
1

A Study of Deep Neural Networks Transfer Learning For Fault

Diagnosis Applications

Michael Franco-Garcia1, Nithya Nalluri2, Alex Benasutti*, Larry Pearlstein3 and Mohammed Alabsi4

1,2,3,4 The College of New Jersey, 2000 Pennington Rd, Ewing Township, NJ 08618, USA

garcim20@tcnj.edu

nallurn1@tcnj.edu

pearlstl@tcnj.edu

alabsim@tcnj.edu

*benasua1@tcnj.edu

ABSTRACT

Intelligent fault diagnosis utilizing deep learning algorithms

has been widely investigated recently. Although previous

results demonstrated excellent performance, features learned

by Deep Convolutional Neural Networks (DCNN) are part of

a large black box. Consequently, lack of understanding of

underlying physical meanings embedded within the features

can lead to poor performance when applied to different but

related datasets i.e. transfer learning applications. This study

will investigate the transfer learning performance of a Deep

Convolutional Neural Network (DCNN) considering 4

different operating conditions. Utilizing the Lou & Loparo

(2004) Case Western Reserve University (CWRU) bearing

dataset, the DCNN will be trained to classify 12 classes. Each

class represents a unique different fault scenario with varying

severity i.e. inner race fault of 0.007”, 0.014” diameter.

Initially, zero load data will be utilized for model training and

the model will be tuned until testing accuracy above 99% is

obtained. The model performance will be evaluated by

feeding vibration data collected when the load is varied to 1,

2 and 3 HP. Initial results indicated that the classification

accuracy will degrade substantially. To improve the network

generalization capabilities, this paper proposes the addition

of white Gaussian noise to the raw vibration data. Results

indicate that a very high level of additive noise can improve

the transfer learning accuracy. The discussion will then focus

on the influence of changing loads on fault characteristics,

network classification mechanism, and activation strength in

addition to the visualization of convolution kernels in time

and frequency domains.

1. INTRODUCTION

Since the time of the first industrial revolution, special

attention has been placed on the safety and reliable operation

of rotating equipment. About 40% of machinery failures are

due to bearings degradation and damages Frosini, Harlişca,

& Szabó (2014). Hence, timely and efficient diagnosis of

bearings faults is required to ensure continuous and

sustainable industrial operation. Traditionally, fault diagnosis

falls under two categories: physics-based and data-driven.

Physics- based approaches predict the machine health based

mathematical models. Generally, those models are not able to

update the parameters to adapt the real-time stream of

measured data Weiss, Khoshgoftaar & Wang (2016). On the

contrary, data-driven approaches are designed to extract

meaningful patterns from machinery data. Conventional

data-driven methods depend on the design of handcrafted

features which are fed into shallow machine learning models

for classification i.e. logistic regression Yan & Lee (2005)

and support vector machine Widodo & Yang (2007). The

introduction of the fourth industrial revolution has

revolutionized data-driven machine health monitoring

techniques. In specific, deep learning methods showed high

potential in intelligent fault diagnosis and machinery big data

analytics. Traditional handcrafted features extraction is

effectively replaced by end-to-end feature extraction

performed by DCNN. However, one of the main challenges

that faces DCNN model development is the high variability

of fault characteristics and operating conditions in industrial

environments. For this, DCNN models need to have

generalization ability to account for varying operating

conditions and fault progressions scenarios. This problem is

usually addressed in the context of transfer learning Weiss,

Khoshgoftaar & Wang (2016). Transfer learning for fault

diagnosis applications can be categorized under three types:

domain adaptation, parameter transfer and feature transfer.

Domain adaptation aims to leverage a limited amount of

unlabeled data under different operating conditions and

Michael et al. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Annual Conference of the Prognostics and Health Management Society 2021

2

improve the DCNN model generalization capability. This

method aims to transfer results achieved at source domain

with labeled data under given operating conditions, to a target

domain with different operating conditions and unlabeled

data Wang, Michau, & Fink (2019, May). Inspired by

computer vision and natural language processing, several

fault diagnosis papers applied domain adaptation methods to

improve DCNN performance on new operating conditions

Zhang, B., Li, W., Hao, Li, X. L., & Zhang, M. (2018) and

Zhang, W., Peng, Li, Chen, & Zhang, Z. (2017). Evaluation

of related literature indicates that domain adaptation research

for fault diagnosis applications requires careful choice of

network structure, data preprocessing, and training strategy

Wang, et. al. (2019).

Parameter transfer learning methods adjust the DNN model

to adapt to the changing operating conditions. This is

accomplished by training the base model with source domain

data, and updating some parameters to accommodate the

changes in target domain Li, Hu, Li, M., & Zheng (2020).

This method was applied by modifying the last NN softmax

layer and keeping the previous layers unchanged Zhang, Tao,

Wu, & Guan (2017). Another approach utilized pre-trained

CNN instead of random initialized networks. The CNN

extracts relevant features from the source domain and the last

fully-connected layers are modified to accommodate the

changes in the target domain Cao, Zhang, & Tang (2018) and

Shao, McAleer, Yan, & Baldi (2018).

Feature based transfer builds a transfer function that links the

source and target domains. The transfer function is designed

to extract common representations from both domains which

are not sensitive to changing operating conditions. Wang,

Xie, Zhang L., & Duan (2016, August) applied the feature

based transfer by projecting the raw data into low-

dimensional space in order to minimize cross domain

differences. Wen, Gao, & Li (2017) developed a three-layer

sparse auto-encoder network to extract key features from raw

data. The maximum mean discrepancy was used to penalize

changes during joint feature learning.

2. PROPOSED APPROACH

Our approach for classification of vibration data uses a deep

convolutional neural network for processing time-domain

data sampled at 12 KHz. We propose a network architecture

based on the work of Zhang, et. al. (2017), but with 12

outputs from the final softmax layer, rather than 10. Most

notably we explore the use of additive noise as a form of

regularization and examine its effect on the network’s ability

to generalize its learning to correctly classify faults under

operating conditions that differ significantly from those

related to training. This strategy of naive transfer via

aggressive regularization may be well suited to real-world

engineering problems where one may encounter a continuum

of operating conditions and other variations on an ongoing

basis.

We assigned the 12 fault classes following the work of

Alabsi, Liao, & Nabulsi (2021). We trained our network on

data captured under no-load conditions (0hp), and

investigated transfer of learning via generalization, to cases

where the machine was loaded at 1 HP, 2 HP and 3HP. Our

work used the CWRU vibration data, described by Lou et. al.

(2004).

Our models were trained and evaluated using the TensorFlow

framework. We trained the neural networks by minimizing

the cross-entropy loss of the softmax output values. The

optimizer used, TensorFlow’s ‘NAdam’ procedure,

combines Nestorov momentum and an Adam-like approach

for learning-rate adaptation.

In order to understand how our networks were able to

perform classification, we explored the results using Fast

Fourier Transforms (FFTs) of vibration data and kernel maps

as well as t-Distributed Stochastic Neighbor Embeddings (t-

SNEs) of the first layer filter output powers. Vibration data

under no-load conditions were fed to the model for training.

For comparison we also trained the model architecture from

scratch under all load conditions.

3. PROCEDURE

3.1 Dataset Description

CWRU data obtained via 12 KHz sampling at the drive end

(DE) were used. Samples at no-load were used, as well as

those with loads of 1, 2, and 3 HP. Twelve cases were studied

for classification, which are described in Table 1.

Table 1: Definition of 12 fault cases studied

Annual Conference of the Prognostics and Health Management Society 2021

3

3.2. Data Preparation

The CWRU dataset includes sampled vibration data acquired

at 12 KHz at the drive end, under 16 different fault

conditions. The CWRU dataset consists of MATLAB data

files, where each data file represents one or more arrays, with

each file corresponding to a different combination of fault

class and load power. We used only the drive-end data array

from each file, and we focused on the 12 fault conditions

listed in Table 1, following the work of Alabsi, Liao, &

Nabulsi (2021). The dataset included different component

failures and failures of the same class but with varying

severity levels.

Each data array contained a different number of samples, so

we trimmed all of the arrays used for experimentation to

match the shortest array, which contained 𝑀 =120,801

samples. We handled the data in a manner similar to Zhang,

et. al. (2017) by following the steps illustrated in Fig. 1, and

outlined below.

1. After trimming to 𝑀 samples, each array was

partitioned into a training/validation section and a

testing section.

2. Training/validation data was obtained by sampling

overlapping segments of data, with each segment

consisting of 2048 samples. Consecutive segments

overlapped each other with a ratio of 95%. A total

of 660 segments of training/validation data were

thus obtained.

3. Data for testing was obtained by partitioning the

testing section into 25 non-overlapping segments of

2048 samples each.

4. Where Additive White Gaussian Noise (AWGN)

was used for data augmentation and regularization,

each of the 660 segments was included in the

training/validation set twice -- once without added

noise, and once with AWGN applied.

We looked into applying min/max normalization, but this

was found to dramatically hamper classification

performance, so this step was abandoned.

Fig. 1: Illustration of dataset partitioning and segment creation

3.3. Network Architecture and Optimizer

Our experiments used a deep convolutional neural network

architecture adapted from that presented in Zhang, et. al.

(2017), but with 12 softmax outputs, corresponding to the 12

classes defined in Table 1. The network architecture is shown

in Fig. 2.

Following the work of Zhang, et. al. (2017) we used batch

normalization (indicated by the blocks labeled BN in Fig. 2)

during training to improve training performance. During

inferencing, normalization was done based on a first order

recursive lowpass filter of statistics gathered during training

(with Keras filter parameter momentum=0.99).

A cross-entropy loss function was used as the target metric

for optimization, and the entire DCNN model was

represented using the TensorFlow 2 (TF2) framework with

Keras. The TF ‘Nadam’ optimizer was used to minimize the

loss function, which combines Nestorov momentum (which

typically speeds adaptation) with Adam (which adaptively,

but monotonically, dampens the adaptation rate over time).

This differs from some of the studies cited above, as most use

a simple ‘Adam’ optimizer. Although NAdam might be

expected to converge faster than Adam, in practice we did not

find conclusive evidence for this assumption.

Fig. 2: Graphical representation of the deep convolutional neural network architecture studied

Annual Conference of the Prognostics and Health Management Society 2021

4

3.4. Test Accuracy and Confusion Matrices

The twelve softmax outputs from our model were collapsed

into a single hard decision from the set {𝟏, 𝟐, . . . , 𝟏𝟐} by the

arg-max function. The model was tested under 25 non-

overlapping segments held back for testing, extracted from

signals in each of the twelve classes. An overall accuracy

number was assigned based on the fraction of the resulting

𝟐𝟓 × 𝟏𝟐 = 𝟑𝟎𝟎 test segments that were decided correctly by

the model. In some cases we attained test accuracies of 100%.

In tests where there were errors we used confusion matrices

to help understand the nature of the errors.

Confusion matrices are used to summarize the performance

of machine learning classifiers. Predicted values fall under

four categories: True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN). In this paper, each

confusion matrix has the ground-truth labels arrayed at the

bottom of the matrix, and the labels predicted by the model

arrayed down the left side. Numbers in the matrix represent

how many of the test segments in each ground-truth class

were assigned to each hypothetical class label. Classification

accuracy for each class is calculated using the equation

below:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

The overall network classification accuracy is calculated by

averaging the accuracy for individual classes.

3.5. Convolution Layer #1 Visualization

A convolutional neural network contains a combination of

convolutional layers and fully connected (dense) layers. It is

noteworthy that a digital convolution is a kind of

implementation of a linear time-invariant operator -- a

processing element that can be understood as a frequency

selective filter. As such, it can be thought of as imparting a

frequency-dependent gain, and a frequency-dependent phase

shift. In the time domain a discrete-time convolution can be

represented as:

 𝑦(𝑛) = ∑ ℎ(𝑘) 𝑥(𝑛 − 𝑘)𝑁−1
𝑘=0 (2)

and in the frequency domain as:

 |𝑌(𝑒𝑗𝜔)| = |𝐻(𝑒𝑗𝜔)||𝑋(𝑒𝑗𝜔)| (3)

where: 𝑥(⋅), 𝑦(⋅), ℎ(⋅)are the input stream, output stream

and 𝑁-point filter kernel, respectively, and

𝑋(𝑒𝑗𝜔), 𝑌(𝑒𝑗𝜔), 𝐻(𝑒𝑗𝜔)are the respective discrete-time

Fourier transforms. Thus |𝐻(𝑒𝑗𝜔)|is the gain response, and

(2) describes how a convolution accomplishes selective

weighting of different frequencies.

Note that a cascade arrangement of convolutions is

mathematically equivalent to a single convolution. Referring

back to Fig. 2, the block labeled ‘Conv1’ represents a set of

16 different filters, each with an order, 𝑁 = 64. Although

the first five layers of the DCNN shown in Fig. 2 are all

convolutional, the non-linear activations, and non-linear

pooling operators, prevent mathematically collapsing

cascades from input to output into simple filters. The

outputs of convolutional layers and activations can be

thought of as feature maps, a term used in the context of

DCNNs for computer vision. Thus Conv2 applies filters to

the feature maps produced by Conv 1, and so forth. While

the filtering operations performed by Conv2 through Conv5

are hard to interpret, we can, and do, investigate the filters

created by the Conv1 layer. For the Conv1 layer it can be

more instructive to analyze the input signals and trained

kernels in the frequency domain than in the time domain.

Considering how much information regarding the machine’s

status seems to be contained in the frequencies and modes of

vibration, we hypothesized that the vector of output powers

of the sixteen trained filters of Conv1 might be sufficient for

effectively clustering and isolating the desired classes. We

investigated this by implementing the processing graph

illustrated in Fig. 3, which uses t-SNE dimensionality

reduction to enable visualization of clusters.

Fig. 3: Block diagram of the process used for t-SNE analysis of

the effects of Convolution Layer #1 kernels. Here 𝑓(𝑝, 𝑐, 𝑘) is a

length-2048 vector of vibration samples, where 𝑝 represents

the load power (𝑝 = 0, 1, 2, 3 𝐻𝑃), 𝑐 is the ground truth class

(1 ≤ 𝑐 ≤ 12)𝑘 is the test segment index (1 ≤ 𝑘 ≤ 25). The t-

SNE algorithm was used to generate a reduction in

dimensionality to either two or three (as shown as

𝑇{1,2,3}(𝑝, 𝑐, 𝑘)) values.

While t-SNE is highly effective for performing

dimensionality reduction for human interpretation, the

approach is not repeatable, and it does not preserve scale

factors. As a result, we also used the PCA method for

reducing dimensionality in cases where it was valuable to

retain the ability to directly compare different experiments.

When one trains a DCNN the thousands of model weights are

typically initialized based on pseudo-random numbers. In

general, different seed values for the pseudo-random number

generator result in very different DCNNs. Even two DCNNs

Annual Conference of the Prognostics and Health Management Society 2021

5

with the exact same input-to-output behavior may have

internal differences due to permutations of kernels and

weights within hidden layers. We attempt to compare Conv1

from different DCNNs trained under different conditions.

While it is impossible to define an unambiguous

correspondence between kernels in DCNNs trained under

different conditions (or even under the same condition, but

with different seeds), we define a mean frequency for each

kernel, which allows sorting kernels for comparison. The

mean frequency is represented as:

 �̄�𝑟 =
𝑓𝑠

𝑁
∑ 𝑚 �̃�𝑟(𝑚)

𝑁/2
𝑚=0 (4)

where �̃�𝑟(𝑚)is the normalized magnitude response of the

DFT of kernel 𝑟:

 �̃�𝑟(𝑚) =
|𝐻𝑟 (𝑚)|

∑ |𝐻𝑟 (𝑗)|
𝑁/2
𝑗=0

, (5)

|𝐻𝑟(𝑚)|is the 𝑚𝑡ℎcoefficient of the discrete fourier

transform (DFT) of the weights of convolution kernel 𝑟, and

𝑓𝑠 is the sampling rate, 12 KHz.

4. RESULTS

4.1 Classification Task Accuracy

Our experiments primarily focused on the task of training

models under generic (no-load) conditions, and exploring the

ability of these models to transfer that learning to the task of

classification under different load conditions of 1, 2, and 3

HP. When training we used either segments from the Case

Western Reserve University dataset directly, or those

segments augmented with zero-mean AWGN with standard

deviations in the set, 𝑺 ={0.01, 0.03, 0.10, 0.30, 1.0, 3.0,

10.0}. We were interested in each model’s accuracy at a load

of 0 HP (the load at which it was trained), and its average

accuracy including load 0 HP, and transfer to loads of 1, 2,

and 3 HP. Since each fault class exhibited a different amount

of signal power, the signal to noise ratio of the noisy-half of

the training data, depends on the class, as shown in Table 2.

We trained the same network architecture 10 times, each

with a different seed for the pseudo-random generated used

to initialize the weights. The results are illustrated by

scattering the data in Fig. 4, and as a summary in Fig. 5.

Examining the figures we observe a significant spread of

average accuracies for each amount of additive noise, but

also some significant trends. It appears that the addition of

small amounts of noise have relatively little effect, and that

noise in the range of about 0 dB,𝑖. 𝑒. 𝜎 = 0.3, can have a

deleterious effect. But the peak and average transfer

learning improves as the noise level increases substantially,

and appears to be maximized at about 𝜎 = 3.0.

Table 2: Signal-to-noise ratios (SNRs) for each fault case’s

data, as a function of AWGN standard deviation. Units are dB.

Std

Dev #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

0.01 17 23 24 23 29 34 38 38 37 20 30 35
0.03 8 13 14 13 20 25 29 28 27 11 20 26
0.1 -3 3 4 3 9 14 18 18 17 0 10 15
0.3 -12 -7 -6 -7 0 5 9 8 7 -9 0 6
1.0 -23 -17 -16 -17 -11 -6 -2 -2 -3 -20 -10 -5
3.0 -32 -27 -26 -27 -20 -15 -11 -12 -13 -29 -20 -14
10 -43 -37 -36 -37 -31 -26 -22 -22 -23 -40 -30 -25

Fig. 4: Average Accuracy vs. AWGN Std. Dev. as scatter plot

Fig. 5: Average Accuracy vs. AWGN Std. Dev. - data from ten

training runs per noise level are summarized using box-and-

whiskers

Based on the results obtained, we investigated four cases in

detail:

Case 1: Train based on 0 HP (no load) data only, with no additive

noise. We selected the result with the lowest ‘Test Loss’.

Case 2: Train based on 0 HP (no load) data only, with additive

noise standard deviation, 𝜎 = 0.3. We selected the result with the

maximum average accuracy for transfer learning.

Annual Conference of the Prognostics and Health Management Society 2021

6

Case 3: Train based on data at loads 0,1,2,3 HP, with no additive

noise. We selected the result with maximum accuracy.

Case 4: Train based on data at loads 0,1,2,3 HP, with additive

noise standard deviation, 𝜎 = 0.3. We selected the result with the

maximum accuracy.

All cases were trained considering the classes described in

Table 1. The classification accuracies of the four cases

described above are presented in Table 3. Here it is clear that

the basic network architecture produces relatively poor

transfer learning - with an average accuracy of 85%. Case 2,

based on a high level of AWGN, is of particular interest, as it

represents excellent transfer learning. In fact, although a

direct comparison is not possible, the transfer learning

accuracies that we obtained through the use of high-powered

additive noise appear to be superior to those presented in

Zhang, et. al. (2017). We sought to understand the

mechanism that produced this desirable characteristic.

Table 3: Test accuracy vs. load and noise standard deviation

used for data augmentation.

Train on ... Case# / AWGN

𝜎

Load (HP) Accuracy

0 HP load

data only

1

no noise

0 100.00%

1 84.67%

2 81.67%

3 73.67%

Average

Loads 0-3

85.00%

2

noise𝜎 = 3.0

0 96.67%

1 97.34%

2 98.00%

3 97.67%

Average

Loads 0-3

97.42%

All loads:

0, 1, 2, 3 HP

3

no noise

0 99.67%

1 100.00%

2 100.00%

3 100.00%

Average

Loads 0-3

99.92%

4

noise𝜎 = 3.0

0 100.00%

1 99.67%

2 100.00%

3 100.00%

Average

Loads 0-3

99.92%

We focused our attention on understanding the operation of

the first convolutional layer -- this layer operates on the raw

data samples, and it consists of 16 filters, where each filter

is composed of 64 coefficients. The fairly long filters allow

this layer to attain high-frequency selectivity. For

illustration, the kernels obtained for Case 1 are shown in

Fig. 6. It is difficult to discern the mechanism of operation

from direct examination of the kernels, but we gained

insight by visualizing the FFTs of the kernels. In order to

effectively compare the filters obtained from the 4 cases of

interest, we computed the mean frequency of each filter, and

sorted them according to increasing kernel mean frequency.

The mean frequencies for each of the 4 cases are shown in

Fig. 7. Looking at Fig. 8 we note that many of the kernels

are bandpass filters, or narrow two-band filters. This

suggests that the most important information for

classification is contained in the frequency band between

2000 Hz and 3300 Hz. This is somewhat surprising, as the

fundamental forcing functions produced by the various

faults produce frequency components below 1000 Hz.

Fig. 6: Time domain plots of all 64 values in the first

convolutional layer (from Case 1).

4.2. Visualization Results

The frequency-domain analysis of the sampled vibration

signals is shown in Fig. 9. Examining the figure we note that

the no-fault case produces a significant component at 1100

Hz, and, evidently, a harmonic at 2200 Hz. The cases with

ball faults produced low vibration amplitudes, and only one

narrow component at 1400 Hz, and a band of power

distributed between 2500-3500 Hz. The inner-race and outer-

race faults produced significant narrowband components

distributed throughout the bands up to 3500 Hz. Considering

that each fault class produces a distinct signature, we used t-

SNE to investigate how well Conv1 is able to cluster

incoming data according to fault class, and how those clusters

relate to clusters of data corresponding to different loading

conditions.

Annual Conference of the Prognostics and Health Management Society 2021

7

Fig. 7: Comparing all four experiments by scaling each of their

first convolutional layer kernel weights with frequency, and

taking the mean of the weights at each kernel. There are a total

of 16 kernels for the first convolutional layer.

Fig. 8: Kernel FFTs, only showing the first half of the signal

(32 values out of 64), sorted by mean frequency from lowest to

highest.

Fig. 10 represents a reduction to two dimensions of the 16-

point vector of filter signal powers produced at the output of

Conv1, using t-SNE. In this plot, each hue/marker style

represents a unique fault class. Two cases were run for each

fault class -- one at zero load, and one at the maximum, 3 HP,

load. The DCNN was trained based on the no-load data,

which is represented by the darker shade of the same hue.

The data at 3 HP is used to study the most extreme case of

transfer learning, and is represented by the lighter shade. We

see that most of the classes are nicely clustered by the Conv1

filter output power. The only classes where the clustering is

inconclusive is between Classes 2, 3 and 4, and Classes 9 and

12. Of course, our DCNN has a great deal of additional

resources available to further cluster the data -- with 4

convolutional layers that produce increasing numbers of

feature maps.

Fig. 9: Frequency domain analysis of sampled vibration data

signals at no load (0 HP)

Fig. 10: 2-D representation of the Conv1 kernels’ output power

using t-SNE.

A detailed look into the structure of the filter output data for

Classes 2, 3, and 4, is shown in Fig. 11. Here, PCA is used

to reduce the data to two dimensions. Again, we see fairly

easy separability of the classes, with only a small number of

input data vectors appearing to present a challenge.

Annual Conference of the Prognostics and Health Management Society 2021

8

Fig. 11: Detailed view of 2-D representation of Conv1 kernels’

output power using PCA.

4.3. Transfer Classification Results

Details on the types of misclassifications by the DCNN from

Case 2 can be found in the confusion matrices shown in Fig.

12. The confusion matrix has the ground-truth labels arrayed

at the bottom of the matrix, and the labels predicted by the

model arrayed down the left side. Numbers in the matrix

represent how many of the test segments in each ground-truth

class were assigned to each hypothetical class label. As

expected we primarily find errors relating to confusion

between Classes 2, 3, and 4 (all ball faults, of different size).

We also find confusion between Classes 2 and 3, and Class

10 (outer race fault at 6 o’clock).

5. CONCLUSION

We demonstrated how very high levels of additive noise can

be used advantageously to train DCNNs with significant

improvements in transfer learning. We showed that reducing

the output of each Conv1 filter kernel to a single power

measurement produces a well-clustered statistic, suggesting

the possibility that convolutional layers 2-5 may actually be

of little value for the classification task. We found that

DCNNs trained on the CWRU dataset tend to extract

narrowband features, and are especially concentrated on high

frequencies. Finally, we developed a technique to compute

the mean-frequencies of convolution kernels, and used this

metric as the basis for sorting the kernels from different

training scenarios, thus allowing direct comparisons.

Fig. 12: Confusion matrices for Case 2. (top) Transfer learning

to 1 HP at 97.34% test accuracy. (center) Transfer learning to

2 HP at 98.00% test accuracy. (bottom) Transfer learning to 3

HP at 97.67% test accuracy.

Annual Conference of the Prognostics and Health Management Society 2021

9

REFERENCES

Alabsi, M., Liao, Y., & Nabulsi, A. A. (2021). Bearing fault

diagnosis using deep learning techniques coupled with

handcrafted feature extraction: A comparative study.

Journal of Vibration and Control, 27(3-4), 404-414.

Cao, P., Zhang, S., & Tang, J. (2018). Preprocessing-free

gear fault diagnosis using small datasets with deep

convolutional neural network-based transfer learning.

Ieee Access, 6, 26241-26253.

http://dx.doi.org/10.1109/ACCESS.2018.2837621.

Frosini, L., Harlişca, C., & Szabó, L. (2014). Induction

machine bearing fault detection by means of statistical

processing of the stray flux measurement. IEEE

Transactions on Industrial Electronics, 62(3), 1846-1854.

Li, X., Hu, Y., Li, M., & Zheng, J. (2020). Fault diagnostics

between different type of components: A transfer learning

approach. Applied Soft Computing, 86, 105950.

Lou, X., & Loparo, K. A. (2004). Bearing fault diagnosis

based on wavelet transform and fuzzy inference.

Mechanical systems and signal processing, 18(5), 1077-

1095.

Shao, S., McAleer, S., Yan, R., & Baldi, P. (2018). Highly

accurate machine fault diagnosis using deep transfer

learning. IEEE Transactions on Industrial Informatics,

15(4), 2446-2455.

http://dx.doi.org/10.1109/TII.2018.2864759.

Wang, J., Li, S., Han, B., An, Z., Xin, Y., Qian, W., & Wu,

Q. (2018). Construction of a batch-normalized

autoencoder network and its application in mechanical

intelligent fault diagnosis. Measurement Science and

Technology, 30(1), 015106.

Wang, J., Xie, J., Zhang, L., & Duan, L. (2016, August). A

factor analysis based transfer learning method for gearbox

diagnosis under various operating conditions. In 2016

International Symposium on Flexible Automation (ISFA)

(pp. 81-86). IEEE.

http://dx.doi.org/10.1109/ISFA.2016.7790140

Wang, Q., Michau, G., & Fink, O. (2019, May). Domain

adaptive transfer learning for fault diagnosis. In 2019

Prognostics and System Health Management Conference

(PHM-Paris) (pp. 279-285). IEEE.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A

survey of transfer learning. Journal of Big data, 3(1), 1-

40. https://doi.org/10.1186/s40537-016-0043-6

Wen, L., Gao, L., & Li, X. (2017). A new deep transfer

learning based on sparse auto-encoder for fault diagnosis.

IEEE Transactions on systems, man, and cybernetics:

systems, 49(1), 136-144.

http://dx.doi.org/10.1109/TSMC.2017.2754287.

Widodo, A., & Yang, B. S. (2007). Support vector machine

in machine condition monitoring and fault diagnosis.

Mechanical systems and signal processing, 21(6), 2560-

2574.

Yan, J., & Lee, J. (2005). Degradation assessment and fault

modes classification using logistic regression. J. Manuf.

Sci. Eng. 127 912–4

Zhang, B., Li, W., Hao, J., Li, X. L., & Zhang, M. (2018).

Adversarial adaptive 1-D convolutional neural networks

for bearing fault diagnosis under varying working

condition. arXiv preprint arXiv:1805.00778.

Zhang, R., Tao, H., Wu, L., & Guan, Y. (2017). Transfer

learning with neural networks for bearing fault diagnosis

in changing working conditions. IEEE Access, 5, 14347-

14357.

https://dx.doi.org/10.1109/ACCESS.2017.2720965.

Zhang, W., Peng, G., Li, C., Chen, Y., & Zhang, Z. (2017).

A new deep learning model for fault diagnosis with good

anti-noise and domain adaptation ability on raw vibration

signals. Sensors, 17(2), 425.

