
nominally designed value when the power circuit resistance
becomes 80 mΩ. Afterwards, the EPS torque assist decreases
linearly down to 40% of its nominally designed value until
the estimated resistance becomes 120 mΩ. A warning may
be set to notify the driver of reduced assist when torque re-
duction is below 50% of designed assist. In this curve, it is
assumed that the vehicle is too difficult to steer with less than
40% amount if steering assist. Beyond this point, the vehicle
has to be serviced. Note that the red dashed line in the figure
illustrates behavior of EPS systems without reduced torque
assist. Specifically, the EPS system will provide as much
assist as nominally designed to the driver even when resis-
tance in its power circuit is increasing. After the resistance
is increased to a certain level, voltage at EPS system end will
drop below the resetting threshold (as explained in Section
1.1) and the EPS will suddenly reset and cause an LOA inci-
dent. In contrast, the proposed approach here gradually and
proactively reduces the steering assist so that the EPS voltage
is kept above a resetting threshold, avoiding an LOA incident.

Note that the parameters in the torque reduction curve is
highly dependent on the specific vehicle platform and should
be calibrated for various steering maneuvers. Experiments
based on similar vehicle platforms, however, can be used as a
starting point for the calibration process of new vehicle plat-
forms under development. Note also that in Figure 9, we as-
sume that the resistance estimation / detection resolution is
higher than the on-board implementation of the algorithm in
Section 4.3, which may be possible in the future if direct mea-
surements of IC become available with additional sensors.

5.2. Stationary Testing

Since the EPS system is designed to provide more torque as-
sist, and hence, draw more current when the vehicle is at low
speed or stationary (i.e., speed 0), we focus on vehicle testing
and demonstrations for these scenarios.
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Figure 10 shows that LOA events can indeed be reduced by
reducing EPS assist torque as power circuit resistance in-
creases. In particular, in Figure 10, the horizontal axis in-

(a) EPS LOA incidents with EPS providing full assist.

(b) EPS LOA incidents with EPS 50% assist.

(c) EPS LOA incidents with EPS 40% assist.

Figure 10. EPS LOA incidents at different levels of assist.

dicates the EPS power circuit resistance, while the vertical
axis indicates when LOA incidents start to appear. Typically,
the EPS provides more assist for lock to lock steering than for
on-center (±90o) steering. As a result, LOA incidents occur
at lower power circuit resistances for lock to lock steering.
Hence, for example, in Figure 10(a), LOA events occur when
the steering system is lock to lock at speed 180o/s and the re-
sistance is at 80 mΩ, while LOA events occur when the steer-
ing system is on center at speed 180o/s and the resistance is
at 140 mΩ. To illustrate the improvement, note that in Figure
10(b), where EPS torque assist is lowered to 50% of its nom-
inally designed value, LOA events for lock to lock steering at
speed 180o/s do not occur until the resistance is at 120 mΩ.
Similarly, LOA events for on center (±90o) steering at speed
180o/s do not occur until the resistance is at 160 mΩ. Further
improvements can be seen in Figure 10(c), where the torque
assist is reduced to 40% of its nominally designed value.

Figure 11 further illustrates reduction of LOA incidents by
reducing EPS torque assist when steering wheel speed is
180o/s lock to lock. In Figure 11, the horizontal axes in-
dicate time in seconds, while the vertical axis in the top sub-
figure indicate the percentage reduction of the EPS torque as-
sist that is being commanded. The vertical axis in the bottom
sub-figure indicate occurrences of LOA incidents, i.e., when
an LOA incident occurs, an indication of 1 is plotted. With
this understanding, Figure 11 shows that at 80 mΩ resistance,

Figure 11. Reduction of LOA incidents at 80 mΩ resistance.

LOA occurs when EPS is providing 100% of nominal assist,
while LOA events are significantly reduced if EPS is provid-
ing 50% of nominally designed assist.

The proposed torque reduction curve shown in Figure 9 is
based on this stationary test. Note that the values R1 and R2

in Figure 9 is platform dependent and should also be adjusted
for other driving scenarios such as low speed parking maneu-
vers considered in Section 5.3.

5.3. Demonstration

Since most LOA incidents occur during parking lot maneu-
vers, we further illustrate that the proposed EPS ALOA strat-
egy can significantly reduce LOA incidents by demonstra-
tions considering three maneuvers: (i) static steering (steering
wheel is steered from lock to lock (i.e., ±500o)); (ii) revers-
ing out of a parking space and steering quickly to align the
vehicle with the road; and (iii) suddenly turning to park a ve-
hicle into a parking space, which may be spotted late. During
the demonstration, the resistance in the EPS power circuit is
set to an estimated value of 50 mΩ. The EPS assist torque is
first set to 100% of its designed value. After the demonstra-
tor completed the three maneuvers above, during which LOA
incidents occur, the EPS assist torque is then set to 50% of its
designed value. The purpose for this is to let the demonstra-
tor feel the LOA before and after EPS assist torque reduction,
and notice the reduction in LOA incidents.

Figure 12(a)–(d) plots data collected during a specific demon-
stration run. Referring to Figure 12(a), from time 3750s
to 3950s, the vehicle is driven from garage to test parking
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(a) Vehicle speed. (b) EPS assist level.

(c) EPS voltage level. (d) Driver torque.

Figure 12. Data collected during demonstration.

lot with full torque assist without additional resistance intro-
duced into the EPS power circuit. From time 3950s to 4250s,
a demonstration is conducted following the maneuvers de-
scribed above including some explanations and discussions
with the demonstrator. From time 4250s to 4550s, the vehi-
cle is driven back from test parking lot back to garage with
the introduced resistance and reduced EPS torque assist. The
trips back and forth from garage and test parking lot emu-
late normal driving on public roads. Figure 12(b) indicates
the EPS assist level throughout the demonstration. In par-
ticular, from time 3600s to 4100s, the EPS is at its nominal
assist level, while from 4100s to 4550s, the EPS assist is at
50% of its designed level. Figure 12(c) indicates the voltage
measured at the EPS end, where the EPS resets (causing loss
of assist incidents) when the voltage is below the resetting
threshold. Clearly, with reduced EPS torque assist, LOA in-
cidents are significantly reduced. Figure 12(d) plots the driver
input torque throughout the demonstration. We note that the
steering effort during trips back and forth from garage to test
parking lot are similar for EPS with and without torque re-
duction. Hence, with EPS torque assist reduction, LOA in-
cidents can be reduced, while steering effort during normal
driving can more or less stay the same. An explanation for
this observation is that the EPS typically provides much less
assist torque in normal driving / steering scenarios than in the
parking lot scenarios considered. Hence, the driver may not
notice much difference when reducing the EPS assist by 50%
in normal driving scenarios.

6. CONCLUSION

A supervisory controller concept for EPS systems that in-
cludes power circuit health assessment and fault mitigation

modules was developed. Specifically, the health assessment
module estimates the resistance increase in the EPS power
circuit due to faults such as corrosion, and the fault mitiga-
tion module uses the estimation results to reduce EPS assist
torque to keep the EPS system from suddenly resetting, caus-
ing LOA events. Refinement and validation of the resistance
estimation algorithm using data collected from a test vehicle
indicate that the resistance estimation can detect resistance
increase of 20 and 40 mΩ for on- and off-board implementa-
tions, respectively. As the estimated power circuit resistance
increases, the fault mitigation module reduces the EPS assist
effort by a torque reduction curve, which can be calibrated for
different vehicle platforms and driving purposes. Testing and
demonstration results indicate that LOA incidents can suc-
cessfully be reduced without affecting normal driving feel.
Future work includes exploring other methods of fault mit-
igation, e.g., limiting EPS motor controller PWM based on
estimated power circuit resistances.
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APPENDIX

The following maneuvers are included in the test data. Each
numbered list of actions describes a single test instance. The
quantity of tests with each maneuver is included in parenthe-
sis next to the test name.

Lane Changes (23):
1. Cruise at 25 mph;
2. 2 single lane changes;
3. 2 double lane changes;
4. Cruise at 50 mph;
5. Repeat 2-3.

Turns (41):

1. 1
4 circle at 30 mph, one in each direction;

2. Two 90o turns from stop in each direction;
3. One U-turn in each direction at 10 mph.

Spirals (8):

1. 1
4 circle at 30 mph, one in each direction;

2. Two 90o turns from stop in each direction.

Sinusoidals (41):

1. Cruise at 30 mph;
2. 4 low-amplitude sinusoidals (using about 1 lane width);
3. 4 medium amplitude sinusoidals (using two full lanes);
4. Repeat 2-3 at 50 mph;
5. Repeat 2-3 at 60 mph.

Organics (36):

1. 13 minute normal driving at posted speed limits.

Noise factors:
Table 8 documents the noise factors introduced in test data.

Table 8. Data collection noise factors.

Noise factor Varied levels
Tire type All-season, all-terrain, and winter
Tire pressure 20, 30, and 40 psi
Battery load Rear defrost on and off
Passenger load 2, 4, or 6 passengers
Surface conditions Wet, dry
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