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ABSTRACT 

Production planning and control (PPC) is the heart of any 

manufacturing company and entails tasks such as resource 

planning, sequencing, or capacity control. While an increas-

ing complexity within production makes it difficult to deter-

mine the best production plan, the advances in PHM and the 

emergence of predictive maintenance also offer new oppor-

tunities to optimize PPC. While there is much research on 

PHM and PPC, little has been done to align both disciplines. 

Through post-prognostics decision-making, different PPC 

decisions, such as continuing the production, shutting down 

a machine, or reducing its workload, can be elevated by a re-

maining useful life (RUL) estimation. However, it is unclear 

how exactly this prognostics information can be exploited 

and how processes, organization, and technology must be 

aligned to attain a more efficient and flexible production. Fur-

ther, PHM has long been implemented beyond research, but 

it is unknown whether and how practitioners intertwine it 

with their PPC. This work aims to analyze how processual, 

organizational, and technological changes through PHM can 

lead to advanced PPC. This goal is attained by means of a 

multivocal literature review (MLR) in which scientific PPC 

and PHM literature and standards are analyzed, and an 

aligned PPC process proposed. The findings are juxtaposed 

with grey literature, revealing fits and gaps between research 

and practice, and a research agenda is presented. 

1. INTRODUCTION 

Prognostics and health management (PHM) enables im-

proved maintenance decisions and ultimately reduces costs, 

and increases a machine's reliability and availability (Ladj et 

al., 2017). However, PHM can also improve production plan-

ning and control (PPC) by incorporating information, such as 

the remaining useful life (RUL), in post-prognostics deci-

sion-making (Kuhnle et al., 2019; Wesendrup & Hellingrath, 

2020). 

For instance, Scheffels presents a case study where the pro-

duction output of Porsche Macan bodies could be increased 

from 18 to 21 pieces per hour by implementing PHM (2018). 

Beyond improving the maintenance process by introducing 

smart-assistance systems, the production process could also 

be improved by adjusting welding parameters through PHM 

insights (Scheffels, 2018). All in all, this could be achieved 

without new machines but by improving PPC through PHM 

alignment. As the next step, Porsche envisions a self-optimiz-

ing production based on PHM (Scheffels, 2018). While this 

case demonstrated one example, it is unclear how prognostics 

information can be exploited in general and how processes, 

organization, and technology must be aligned to attain a more 

efficient and flexible PPC (Ansari et al., 2019). 

Jacobs et al. define the task of PPC as "to manage efficiently 

the flow of material, to manage the utilization of people and 

equipment, and to respond to customer requirements by uti-

lizing the capacity of our suppliers, that of our internal facil-

ities, and (in some cases) that of our customers to meet cus-

tomer demand" (2011, p. 2). In this regard, process models 

and standards exist (e.g., Jacobs et al., 2011; Kistner & 

Steven, 2001; Schmidt & Schäfers, 2017; Schuh, 2006), typ-

ically comprising steps from master production scheduling to 

planning, controlling, and monitoring the production. While 

PPC strives to maximize efficiency, breakdowns can lead to 

costly disruptions of the production flow. Here PHM can pro-

vide crucial information to adjust the production plan and 

avoid all consequences of a breakdown (Chebel-Morello et 

al., 2017). To implement PHM, ISO-13374 entails a process 

for condition monitoring, and ISO-13381 for prognostics, 

which can be condensed to a complete PHM process as Guil-

lén et al. (2016) presented (cf. Figure 1).  

However, while previous works specify processual, techno-

logical, and organizational requirements to conduct PPC or 

PHM, no work combines both areas to examine where and 

how the PPC process can be elevated by aligning it with 

PHM. The state-of-the-art comprises single solutions for spe-

cific PPC problems, such as production scheduling (e.g., Zhai 

et al., 2019) or lot-sizing (e.g., Cheng et al., 2017). Seldomly, 
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it is examined how well these translate to practice, and em-

pirical evidence shows that most companies still use simple 

algorithms to manage their production (Seitz et al., 2018). 

Further, only a few related works tried to summarize where 

the PPC process can benefit from PHM beyond specialized 

applications, shown in Table 1. For example, Voisin et al. 

propose a generic process for prognosis, showing which ac-

tors, steps, and data are included (2010). While the process is 

very detailed, it mainly focuses on PHM elements and does 

not show how these can be intertwined with PPC. Further, 

Bousdekis et al. present a unified architecture for proactive 

maintenance, comprising PHM process elements such as 

prognostics and decision-making, user roles, and sensor and 

database integration (2019). While they connect their archi-

tecture to production planning, they do not specify how ex-

actly an integration is accomplished. Finally, Ansari et al. 

propose a prescriptive maintenance model for production 

systems and describe different roles (e.g., maintenance man-

ager, knowledge engineer), data and information systems 

(IS), and dependencies between strategic, tactical, and oper-

ational PHM and PPC processes (2019). However, they do 

not link their work to detailed PPC process elements or the 

state of practice. 

In contrast, this work aims to analyze how PHM can be 

aligned with PPC on a processual, technological and organi-

zational level while incorporating a practitioner's perspective 

through a multivocal literature review (MLR). This is 

achieved by answering the following research questions: 1) 

"Which PPC processes can benefit from PHM, and what in-

formation systems and organizational units are involved?", 2) 

"How must the PPC process be aligned to achieve the bene-

fits?" and 3) "How is it currently done in practice, and what 

is the disparity to research?". 

The remainder of this paper is structured as follows: The fol-

lowing section introduces the methodology of this work, a 

multivocal literature review, and presents the analyzed liter-

ature. In section three, the main contribution of this work, a 

PHM-aligned PPC process, is demonstrated. Section four 

juxtaposes findings from research and practice and identifies 

gaps. The last section concludes the paper and establishes a 

research agenda.  

2. MULTIVOCAL LITERATURE REVIEW 

An MLR based on Garousi et al. was used to attain the aim 

of this study (2019). Beyond scientific literature, an MLR 

also includes grey literature (e.g., company reports) that gives 

more insights into the state of practice. For this paper, aca-

demic literature is assumed to represent a theoretical and grey 

literature a practical perspective. 

For the scientific literature, the titles, abstracts, and keywords 

from the databases Scopus, Web of Science, and IEEE Xplore 

have been queried with the following string:  

("predictive maintenance"  OR  prognostic*  OR  "condition-

based maintenance" OR  "remaining useful life")  AND  "pro-

duction planning" 

On the other hand, the Google search engine has been queried 

with two strings to retrieve grey literature.  

a) "predictive maintenance" "production" filetype:pdf 

b) "prescriptive maintenance" "production" filetype:pdf 

While these led to many results, Garousi et al. propose a the-

oretical saturation threshold after which "no new concepts 

emerge" (2019) which confines the search.  

After the initial pool has been collected, the titles and full 

texts of the scientific and grey literature were examined by 

two reviewers. Papers that were not relevant (e.g., no PPC or 

PHM relation) were excluded from the search. In the end, 52 

publications (25 scientific and 27 grey papers) were identi-

fied as appropriate. 

As a next step, Garousi et al. determine that a concept map 

must be defined, after which the literature is analyzed (2019). 

 

 
Figure 1. PHM process (based on Guillén et al., 2016). 
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Fitting to the research goal, the perspectives process, organi-

zation, and IS are chosen. From the found concepts, an 

adapted PPC process is modeled in the event-driven process 

chain notation (cf. Scheer et al., 2005). Through this model, 

it becomes clear how a PPC process must be aligned to ex-

ploit PHM. 

2.1. PPC Process Categories Addressed in PHM Litera-

ture 

Based on the models from Jacobs et al. (2011), Kistner and 

Steven (2001), Schmidt and Schäfers (2017), Schuh (2006), 

and the IEC 62264 standard (International Electrotechnical 

Commission, 2016), a basic PPC process with eight process 

categories is synthesized and depicted in Figure 2.  

The PPC process typically starts with master production 

scheduling which transforms the sales plan into an aggregate 

plan for producing products that regards customer orders and 

order promises from demand management  (Jacobs et al., 

2011). From the master production schedule, sourcing and 

production requirements can be derived within requirements 

planning. Here, net requirements are determined for which a 

make-or-buy decision is made (Schmidt & Schäfers, 2017). 

External requirements are forwarded to source planning, 

where they are procured; for internal requirements, a tactical 

production program is set up and sent to production planning 

(Kistner & Steven, 2001). Here, the initial plan is coordinated 

with available resources (material, machines, personnel), and 

a schedule is created (International Electrotechnical 

Commission, 2016). Subsequently, production control de-

fines concrete sequences, dispatches the production, and con-

trols capacities (International Electrotechnical Commission, 

2016; Schmidt & Schäfers, 2017). Adherence to predefined 

business objectives (e.g., efficiency) is continually checked 

through production monitoring (Schmidt & Schäfers, 2017). 

Lastly, finished and sourced products are forwarded to inven-

tory management, where they are collected and dispatched to 

satisfy customer demand (Kistner & Steven, 2001). 

From this process, it was examined how many publications 

addressed the different process categories. Table 2 shows the 

number of papers that discussed one of the eight process cat-

egories and their share of all 52 publications; the total per-

centage can add up to more than 100% whenever works 

demonstrated the integration of PHM for more than one cat-

egory. It can be seen that the shorter the planning horizon of 

the PPC process category, the more it is aligned with PHM, 

which makes sense because a short-term RUL estimation is 

most reliable. Thus, demand management and master pro-

duction scheduling receive almost no attention. On the other 

hand, the mid-term planning categories requirements and 

source planning have medium prevalence in the literature. 

The most recognition is given to production planning and 

production control, highlighting the short-term nature of 

PHM. Lastly, production monitoring and inventory manage-

ment receive low attention. A reason could be the more sup-

portive role in the PPC process. While the reviewed papers 

were only allocated to the different process categories in this 

section, a deeper analysis of how PHM affects the PPC pro-

cess can be found in section four. However, before this anal-

ysis can be made, it must be examined how IS and organiza-

tional roles are changed by aligning PPC with PHM. 

2.2. The Role of Information Systems 

IS are crucial to control the performance of business pro-

cesses (O'Brien, 2003). They are sociotechnical systems that 

"collect, process, store, and distribute information" (Piccoli 

& Pigni, 2016, p. 56).  Through the alignment with PHM, ex-

isting IS must be adapted or newly integrated into the PPC 

process. This section demonstrates which IS are relevant for 

a PHM and PPC and how an alignment is achieved. 

Cyber-physical production systems (CPPS) are characterized 

by autonomy, connectedness, and responsiveness (Monostori 

et al., 2016). In this work, they comprise production assets, 

including sensors, controllers, actuators, or interfaces. They 

can enable the transformation to a heterarchical production 

through PHM by capturing relevant condition data over sen-

sors (Balogh et al., 2018; Do et al., 2006; Rødseth et al., 2017; 

Schuh et al., 2020), cleaning and preprocessing them over on-

board programmable logic controllers (Busse et al., 2018), 

and autonomously tuning the production schedule based on 

prognostics information (Glawar et al., 2019). While CPPS 

 
Figure 2. Process categories of PPC 
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Table 2. Literary prevalence of PPC process categories 

Process Category Papers % 

Demand Management 1 2% 

Master Production Scheduling 0 0% 

Requirements Planning 11 21% 

Source Planning 11 21% 

Production Planning 20 38% 

Production Control 29 56% 

Production Monitoring 3 6% 

Inventory Management 3 6% 
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can be independent, they are leveraged when connected to 

other information systems. 

In this work, PHM systems are IS that fulfill the functionali-

ties of ISO-13374 and ISO-13381 and transform sensor val-

ues from CPPS into prognostics and health information. 

However, there is no clear definition in the literature, and fur-

ther terms, such as "prognosis system" (Ladj et al., 2016, 

p. 2084) or "predictive maintenance analysis system" (Zarte 

et al., 2017, p. 3377) are used. For instance, Morariu et al. 

developed a system based on Apache, with map-reduce algo-

rithms running on Spark to compress sensor data, which are 

then sent to Kafka. Here clustering, classification, and a long 

short-term memory neural network are used to calculate an 

RUL forecast (2020). While further works used an Apache 

infrastructure (Balogh et al., 2018), many other variations ex-

ist, such as PHM systems based on Matlab (Busse et al., 

2018) or commercial solutions  (AspenTech, 2019; Siemens, 

2019). Furthermore, PHM systems can be standalone IS, or 

they can be embedded into manufacturing execution systems 

building a close link between PHM and PPC (Standardization 

Council Industrie 4.0, 2018). 

The role of manufacturing execution systems (MES) is estab-

lished. MES operate at the "interface between heterarchical 

autonomous production control and hierarchical production 

planning" (Glawar et al., 2019, p. 485). They contain valua-

ble information such as machine downtimes and perfor-

mances, historical and planned production programs (Ansari 

et al., 2019; Zarte et al., 2017) and are an adequate interface 

between PPC and PHM. An MES is a tool to establish a 

maintenance-oriented production (Zhai & Reinhart, 2018). 

This can be done by mixed product and operation scheduling, 

which intelligently stresses the different CPPS to perform op-

portunistic maintenance (Ladj et al., 2016; Morariu et al., 

2020). 

Overall asset management can be realized in computerized 

maintenance management systems (CMMS). A CMMS con-

tains maintenance data and is used for administering mainte-

nance interventions. Typically, a PHM system sends a notifi-

cation to the CMMS whenever the RUL of a machine is 

shorter than the maintenance planning horizon (Rødseth et 

al., 2017). In this case, the CMMS balances the maintenance 

costs with the risk of failure (Glawar et al., 2019). When 

maintenance must be done, a CMMS manages human re-

sources to notify the nearest capable maintenance worker 

(SitScape, 2018). In addition, the intervention can be sup-

ported with a mobile app in which the worker can look at his-

toric maintenance interventions and best practices that can be 

evaluated and complemented (Scheffels, 2018). 

In parallel, quality management systems (QMS) can support 

PHM systems by monitoring the production process. They 

contain quality data and regular measurements of products 

(Ansari et al., 2019). If these are abnormal, they indicate ma-

chine problems (Do et al., 2006) which might not be seen in 

the sensor data. 

Enterprise resource planning (ERP) systems support func-

tions beyond manufacturing operations. After interventions 

have been scheduled, ERP systems update the production 

plan and regard the reduced capacity (Do et al., 2006). They 

also contain information about customers, suppliers, article 

prices, lead times, bill of materials, work plans (Zarte et al., 

2017), and demand which can be exploited to optimize PHM 

and PPC (Wang et al., 2020). Beyond more tactical planning 

of maintenance, ERP systems also store information about 

spare parts (e.g., stock, cost), and through PHM, they are en-

abled to order spare parts just-in-time (Ansari et al., 2019).  

Of course, all of the presented IS are not operating as infor-

mation silos but are connected via interfaces enabled by 

standards and protocols, as shown in Figure 3. Sometimes IS 

are also offered as integrated solutions, e.g., the CMMS SAP 

'Plant Maintenance' module of the SAP ERP solution. Typi-

cally, sensor values are transported over internet of things 

gateways or event hubs (Microsoft, 2017; Schuh et al., 2020). 

As the controllers of the CPPS have limited storage capaci-

ties, these values can be preprocessed (Do et al., 2006) before 

they are sent to the PHM system. The messages follow a 

standard protocol such as OPC-UA and can be sent in real-

time, e.g., with two hertz (Busse et al., 2018). Further, the 

RUL is calculated and communicated with the MES (Glawar 

et al., 2019)  or CMMS (Rødseth et al., 2017). From the 

CMMS, maintenance work orders are forwarded to the ERP 

system (Do et al., 2006). These work orders should also be 

returned to the PHM system as feedback. The work order in-

put of the ERP necessitates a change of the production plan 

that must be relayed to the MES for hierarchical production 

planning. Alternatively, the PHM system can forward the 

RUL directly to the MES, which can decentrally adjust the 

production rate or schedule of the CPPS (Glawar et al., 2019). 

Lastly, QMS can support PHM by reporting abnormal prod-

uct quality to the CMMS.  

 
Figure 3. PHM PPC information systems landscape 
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2.3. Organizational Alignment 

Additionally, it is essential to look at organizational contexts 

to analyze how PPC can be better aligned with PHM. Unfor-

tunately, only a few reviewed works focus on this aspect to 

analyze the change of roles that work at the interface of PHM, 

production, and maintenance. 

Even though automation generally increases when integrat-

ing PHM, the maintenance personnel is still in the loop. 

When the RUL drops below a certain threshold, a capable 

field technician is automatically assigned to maintenance in-

terventions, e.g., via smartwatch or tablet (Scheffels, 2018). 

Here, automatically detecting the fault via diagnostics is cru-

cial to assign the maintenance employee with the right skill-

set. In addition, technicians use data-driven remote monitor-

ing and diagnostics tools (Microsoft, 2017) to verify prob-

lems; here, experience from the technician that cannot be 

measured can complement the RUL forecast (Do et al., 

2006), so it can be better interpreted. Finally, after a problem 

has been confirmed, the technician can maintain the machine 

supported by virtual walkthroughs or remote assistance 

(Microsoft, 2017). Of course, this is always done in coordi-

nation with a maintenance planner who receives information 

about the urgency of different actions (Ansari et al., 2019). 

The urgency is defined within a maintenance schedule that 

balances time-based preventive maintenance and condition-

based predictive maintenance actions and simulates different 

scenarios. Based on the RUL estimation, the planner can 

schedule future tasks, adjust the available capacities (Rødseth 

et al., 2017), or bundle opportunistic maintenance interven-

tions (Ansari et al., 2019). Here, the maintenance planner typ-

ically uses a recommender dashboard (Glawar et al., 2019), 

supported by post-prognostics decision-making which is 

shared with the production planner (Rødseth et al., 2017). 

Of course, production planners must always closely cooper-

ate with maintenance planners (Microsoft, 2017) and work 

with the adjusted production capacities. On an operational 

level, machine operators may add flexibility to the PHM sys-

tems because they can also provide knowledge that cannot be 

measured by sensors (Do et al., 2006). Thus, they can inter-

pret RUL forecasts by factoring in the stress that currently 

manufactured products or the future production schedule ex-

ert on the machine. Further, production personnel can also be 

empowered through PHM and autonomous production. For 

example, minor maintenance interventions can be distributed 

to factory workers supported by intelligent support systems 

(Henke et al., 2019). These systems include knowledge 

gained from PHM (e.g., fault isolation, diagnostics), which 

substitutes the expertise from trained maintenance personnel. 

Lastly, information technology personnel should still support 

the day-to-day business in the plant. For instance, a 

knowledge engineer updates the RUL forecasting algorithm 

whenever new insights necessitate that PHM models must be 

adapted (Glawar et al., 2019). 

3. A PHM-ALIGNED PPC PROCESS 

Considering the processual, technological, and organiza-

tional changes introduced, an aligned PPC process is pro-

posed in Figure 4. Here, the process categories depicted in 

Figure 2 and Table 2 are picked up again and split into mul-

tiple process elements. In the following, the former is written 

in bold, the latter in italic letters. Additionally, process ele-

ments where PHM alignment is possible are marked with a 

bold frame in Figure 4. 

Demand management. The process starts with customer or-

der receipts, which are then considered in order-specific ca-

pacity planning. Denkena et al. propose an event-driven sim-

ulation that adjusts planned make-to-stock production vol-

umes based on stock, customer orders, and RUL. Here, dif-

ferent quantities are tested to calculate all possible variants 

that do not cause a delivery interruption (2012). Besides sales 

forecasts, incoming orders are also used for master produc-

tion scheduling.  

Master production scheduling. Because master production 

scheduling has a long-term planning horizon, no improve-

ments can be made with PHM. 

Requirements planning (general). In contrast, machine 

breakdowns can be regarded in the mid-term production plan-

ning (Glawar et al., 2019). Here, the maintenance threshold 

and production quantity are jointly determined to satisfy the 

demand (Wang et al., 2020). From the incoming master pro-

duction schedule, a secondary and net requirements calcula-

tion is done, and it is defined whether the production require-

ments should be produced in-house or sourced externally. 

Source planning. In the latter case, source planning is con-

ducted. Besides raw materials planning, spare parts planning 

must also be done (Ansari et al., 2019; Maguire et al., 2017). 

Through PHM, spare parts can be ordered just in time (Busse 

et al., 2018; Microsoft, 2015). Here, the RUL and information 

from ERP (e.g., costs, lead times) are balanced and jointly 

optimized to minimize the total cost (Ansari et al., 2019; 

Oracle, 2019; Standardization Council Industrie 4.0, 2018). 

This step is often done as decision support where suitable 

spare parts are suggested (Vilsbeck, 2020). Advanced solu-

tions go even further and automatically trigger maintenance 

orders or spare parts procurement, e.g., via additive manufac-

turing (Schuh et al., 2020; Trebing + Himstedt, 2017). Here, 

the CPPS go beyond simple sensor reading and determine 

their demands autonomously (Henke et al., 2019; Leonard, 

2020). After the parts are ordered and received, they are for-

warded to inventory management, where proper spare parts 

management guarantees delay-free maintenance interven-

tions (Ansari et al., 2019; Busse et al., 2018). Spare parts 

availability also plays an ongoing role in in-house require-

ments planning. 
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Figure 4. PHM-aligned PPC process  
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Requirements planning (in-house production). In the case 

of in-house production, the resulting production requirements 

are input to tactical capacity planning. For instance, the best 

action can be determined jointly with the production require-

ments in a mid-term time horizon (AspenTech, 2019). In this 

step, production requirements from the MES or ERP system 

are matched with available capacities (Glawar et al., 2019). 

Then, based on optimization criteria, the production planner 

can control the capacity of resources via a dashboard in the 

MES (Rødseth et al., 2017). Furthermore, an advanced PPC 

process synchronizes the time of failure by selectively con-

trolling the production so that several machines can be ser-

viced simultaneously (Zhai & Reinhart, 2018). On the other 

hand, the tactical capacity plan can also be set up by isolated 

production and maintenance planning (Denkena et al., 2012). 

Either way, the resulting program is used, together with the 

availability of the spare parts, for maintenance intervention 

planning by searching gaps and idle times in the production 

and scheduling maintenance (Ansari et al., 2019; Busse et al., 

2018; Henke et al., 2019; Schuh et al., 2020). 

Production planning. Afterward, the tactical production 

program is forwarded to operational production planning, 

typically done in ERP by the production department (Do et 

al., 2006). 'Traditional' production planning is hierarchical 

and tries to achieve cost-optimal production plans. Through 

an alignment with PHM, the process is made more flexible. 

First, the production program coming from requirements 

planning is the input of lot sizing, which can enormously 

benefit from PHM (Glawar et al., 2019; Morariu et al., 2020; 

Shamsaei & van Vyve, 2017). As the deterioration rate 

depends on the manufactured products and their lot size, 

economic production quantity calculations must also factor 

in the RUL (Li et al., 2020). For instance, Wang et al. 

developed a heuristic integrating PHM to calculate the lot 

size that minimizes the total cost while satisfying demand. 

Here, production times, failure risk, capacities, setup costs, 

and many more variables were regarded (2019). As break-

downs are exceptionally costly during a lot, advanced 

solutions try to tune the lot size so that the machine can be 

maintained during changeovers (Denkena et al., 2012).  

Similar to lot sizing, lead time scheduling can also be a means 

to generate production-free periods that can be exploited for 

maintenance (Denkena et al., 2012) and can heavily benefit 

from PHM (Grimstad, 2019). Here, concrete starting and 

endpoints of production orders and predictive maintenance 

interventions are determined (Zarte et al., 2017). The depen-

dency between different production orders and maintenance 

actions can be structured in a network plan to optimize main-

tenance costs (Glawar et al., 2019) and production output (Li 

et al., 2020). In most cases, the lead time schedule is drafted 

with unlimited capacities and then forwarded to operational 

capacity planning (Schmidt & Schäfers, 2017). 

During operational capacity planning, unavailable machines 

are now respected in the production plan. While the 

unavailability was typically updated based on the planned 

maintenance interventions (Do et al., 2006), now, with PHM, 

machine allocations are flexibly and continuously optimized 

 

regarding their RUL (Henke et al., 2019). Further, critical 

machines are also identified by low RUL and high future 

scheduled load so that production can be rebalanced opti-

mally (Paprocka et al., 2020). More sophisticated solutions 

even include spare parts procurement in their capacity plan. 

For instance, the capacity of a machine can be reduced, and 

only lots that stress the machine components less are planned 

for it whenever a spare part is not available. On the other 

hand, capacity can also be increased when an earlier repair is 

desired (Zhai & Reinhart, 2018). 

Production Control. After a final production plan is devised, 

production control is the next process category. It is typically 

done in an MES and starts with sequencing, where, based on 

the lead time schedule and the determined dates, the concrete 

production sequences are defined. PHM can lead to better 

sequencing quality (Denkena et al., 2020), load balancing, 

and optimization of production control (Bonfietti, 2018). 

This is made possible by maintenance-oriented sequencing, 

which ultimately increases machine availability (Zhai & 

Reinhart, 2018). For instance, many reviewed publications 

draw on the vast body of production scheduling theory and 

develop flexible methods to tackle the dynamicity of the non-

deterministic time of maintenance (Rahmati et al., 2017, 

2018; Zheng et al., 2013). Rahmati et al. develop a CBM-

based algorithm where different jobs must be scheduled on 

multiple degrading machines. They implement condition 

monitoring to observe the reliability of the systems and im-

plement four metaheuristics to optimize the sequencing 

(2018). Further, Zhai et al. introduce stress equivalents that 

indicate the level of degradation that each job incurs on a 

machine (2019) to facilitate an even better production con-

trol. While the used methods are computationally expensive, 

it could be possible to deploy them to autonomous CPPS in 

the future (Glawar et al., 2019), which receive a job-specific 

RUL forecast from the PHM system (Ladj et al., 2016). 

Ultimately, sequencing can be used to control the time of 

required maintenance actions, which leads to more flexible 

and efficient production, e.g., by merging maintenance 

interventions or postponing them to production-free periods 

(Denkena et al., 2012; Zhai & Reinhart, 2018).  

After the production sequence is defined, capacity control en-

sures optimal production. A promising potential of PHM is 

the adjustment of machine parameters based on generated 

prognostics information to reduce wear and tear (Schuh et al., 

2020). Most publications discuss sophisticated CPPS that can 

autonomously adapt their production rate to slow down the 

degradation of a machine (Broek et al., 2020; Fritz & 

Brandner, 2019; Li et al., 2020; Messer, 2018; Müller, 2018; 

Njike et al., 2012; OSIsoft, 2020; Siemens, 2019; SitScape, 

2018). Messer describes an example where slowing down 

equipment by 15% delays a failure by 72 hours (2018). This 
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extended window could be used to maintain the machine at 

an economic point in time. Broek et al. developed the only 

reviewed scientific model that can adjust production rates 

based on PHM. Instead of planning the machine's whole op-

eration ahead (e.g., as seen for sequencing), they only sched-

ule the following maintenance action using a Markov deci-

sion process formulation (2020). This can, for instance, be 

solved through PHM-enabled reinforcement learning, which 

is "scalable" and "adapts to changing conditions" (Device 

Insight & Sentian, 2020, p. 19).  Besides production rates, 

other instances can intelligently relubricate themselves 

(Schaeffler Technologies, 2019) or clean contaminated heat 

exchanger filters by pumping more volume (Mulders & 

Haarman, 2017). Finally, if a breakdown is inevitable, the 

CPPS must automatically shut down based on condition mon-

itoring information to prevent costly damages or product re-

jects (Busse et al., 2018). The shutdown can be supported by 

"pre-maintenance load shedding" (Maguire et al., 2017, p. 8), 

mitigating sudden stoppages. 

Capacity control can only work with proper production mon-

itoring. Here, the adjustments made are continuously moni-

tored and checked against a cost model (Ansari et al., 2019).  

In the end, it is not primary to lengthen the RUL of a system 

at any price but to minimize the total costs and maximize 

productivity. For instance, Aspen Mtell offers agents that 

monitor assets scores in real-time (AspenTech, 2019). Typi-

cally, monitoring is done in the MES via KPIs (e.g., lead 

time, efficiency) predetermined by the production planner 

(Glawar et al., 2019). The MES can also be supported by a 

QMS that monitors product quality information (Ansari et al., 

2019), leading to new knowledge for PHM beyond sensory 

details. In return, production monitoring derives the proper 

actions from the monitored information and returns them to 

production control.  

Inventory management. After production is completed, ma-

terial consumption and manufactured goods are forwarded to 

inventory management. Finally, they can be issued and 

shipped to the customer, which concludes the PPC process. 

4. RESEARCH-PRACTICE GAPS 

All in all, it could be shown that aligning PPC with PHM 

holds much potential to improve performance because pro-

duction can be made more flexible and efficient. However, a 

gap between what is researched and applied in practice was 

identified throughout the literature review. Consequently, ac-

ademic and grey literature is juxtaposed to analyze whether 

scientific potentials are realized in practice and what impli-

cations the practical findings have for researchers. 

Figure 5 shows the practical and theoretical congruence of 

aligned PPC and PHM. It is assumed that the theoretical prev-

alence 𝜋𝑡 of PHM for one of the eight PPC process categories 

can be measured by the share of scientific papers which ad-

dress this category (shown on the x-axis). It can be calculated 

by Equation (1), where #𝑃𝑡(𝑐𝑖) is the number of scientific pa-

pers that discuss category 𝑐𝑖. 

𝜋𝑡 =
#𝑃𝑡(𝑐𝑖)

#𝑃𝑡
            ∀𝑖 ∈ [1, 8] (1) 

Vice versa, the practical prevalence 𝜋𝑝 is represented by the 

share of grey literature and shown on the y-axis. For calcula-

tion, Equation (1) can be used by replacing #𝑃𝑡 by #𝑃𝑝  (𝑝 

stands for practice). The figure can be separated into four 

quadrants where four different levels of congruence between 

theory and practice can be derived. The top-right quadrant (I) 

denotes high prevalence and congruence and the bottom-left 

low prevalence and high congruence (II). The top-left (III) 

and bottom-right (IV) quadrants depict categories with low 

alignment. Quadrant III includes PPC categories that are 

highly prevalent in practice but proportionally less discussed 

in the literature (vice versa for quadrant IV). Generally, the 

closer points are to the dashed diagonal through the origin 

(𝑥 = 𝑦), the higher their theory-practice alignment.  

Production control is the only category in quadrant I and a 

central focus of research and practice ( 𝜋𝑡 = 52%, 𝜋𝑝 =

59%). Here, PHM seems to deliver the most promising re-

sults by enabling a more flexible and autonomous production. 

While there appears to be congruency at first glance, there are 

some significant deviations between process elements. While 

scientific literature focuses on sequencing, practice is more 

focused on real-time capacity control. Most papers discussing 

machine profile and parameter adjustments come from grey 

literature, only one from scientific sources. On the other 

hand, many scientific works deal with computing optimal 

production sequences. The drawback of most of these ap-

proaches is that they are static or computationally expensive. 

Ladj et al. developed a fast genetic algorithm, but it requires 

complete knowledge about job-specific degradation and must 

 
Figure 5. Share of scientific (x-axis) vs. grey literature 

(y-axis) addressing different process categories 
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be restarted whenever an unexpected change in the produc-

tion occurs (2016); something that might be impractical in 

reality. 

In quadrant II we can see process categories whose overall 

prevalence is low. For these categories, an alignment of PPC 

and PHM is presumably not promising. As a strategic cate-

gory, master production scheduling ( 𝜋𝑡 = 0%, 𝜋𝑝 = 0% ) 

has a too long planning horizon for prognostics information 

to be helpful. Further, planning is typically done on an aggre-

gated level and not per machine. Demand (𝜋𝑡 = 4%, 𝜋𝑝 =

0%) and inventory management (𝜋𝑡 = 8%, 𝜋𝑝 = 4%)  are at 

the beginning, respectively, end of the PPC process. While 

they are crucial process categories, an alignment with PHM 

happens at other levels of the PPC process. Lastly, produc-

tion monitoring is barely discussed in the literature (𝜋𝑡 =
8%, 𝜋𝑝 = 4%), and the focus is more on deriving direct, ac-

tionable decisions for other categories. 

In quadrant III, it can be seen that source planning is predom-

inantly featured in the grey literature (𝜋𝑡 = 8%, 𝜋𝑝 = 33%), 

indicating a possible research gap. From a practical perspec-

tive, efficient condition-based spare parts procurement is a 

lucrative and straightforward initial business case for em-

ploying PHM. In contrast, only a few scientific papers dis-

cussed this category. While spare parts procurement is re-

searched standalone or in other domains (e.g., Espíndola et 

al., 2012), there is a definitive lack of aligned PPC, PHM, and 

source planning.  

Lastly, quadrant IV includes process categories that are un-

derrepresented in practice. Moderately many academic pa-

pers discuss requirements planning (𝜋𝑡 = 32%, 𝜋𝑝 = 11%). 

There exist many examples of using gaps in the production 

plan for maintenance interventions in grey (e.g., Schuh et al., 

2020) and scientific literature (e.g., Busse et al., 2018). Ad-

ditionally, the latter also discusses sophisticated solutions 

that economically merge the maintenance of multiple ma-

chines by controlling the planned load (Zhai & Reinhart, 

2018); however, this trend has not made the transition to prac-

tice yet. 

Lastly, production planning is almost as highly represented 

as production control in scientific literature, but the preva-

lence in grey literature is moderate (𝜋𝑡 = 48%, 𝜋𝑝 = 30%). 

The deviation can be explained by the process element lot 

sizing, which received considerable attention in research, but 

none in practice. In the former, PHM was used to dynami-

cally adjust the lot size to optimize machine breakdowns and 

minimize costs (Wang & Lu, 2016). In practice, it seems that 

more 'traditional' methods are used, and PHM is not regarded.   

5. CONCLUSION 

A PHM-aligned PPC process was introduced in this work by 

conducting a multivocal literature review and demonstrating 

how PPC benefits from PHM. To summarize, the research 

questions raised at the beginning can be answered as follows. 

1) "Which PPC processes can benefit from PHM, and what 

information systems and organizational units are involved?" 

Seven of the eight presented PPC process categories can ben-

efit from PHM to different extents. However, the benefits can 

only be attained by integrating different information systems 

(e.g., CPPS, PHM, ERP systems) and collaborating between 

production, maintenance, and information technology depart-

ments. 

2) "How must the PPC process be aligned to achieve the ben-

efits?" 

The analysis showed that PHM is beneficial for short-term 

production planning and production control, moderately 

prevalent in requirements and source planning, and applica-

ble to production monitoring and inventory management. A 

PPC process with 18 process elements was developed, which 

shows how benefits can be achieved through the alignment of 

PHM. 

3) "How is it currently done in practice, and what is the dis-

parity to research?"  

A research-practice comparison revealed that PHM for pro-

duction control is highly relevant. Further, production and re-

quirements planning are underrepresented in practice, while 

a research gap exists for source planning. The remaining pro-

cess categories are less frequently discussed in scientific and 

grey literature. 

While good insights could be generated, this work also comes 

with limitations. First, the literature review is not exhaustive, 

though the number of retrieved results might still be signifi-

cant enough to deliver some interesting takeaways. Further, 

the algorithm of the Google search for grey literature could 

be biased towards the researcher. While two researchers re-

viewed the grey literature, it was only retrieved by one. More-

over, grey literature offers only a confined practical perspec-

tive. Because most authors were companies selling PHM-re-

lated software or services, they tend to publish success stories 

and things that 'sell well'. Additionally, the review only 

shows how PHM is currently intertwined in literature and not 

everything possible. Furthermore, the prevalence of literature 

does not say anything about the usefulness and impact of in-

tegrating PHM for specific PPC elements. There is no single 

best way to align PPC and PHM. Its success can depend on 

many things, such as the maturity of PHM, PPC process, or-

ganization, or the firm's technological and data quality. An 

empirical analysis could shine a light on these aspects. Espe-

cially organizational factors should be much more re-

searched, as only a few papers addressed them. Lastly, it was 

also demonstrated that real-time production and capacity 

control adds much flexibility to PPC. In the future, more fo-

cus should be on heterarchical, autonomous production con-

trol. Optimization, used in many papers, might not be the best 
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way to approach this, as it is too static, hierarchical, and re-

quires knowledge that might not be available a priori. 

Moreover, the analysis of research practice gaps reveals some 

opportunities for future research. First, less focus on sequenc-

ing and more on capacity control (e.g., automatic machine 

parameter adjustment) would better match the practical prev-

alence. It could also be explored why post-prognostics se-

quencing is not adopted in practice. Additionally, researchers 

should include source planning in their works, as this is cru-

cial for practical applicability. Lastly, the practice gap for re-

quirements planning and lot sizing should be examined fur-

ther.  

To conclude, this work shows where PPC can benefit from 

an alignment with PHM and how this can be achieved on a 

processual, technological and organizational level. 
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