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ABSTRACT 

Intelligent fault diagnosis utilizing deep learning algorithms 

has been widely investigated recently. Although previous 

results demonstrated excellent performance, features learned 

by Deep Convolutional Neural Networks (DCNN) are part of 

a large black box. Consequently, lack of understanding of 

underlying physical meanings embedded within the features 

can lead to poor performance when applied to different but 

related datasets i.e. transfer learning applications. This study 

will investigate the transfer learning performance of a Deep 

Convolutional Neural Network (DCNN) considering 4 

different operating conditions. Utilizing the Lou & Loparo 

(2004) Case Western Reserve University (CWRU) bearing 

dataset, the DCNN will be trained to classify 12 classes. Each 

class represents a unique different fault scenario with varying 

severity i.e. inner race fault of 0.007”, 0.014” diameter. 

Initially, zero load data will be utilized for model training and 

the model will be tuned until testing accuracy above 99% is 

obtained. The model performance will be evaluated by 

feeding vibration data collected when the load is varied to 1, 

2 and 3 HP. Initial results indicated that the classification 

accuracy will degrade substantially. To improve the network 

generalization capabilities, this paper proposes the addition 

of white Gaussian noise to the raw vibration data. Results 

indicate that a very high level of additive noise can improve 

the transfer learning accuracy. The discussion will then focus 

on the influence of changing loads on fault characteristics, 

network classification mechanism, and activation strength in 

addition to the visualization of convolution kernels in time 

and frequency domains. 

1. INTRODUCTION 

Since the time of the first industrial revolution, special 

attention has been placed on the safety and reliable operation 

of rotating equipment. About 40% of machinery failures are 

due to bearings degradation and damages Frosini, Harlişca, 

& Szabó (2014). Hence, timely and efficient diagnosis of 

bearings faults is required to ensure continuous and 

sustainable industrial operation. Traditionally, fault diagnosis 

falls under two categories: physics-based and data-driven. 

Physics- based approaches predict the machine health based 

mathematical models. Generally, those models are not able to 

update the parameters to adapt the real-time stream of 

measured data Weiss, Khoshgoftaar & Wang (2016).  On the 

contrary, data-driven approaches are designed to extract 

meaningful patterns from machinery data. Conventional 

data-driven methods depend on the design of handcrafted 

features which are fed into shallow machine learning models 

for classification i.e. logistic regression Yan & Lee (2005) 

and support vector machine Widodo & Yang (2007). The 

introduction of the fourth industrial revolution has 

revolutionized data-driven machine health monitoring 

techniques. In specific, deep learning methods showed high 

potential in intelligent fault diagnosis and machinery big data 

analytics. Traditional handcrafted features extraction is 

effectively replaced by end-to-end feature extraction 

performed by DCNN. However, one of the main challenges 

that faces DCNN model development is the high variability 

of fault characteristics and operating conditions in industrial 

environments. For this, DCNN models need to have 

generalization ability to account for varying operating 

conditions and fault progressions scenarios. This problem is 

usually addressed in the context of transfer learning Weiss, 

Khoshgoftaar & Wang (2016). Transfer learning for fault 

diagnosis applications can be categorized under three types: 

domain adaptation, parameter transfer and feature transfer.  

Domain adaptation aims to leverage a limited amount of 

unlabeled data under different operating conditions and 
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improve the DCNN model generalization capability. This 

method aims to transfer results achieved at source domain 

with labeled data under given operating conditions, to a target 

domain with different operating conditions and unlabeled 

data Wang, Michau, & Fink (2019, May). Inspired by 

computer vision and natural language processing, several 

fault diagnosis papers applied domain adaptation methods to 

improve DCNN performance on new operating conditions 

Zhang, B., Li, W., Hao, Li, X. L., & Zhang, M. (2018) and 

Zhang, W., Peng, Li, Chen, & Zhang, Z. (2017). Evaluation 

of related literature indicates that domain adaptation research 

for fault diagnosis applications requires careful choice of 

network structure, data preprocessing, and training strategy 

Wang, et. al. (2019). 

Parameter transfer learning methods adjust the DNN model 

to adapt to the changing operating conditions. This is 

accomplished by training the base model with source domain 

data, and updating some parameters to accommodate the 

changes in target domain Li, Hu, Li, M., & Zheng (2020).  

This method was applied by modifying the last NN softmax 

layer and keeping the previous layers unchanged Zhang, Tao, 

Wu, & Guan (2017). Another approach utilized pre-trained 

CNN instead of random initialized networks. The CNN 

extracts relevant features from the source domain and the last 

fully-connected layers are modified to accommodate the 

changes in the target domain Cao, Zhang, & Tang (2018) and 

Shao, McAleer, Yan, & Baldi (2018).  

 

Feature based transfer builds a transfer function that links the 

source and target domains. The transfer function is designed 

to extract common representations from both domains which 

are not sensitive to changing operating conditions. Wang, 

Xie, Zhang L., & Duan (2016, August) applied the feature 

based transfer by projecting the raw data into low-

dimensional space in order to minimize cross domain 

differences. Wen, Gao, & Li (2017) developed a three-layer 

sparse auto-encoder network to extract key features from raw 

data. The maximum mean discrepancy was used to penalize 

changes during joint feature learning. 

 

2. PROPOSED APPROACH 

Our approach for classification of vibration data uses a deep 

convolutional neural network for processing time-domain 

data sampled at 12 KHz.  We propose a network architecture 

based on the work of Zhang, et. al. (2017), but with 12 

outputs from the final softmax layer, rather than 10.  Most 

notably we explore the use of additive noise as a form of 

regularization and examine its effect on the network’s ability 

to generalize its learning to correctly classify faults under 

operating conditions that differ significantly from those 

related to training.  This strategy of naive transfer via 

aggressive regularization may be well suited to real-world 

engineering problems where one may encounter a continuum 

of operating conditions and other variations on an ongoing 

basis. 

We assigned the 12 fault classes following the work of 

Alabsi, Liao, & Nabulsi (2021).  We trained our network on 

data captured under no-load conditions (0hp), and 

investigated transfer of learning via generalization, to cases 

where the machine was loaded at 1 HP, 2 HP and 3HP.  Our 

work used the CWRU vibration data, described by Lou et. al. 

(2004). 

Our models were trained and evaluated using the TensorFlow 

framework. We trained the neural networks by minimizing 

the cross-entropy loss of the softmax output values.  The 

optimizer used, TensorFlow’s ‘NAdam’ procedure, 

combines Nestorov momentum and an Adam-like approach 

for learning-rate adaptation. 

In order to understand how our networks were able to 

perform classification, we explored the results using Fast 

Fourier Transforms (FFTs) of vibration data and kernel maps 

as well as t-Distributed Stochastic Neighbor Embeddings (t-

SNEs) of the first layer filter output powers. Vibration data 

under no-load conditions were fed to the model for training. 

For comparison we also trained the model architecture from 

scratch under all load conditions. 

3. PROCEDURE 

3.1 Dataset Description 

CWRU data obtained via 12 KHz sampling at the drive end 

(DE) were used.  Samples at no-load were used, as well as 

those with loads of 1, 2, and 3 HP.  Twelve cases were studied 

for classification, which are described in Table 1. 

Table 1: Definition of 12 fault cases studied 
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3.2. Data Preparation 

The CWRU dataset includes sampled vibration data acquired 

at 12 KHz at the drive end, under 16 different fault 

conditions.  The CWRU dataset consists of MATLAB data 

files, where each data file represents one or more arrays, with 

each file corresponding to a different combination of fault 

class and load power.  We used only the drive-end data array 

from each file, and we focused on the 12 fault conditions 

listed in Table 1, following the work of Alabsi, Liao, & 

Nabulsi (2021). The dataset included different component 

failures and failures of the same class but with varying 

severity levels. 

Each data array contained a different number of samples, so 

we trimmed all of the arrays used for experimentation to 

match the shortest array, which contained 𝑀 =120,801 

samples.  We handled the data in a manner similar to Zhang, 

et. al. (2017) by following the steps illustrated in Fig. 1, and 

outlined below. 

1. After trimming to 𝑀 samples, each array was 

partitioned into a training/validation section and a 

testing section. 

2. Training/validation data was obtained by sampling 

overlapping segments of data, with each segment 

consisting of 2048 samples.  Consecutive segments 

overlapped each other with a ratio of 95%.  A total 

of 660 segments of training/validation data were 

thus obtained. 

3. Data for testing was obtained by partitioning the 

testing section into 25 non-overlapping segments of 

2048 samples each. 

4. Where Additive White Gaussian Noise (AWGN) 

was used for data augmentation and regularization, 

each of the 660 segments was included in the 

training/validation set twice -- once without added 

noise, and once with AWGN applied. 

We looked into applying min/max normalization, but this 

was found to dramatically hamper classification 

performance, so this step was abandoned. 

 

Fig. 1: Illustration of dataset partitioning and segment creation 

3.3. Network Architecture and Optimizer 

Our experiments used a deep convolutional neural network 

architecture adapted from that presented in Zhang, et. al. 

(2017), but with 12 softmax outputs, corresponding to the 12 

classes defined in Table 1.  The network architecture is shown 

in Fig. 2. 

Following the work of Zhang, et. al. (2017) we used batch 

normalization (indicated by the blocks labeled BN in Fig. 2) 

during training to improve training performance.  During 

inferencing, normalization was done based on a first order 

recursive lowpass filter of statistics gathered during training 

(with Keras filter parameter momentum=0.99). 

A cross-entropy loss function was used as the target metric 

for optimization, and the entire DCNN model was 

represented using the TensorFlow 2 (TF2) framework with 

Keras.  The TF ‘Nadam’ optimizer was used to minimize the 

loss function, which combines Nestorov momentum (which 

typically speeds adaptation) with Adam (which adaptively, 

but monotonically, dampens the adaptation rate over time). 

This differs from some of the studies cited above, as most use 

a simple ‘Adam’ optimizer. Although NAdam might be 

expected to converge faster than Adam, in practice we did not 

find conclusive evidence for this assumption. 

Fig. 2: Graphical representation of the deep convolutional neural network architecture studied 
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3.4. Test Accuracy and Confusion Matrices 

The twelve softmax outputs from our model were collapsed 

into a single hard decision from the set {𝟏, 𝟐, . . . , 𝟏𝟐} by the 

arg-max function.  The model was tested under 25 non-

overlapping segments held back for testing, extracted from 

signals in each of the twelve classes.  An overall accuracy 

number was assigned based on the fraction of the resulting 

𝟐𝟓 × 𝟏𝟐 = 𝟑𝟎𝟎 test segments that were decided correctly by 

the model. In some cases we attained test accuracies of 100%. 

In tests where there were errors we used confusion matrices 

to help understand the nature of the errors.  

Confusion matrices are used to summarize the performance 

of machine learning classifiers. Predicted values fall under 

four categories: True Positive (TP), False Positive (FP), True 

Negative (TN) and False Negative (FN). In this paper, each 

confusion matrix has the ground-truth labels arrayed at the 

bottom of the matrix, and the labels predicted by the model 

arrayed down the left side. Numbers in the matrix represent 

how many of the test segments in each ground-truth class 

were assigned to each hypothetical class label. Classification 

accuracy for each class is calculated using the equation 

below: 

 

         𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (1) 

 

The overall network classification accuracy is calculated by 

averaging the accuracy for individual classes. 

 

3.5. Convolution Layer #1 Visualization  

A convolutional neural network contains a combination of 

convolutional layers and fully connected (dense) layers.  It is 

noteworthy that a digital convolution is a kind of 

implementation of a linear time-invariant operator -- a 

processing element that can be understood as a frequency 

selective filter.  As such, it can be thought of as imparting a 

frequency-dependent gain, and a frequency-dependent phase 

shift.  In the time domain a discrete-time convolution can be 

represented as: 

 𝑦(𝑛) = ∑ ℎ(𝑘) 𝑥(𝑛 − 𝑘)𝑁−1
𝑘=0  (2) 

 

and in the frequency domain as: 

 |𝑌(𝑒𝑗𝜔)| = |𝐻(𝑒𝑗𝜔)||𝑋(𝑒𝑗𝜔)| (3) 

where: 𝑥(⋅), 𝑦(⋅), ℎ(⋅)are the input stream, output stream 

and 𝑁-point filter kernel, respectively, and 

𝑋(𝑒𝑗𝜔), 𝑌(𝑒𝑗𝜔), 𝐻(𝑒𝑗𝜔)are the respective discrete-time 

Fourier transforms. Thus |𝐻(𝑒𝑗𝜔)|is the gain response, and 

(2) describes how a convolution accomplishes selective 

weighting of different frequencies.  

Note that a cascade arrangement of convolutions is 

mathematically equivalent to a single convolution. Referring 

back to Fig. 2, the block labeled ‘Conv1’ represents a set of 

16 different filters, each with an order, 𝑁 = 64.  Although 

the first five layers of the DCNN shown in Fig. 2 are all 

convolutional, the non-linear activations, and non-linear 

pooling operators, prevent mathematically collapsing 

cascades from input to output into simple filters. The 

outputs of convolutional layers and activations can be 

thought of as feature maps, a term used in the context of 

DCNNs for computer vision.  Thus Conv2 applies filters to 

the feature maps produced by Conv 1, and so forth.  While 

the filtering operations performed by Conv2 through Conv5 

are hard to interpret, we can, and do, investigate the filters 

created by the Conv1 layer. For the Conv1 layer it can be 

more instructive to analyze the input signals and trained 

kernels in the frequency domain than in the time domain. 

Considering how much information regarding the machine’s 

status seems to be contained in the frequencies and modes of 

vibration, we hypothesized that the vector of output powers 

of the sixteen trained filters of Conv1 might be sufficient for 

effectively clustering and isolating the desired classes.  We 

investigated this by implementing the processing graph 

illustrated in Fig. 3, which uses t-SNE dimensionality 

reduction to enable visualization of clusters. 

 

Fig. 3: Block diagram of the process used for t-SNE analysis of 

the effects of Convolution Layer #1 kernels. Here 𝑓(𝑝, 𝑐, 𝑘) is a 

length-2048 vector of vibration samples, where 𝑝 represents 

the load power (𝑝 = 0, 1, 2, 3 𝐻𝑃), 𝑐 is the ground truth class 

(1 ≤ 𝑐 ≤ 12)𝑘 is the test segment index (1 ≤ 𝑘 ≤ 25). The t-

SNE algorithm was used to generate a reduction in 

dimensionality to either two or three (as shown as 

𝑇{1,2,3}(𝑝, 𝑐, 𝑘)) values.   

While t-SNE is highly effective for performing 

dimensionality reduction for human interpretation, the 

approach is not repeatable, and it does not preserve scale 

factors.  As a result, we also used the PCA method for 

reducing dimensionality in cases where it was valuable to 

retain the ability to directly compare different experiments. 

When one trains a DCNN the thousands of model weights are 

typically initialized based on pseudo-random numbers. In 

general, different seed values for the pseudo-random number 

generator result in very different DCNNs.  Even two DCNNs 
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with the exact same input-to-output behavior may have 

internal differences due to permutations of kernels and 

weights within hidden layers.  We attempt to compare Conv1 

from different DCNNs trained under different conditions.  

While it is impossible to define an unambiguous 

correspondence between kernels in DCNNs trained under 

different conditions (or even under the same condition, but 

with different seeds), we define a mean frequency for each 

kernel, which allows sorting kernels for comparison.  The 

mean frequency is represented as: 

 �̄�𝑟 =
𝑓𝑠

𝑁
∑ 𝑚 �̃�𝑟(𝑚)

𝑁/2
𝑚=0  (4) 

where �̃�𝑟(𝑚)is the normalized magnitude response of the 

DFT of kernel 𝑟: 

 �̃�𝑟(𝑚) =
|𝐻𝑟 (𝑚)|

∑ |𝐻𝑟 (𝑗)|
𝑁/2
𝑗=0

, (5) 

|𝐻𝑟(𝑚)|is the 𝑚𝑡ℎcoefficient of the discrete fourier 

transform (DFT) of the weights of convolution kernel 𝑟, and 

𝑓𝑠 is the sampling rate, 12 KHz. 

4. RESULTS 

4.1 Classification Task Accuracy 

Our experiments primarily focused on the task of training 

models under generic (no-load) conditions, and exploring the 

ability of these models to transfer that learning to the task of 

classification under different load conditions of 1, 2, and 3 

HP.  When training we used either segments from the Case 

Western Reserve University dataset directly, or those 

segments augmented with zero-mean AWGN with standard 

deviations in the set, 𝑺 ={0.01, 0.03, 0.10, 0.30, 1.0, 3.0, 

10.0}. We were interested in each model’s accuracy at a load 

of 0 HP (the load at which it was trained), and its average 

accuracy including load 0 HP, and transfer to loads of 1, 2, 

and 3 HP.  Since each fault class exhibited a different amount 

of signal power, the signal to noise ratio of the noisy-half of 

the training data, depends on the class, as shown in Table 2. 

We trained the same network architecture 10 times, each 

with a different seed for the pseudo-random generated used 

to initialize the weights.  The results are illustrated by 

scattering the data in Fig. 4, and as a summary in Fig. 5.  

Examining the figures we observe a significant spread of 

average accuracies for each amount of additive noise, but 

also some significant trends.  It appears that the addition of 

small amounts of noise have relatively little effect, and that 

noise in the range of about 0 dB,𝑖. 𝑒. 𝜎 = 0.3, can have a 

deleterious effect.  But the peak and average transfer 

learning improves as the noise level increases substantially, 

and appears to be maximized at about 𝜎 = 3.0. 

 

 

 

 

Table 2: Signal-to-noise ratios (SNRs) for each fault case’s 

data, as a function of AWGN standard deviation. Units are dB. 

Std 

Dev #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

0.01 17 23 24 23 29 34 38 38 37 20 30 35 
0.03 8 13 14 13 20 25 29 28 27 11 20 26 
0.1 -3 3 4 3 9 14 18 18 17 0 10 15 
0.3 -12 -7 -6 -7 0 5 9 8 7 -9 0 6 
1.0 -23 -17 -16 -17 -11 -6 -2 -2 -3 -20 -10 -5 
3.0 -32 -27 -26 -27 -20 -15 -11 -12 -13 -29 -20 -14 
10 -43 -37 -36 -37 -31 -26 -22 -22 -23 -40 -30 -25 

 

 

Fig. 4: Average Accuracy vs. AWGN Std. Dev. as scatter plot 

 
Fig. 5: Average Accuracy vs. AWGN Std. Dev. - data from ten 

training runs per noise level are summarized using box-and- 

whiskers 

Based on the results obtained, we investigated four cases in 

detail: 

 
Case 1: Train based on 0 HP (no load) data only, with no additive 

noise.  We selected the result with the lowest ‘Test Loss’. 

Case 2: Train based on 0 HP (no load) data only, with additive 

noise standard deviation, 𝜎 = 0.3.  We selected the result with the 

maximum average accuracy for transfer learning. 
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Case 3: Train based on data at loads 0,1,2,3 HP, with no additive 

noise.  We selected the result with maximum accuracy. 

Case 4: Train based on data at loads 0,1,2,3 HP, with additive 

noise standard deviation, 𝜎 = 0.3.  We selected the result with the 

maximum accuracy. 

All cases were trained considering the classes described in 

Table 1. The classification accuracies of the four cases 

described above are presented in Table 3.  Here it is clear that 

the basic network architecture produces relatively poor 

transfer learning - with an average accuracy of 85%.  Case 2, 

based on a high level of AWGN, is of particular interest, as it 

represents excellent transfer learning.  In fact, although a 

direct comparison is not possible, the transfer learning 

accuracies that we obtained through the use of high-powered 

additive noise appear to be superior to those presented in 

Zhang, et. al. (2017). We sought to understand the 

mechanism that produced this desirable characteristic.   

 
Table 3: Test accuracy vs. load and noise standard deviation 

used for data augmentation. 

Train on ... Case# / AWGN 

𝜎  

Load (HP) Accuracy 

0 HP load 

data only 

1 

 

no noise 

 

0 100.00% 

1 84.67% 

2 81.67% 

3 73.67% 

Average 

Loads 0-3 

85.00% 

2 

noise𝜎 = 3.0 

 

0 96.67% 

1 97.34% 

2 98.00% 

3 97.67% 

Average 

Loads 0-3 

97.42% 

All loads:  

0, 1, 2, 3 HP 

3 

no noise 

 

0 99.67% 

1 100.00% 

2 100.00% 

3 100.00% 

Average 

Loads 0-3 

99.92% 

4 

noise𝜎 = 3.0 

 

0 100.00% 

1 99.67% 

2 100.00% 

3 100.00% 

Average 

Loads 0-3 

99.92% 

 

We focused our attention on understanding the operation of 

the first convolutional layer -- this layer operates on the raw 

data samples, and it consists of 16 filters, where each filter 

is composed of 64 coefficients.  The fairly long filters allow 

this layer to attain high-frequency selectivity.  For 

illustration, the kernels obtained for Case 1 are shown in 

Fig. 6.  It is difficult to discern the mechanism of operation 

from direct examination of the kernels, but we gained 

insight by visualizing the FFTs of the kernels.  In order to 

effectively compare the filters obtained from the 4 cases of 

interest, we computed the mean frequency of each filter, and 

sorted them according to increasing kernel mean frequency.  

The mean frequencies for each of the 4 cases are shown in 

Fig. 7.  Looking at Fig. 8 we note that many of the kernels 

are bandpass filters, or narrow two-band filters.  This 

suggests that the most important information for 

classification is contained in the frequency band between 

2000 Hz and 3300 Hz.  This is somewhat surprising, as the 

fundamental forcing functions produced by the various 

faults produce frequency components below 1000 Hz. 

 
Fig. 6: Time domain plots of all 64 values in the first 

convolutional layer (from Case 1). 

4.2. Visualization Results 

The frequency-domain analysis of the sampled vibration 

signals is shown in Fig. 9.  Examining the figure we note that 

the no-fault case produces a significant component at 1100 

Hz, and, evidently, a harmonic at 2200 Hz.  The cases with 

ball faults produced low vibration amplitudes, and only one 

narrow component at 1400 Hz, and a band of power 

distributed between 2500-3500 Hz.  The inner-race and outer-

race faults produced significant narrowband components 

distributed throughout the bands up to 3500 Hz.  Considering 

that each fault class produces a distinct signature, we used t-

SNE to investigate how well Conv1 is able to cluster 

incoming data according to fault class, and how those clusters 

relate to clusters of data corresponding to different loading 

conditions. 
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Fig. 7: Comparing all four experiments by scaling each of their 

first convolutional layer kernel weights with frequency, and 

taking the mean of the weights at each kernel. There are a total 

of 16 kernels for the first convolutional layer. 

 

 
Fig. 8: Kernel FFTs, only showing the first half of the signal 

(32 values out of 64), sorted by mean frequency from lowest to 

highest. 

Fig. 10 represents a reduction to two dimensions of the 16-

point vector of filter signal powers produced at the output of 

Conv1, using t-SNE.  In this plot, each hue/marker style 

represents a unique fault class.  Two cases were run for each 

fault class -- one at zero load, and one at the maximum, 3 HP, 

load.  The DCNN was trained based on the no-load data, 

which is represented by the darker shade of the same hue.  

The data at 3 HP is used to study the most extreme case of 

transfer learning, and is represented by the lighter shade.  We 

see that most of the classes are nicely clustered by the Conv1 

filter output power.  The only classes where the clustering is 

inconclusive is between Classes 2, 3 and 4, and Classes 9 and 

12.  Of course, our DCNN has a great deal of additional 

resources available to further cluster the data -- with 4 

convolutional layers that produce increasing numbers of 

feature maps. 

 

Fig. 9: Frequency domain analysis of sampled vibration data 

signals at no load (0 HP) 

 

 

Fig. 10: 2-D representation of the Conv1 kernels’ output power 

using t-SNE. 

A detailed look into the structure of the filter output data for 

Classes 2, 3, and 4, is shown in Fig. 11.  Here, PCA is used 

to reduce the data to two dimensions.  Again, we see fairly 

easy separability of the classes, with only a small number of 

input data vectors appearing to present a challenge. 
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Fig. 11: Detailed view of 2-D representation of Conv1 kernels’ 

output power using PCA. 

4.3. Transfer Classification Results 

Details on the types of misclassifications by the DCNN from 

Case 2 can be found in the confusion matrices shown in Fig. 

12. The confusion matrix has the ground-truth labels arrayed 

at the bottom of the matrix, and the labels predicted by the 

model arrayed down the left side. Numbers in the matrix 

represent how many of the test segments in each ground-truth 

class were assigned to each hypothetical class label. As 

expected we primarily find errors relating to confusion 

between Classes 2, 3, and 4 (all ball faults, of different size).  

We also find confusion between Classes 2 and 3, and Class 

10 (outer race fault at 6 o’clock). 

5. CONCLUSION 

We demonstrated how very high levels of additive noise can 

be used advantageously to train DCNNs with significant 

improvements in transfer learning.  We showed that reducing 

the output of each Conv1 filter kernel to a single power 

measurement produces a well-clustered statistic, suggesting 

the possibility that convolutional layers 2-5 may actually be 

of little value for the classification task.  We found that 

DCNNs trained on the CWRU dataset tend to extract 

narrowband features, and are especially concentrated on high 

frequencies.  Finally, we developed a technique to compute 

the mean-frequencies of convolution kernels, and used this 

metric as the basis for sorting the kernels from different 

training scenarios, thus allowing direct comparisons. 

 

 

 

Fig. 12: Confusion matrices for Case 2. (top)  Transfer learning 

to 1 HP at 97.34% test accuracy.  (center) Transfer learning to 

2 HP at 98.00% test accuracy.  (bottom) Transfer learning to 3 

HP at 97.67% test accuracy. 
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