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ABSTRACT 

Difficulty in obtaining enough run-to-fail datasets is a major 

barrier that impedes the widespread acceptance of Prognostic 

and Health Management (PHM) technology in many 

applications. Recent progress in federated learning 

demonstrates great potential to overcome such difficulty 

because it allows one to train PHM models based on 

distributed databases without direct data sharing. Therefore, 

this technology can overcome local data scarcity challenges 

by training the PHM model based on multi-party databases. 

To demonstrate the ability of federated learning to enhance 

the robustness and reliability of PHM models, this paper 

proposes a novel federated Gaussian Mixture Model (GMM) 

algorithm to build universal baseline models based on 

distributed databases. A systematic methodology to perform 

collaborative prognostics is further presented using the 

proposed federated GMM algorithm. The usefulness and 

performance are validated through a simulated dataset and 

the NASA Turbofan Engine Dataset. The proposed federated 

approach with parameter sharing is shown to perform at par 

with the traditional approach with data sharing. The proposed 

model further demonstrates improved robustness of 

predictions made collaboratively keeping the data private 

compared to local predictions. Federated collaborative 

learning can serve as a catalyst for the adaptation of business 

models based on the servitization of assets in the era of 

Industry 4.0. The methodology facilitates effective learning 

of asset health conditions for data-scarce organizations by 

collaborating with other organizations preserving data 

privacy. This is most suitable for a servitization model for 

Overall Equipment Manufacturers who sell to multiple 

organizations. 

1. INTRODUCTION 

The advent of technology paradigms such as Artificial 

Intelligence (AI), Internet of Things (IoT), Cyber-physical 

Systems (CPS), and initiatives like Industry 4.0 direct to a 

future where intelligence is endowed to every value-adding 

entity across enterprises. Pervasive sensor networks with 

cheaper and convenient computational capabilities (Lee, 

Davari, Singh & Pandhare, 2018) form the foundational 

infrastructure for these paradigms. Building on this 

foundation, the real fruits of sustainable and synergistic profit 

can only be reaped through collaboration between these 

entities. One of the most significant outcomes of 

collaborative operation is servitization (Palau, Dhada, 

Bakliwal & Parlikad, 2019; Baines, Lightfoot, Evans, Neely, 

Greenough, Peppard, Roy, Shehab, Braganza, Tiwari & 

Alcock, 2007): selling of services instead of selling the assets 

that provide the service. In the servitization model, the client 

does not pay for owning the asset but pays for their right to 

use the asset. In such a scenario, upkeep of the assets is even 

more important as downtime directly transfers to the revenue 

lost. But developing a prognostics model can be challenging 

in practice for multiple reasons. Despite the availability of 

sensors, the frequency of “event” data per asset that 

represents an equipment failure can be low due to the high 

reliability of machines. Additionally, due to operational 

variation, one machine cannot present all degradation 

patterns in a lifetime. Preparing comprehensive datasets 

within a single enterprise is highly impractical given the 

range of assets and operational conditions per enterprise. 

Attempting to develop models from experimentation is not 

just costly and time-consuming but can also lack consistency 

with field behavior. Thus, collaboration among industrial 

entities for developing reliable and robust prognosis models 

can unlock huge potential for improved maintenance 

decisions.  

However, traditional machine learning approaches 

necessitate the accumulation of data at a location, such as data 

centers or cloud-servers, for training analytical models. There 
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are two major challenges associated with this. Primarily, with 

the volume, velocity, and variety of the data generation, 

transferring of data is not efficient. Advancements in cloud-

based solutions only address the issue of centralized storage 

through developing architectures such as edge computing and 

fog computing (Yi, Li, & Li, 2015). Secondly, the transfer of 

data can violate data-ownership laws as well as raise privacy 

concerns for collaborating entities. This is especially true for 

Overall Equipment Manufacturers (OEM) who sell to 

multiple clients. OEMs may not be able to harvest the data 

while the equipment is in use at the client site, as the data is 

considered proprietary. McKinsey & Company reports data 

ownership is a major barrier for manufacturing companies 

toward collaborating, even with third-party providers such as 

scientists, etc. (McKinsey, 2016). Beyond OEMs, 

governments across the world are strengthening laws to 

protect data privacy (Regulation (EU), 2016). This issue of 

data privacy becomes an irony as it blocks the very 

foundational path of collaboration to Industry 4.0’s success. 

Thus, new learning schemes need to be developed that can 

unlock the potential of distributed private data for 

collaborative prognostics. 

Multiple methods have come up in recent times to address 

specific problems that come along with the increasing 

ubiquity of data and learning from it. Batch learning is 

developed to solve the problem of inefficient model training 

due to computation memory exhaustion while training on 

large data sets (Bisong, 2019). Transfer Learning is 

developed to avoid needing large datasets and retraining 

models from scratch to learn similar and related patterns (Pan 

& Yang, 2009). More recently, Federated learning, proposed 

by Google, is the radical solution to overcome the bottleneck 

of learning from datasets that are distributed over multiple 

systems keeping the local datasets private (Yang, Liu, Chen 

& Tong, 2019). The novelty lies in training a global machine 

learning model only via communication of parameters and 

parameter updates between each system. While most of the 

research in federated learning has been focused on 

applications about users (Yang, Liu, Chen & Tong, 2019), 

such as text prediction using Natural Language Processing, 

making recommendations for retail by estimating user 

profiles, etc., industrial applications remain largely untapped. 

As Industrial Artificial Intelligence (AI) possesses its own set 

of challenges compared to general-purpose AI, similarly 

Federated learning also brings its challenges for adaptation to 

industrial problems. Thus, a novel methodology for 

performing collaborative prognostics is proposed, which 

includes a new algorithm called Federated Expectation 

Maximization for privacy-preserving model aggregation. 

The remainder of the article is organized as follows. Section 

2 presents a literature review. Section 3 introduces the 

proposed federated Expectation Maximization algorithm for 

training multivariate Gaussian Mixture Model (GMM). 

Section 4 illustrates the application of the proposed algorithm 

using two case studies for parameter estimation and 

collaborative fault prognosis. Section 5 concludes the article. 

2. LITERATURE REVIEW 

Collaborative learning has recently gained significant 

attention, although being considered for a long time under 

various self-organizational architectures such as Multi-agent 

Systems and Holonic Systems. In the area of Prognostics and 

Health Management (PHM), Palau, et.al. (2019) propose a 

multi-agent system for real-time distributed collaborative 

prognostics. They show that distributed collaborative 

prognostics are advantageous in scenarios with significant 

fleet heterogeneity, limited computing capability, and faulty 

measurements. Information is shared between assets assigned 

to groups formed using a Friendship Matrix, and predictions 

are made using Weibull-Time-To-Event Recurrent Neural 

Networks (WTTE-RNN) trained on run-to-failure 

trajectories. Additionally, Lin, Liu, Byon, Qian, Liu & Huang 

(2017) propose a collaborative learning framework for 

estimating many individualized regression models in a 

heterogeneous population of run-to-failure trajectories. 

However, depending on the degradation trajectory of a 

system it may not always be optimal to capture the behavior 

in a single failure model (Lei, Li, Guo, Li, Yan & Lin, 2018). 

Thus, the prediction is often preceded by fault detection or 

health-stage separation. Fault detection involves assessing 

the health condition of equipment to determine whether an 

event can be considered as an occurrence of fault (Lapira, 

2012). It is difficult and unnecessary to predict the remaining 

useful life in the healthy stage as it contains no information 

about the degradation trend. Thus, fault detection becomes a 

critical primary step to perform effective prognostics. Most 

works on collaborative fault detection approach the problem 

from a similarity-based clustering or peer-to-peer comparison 

methodology for a fleet of assets. Zhao, Li, Lu, Lv, Gu & 

Shang (2020) implemented a fault detection model using 

collaborative filtering techniques for detecting an incipient 

fault in large-scale solar farms by sharing current data among 

photovoltaic systems. Maroli, Özgüner & Redmill (2019) 

propose a collaborative fault detection framework for large-

scale vehicle networks using an echo state network. Ng & 

Srinivasan (2010) developed a multi-agent-based 

collaborative fault detection and identification system for 

application in chemical process plants and combines various 

heterogeneous methods to maximize performance using 

information fusion. These approaches exploit data sharing 

facilities to derive inferences based on the assumption that 

the fleet belongs within a single plant or an organization with 

data-privacy not being a concern. For collaborative learning 

across organizations where data sharing is not possible, 

privacy-preserving learning frameworks such as federated 

learning can be implemented.  

The development of approaches for federated learning has 

been largely neural network-based. With the availability of 

data significantly increasing in recent times, deep learning 
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has been used extensively for wide-ranging applications 

including for PHM (Rosero, Silva & Ribeiro, 2020). Neural 

Networks provide a convenient option for training over a 

federated setting. Weights and biases of the global network 

can be initiated in the parameter server which can be then 

communicated with the clients. At each client node, the 

gradient can be evaluated from the local dataset based on the 

present parameters of the network and the gradient can be 

shared back to the server where it can be aggregated using 

algorithms like federated averaging (Konečný, McMahan, 

Yu, Richtárik, Suresh & Bacon, 2016; Dhada, Parlikad & 

Salvador, 2020). Over multiple rounds of communication, the 

global model can be trained to keep the data private. 

Numerous upgradations have been performed in this 

architecture to address issues such as gradient quantization 

(Jin, Huang, He, Dai & Wu, 2020), reducing expensive 

communications (Li, Sahu, Talwalkar, & Smith, 2020), 

addressing system heterogeneity, efficient gradient 

aggregation, and especially security concerns through 

homomorphic encryption, differential privacy, etc. However, 

almost all of the methods discussed in the federated learning 

literature are developed for the task of supervised learning in 

data abundant scenarios, i.e. they assume the availability of 

large datasets with corresponding labels, which is not always 

possible. While statistical machine learning methods provide 

the high capability to capture the knowledge from limited 

data using an unsupervised approach, they remain largely 

unexplored for federated implementations. Thus, there is a 

lack of systematic analytical methodology to build prognostic 

models based on decentralized databases addressing 

limitations of data-privacy as well as local label 

unavailability. A systematic federated approach is proposed 

to facilitate collaborative prognostics. 

3. PROPOSED METHOD 

Mixture models, especially Gaussian Mixture Model 

(GMM), are a widely used statistical method as an effective 

universal approximator. Justifiably, it finds use in several 

applications (Pimentel, Clifton, Clifton & Tarassenko, 2014; 

Diaz-Rozo, Bielza & Larrañaga, 2020) such as density 

estimation, clustering, association rules, outlier detection, 

latent factors, ranking, and even data visualization. Given its 

wide use, effective training of GMM is a continuously 

evolving area (Jin, Zhang, Balakrishnan, Wainwright & 

Jordan, 2016; Kurban, Jenne, & Dalkilic, 2017) with 

Expectation Maximization (EM) being one of the popular 

methods (Ververidis & Kotropoulos, 2008; Balakrishnan, 

Wainwright & Yu, 2017; Zhao, Li & Sun, 2020). Thus, 

federated expectation maximization for the training of GMM 

is proposed to build a universal baseline model in the problem 

of collaborative prognostics. This forms the first novelty of 

the work. Additionally, a systematic methodology to perform 

collaborative prognostics based on the proposed algorithm is 

also presented. This forms the second novelty of the work. 

The improvement in performance and robustness using the 

proposed approach is validated through the NASA Turbofan 

Engine Dataset (Saxena & Goebel, 2008). 

3.1. Gaussian Mixture Model and EM Algorithm 

Given data D={𝑥𝑖}𝑖=1,…,𝑀, the GMM has the form 

 𝑝(𝑥𝑖|𝚯) = ∑ 𝑐𝑘 ⋅ 𝑁(𝑥𝑖|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

 (1) 

where 𝐾denotes the number of components or clusters. 𝚯 =
{𝑐𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1,…,𝐾  are the unknown parameters to be 

estimated by Expectation Minimization (EM) algorithms, 

which includes the mixing weights 𝑐𝑘 ∈ [0,1] and ∑ 𝑐𝑘
𝐾
𝑘=1 =

1 , the mean 𝜇𝑘  and the covariance Σ𝑘  for the 𝑘 -th 

component. Membership of point 𝑥𝑖  to cluster 𝑘  are 

described as the posterior probability 

 𝑟𝑖,𝑘 ≜ 𝑝(𝑧𝑖 = 𝑘|𝑥𝑖 , 𝚯) (2) 

where 𝑧𝑖 ∈ {1, … , 𝐾}  is the latent state and 𝐳 = {𝑧𝑖}𝑖=1,…,𝑀  

forms the latent vector. 

Parameters 𝐳  and 𝚯  in GMM is estimated by Expectation 

Maximization (EM) algorithm, which maximizes the lower 

bound of Component Data Log Likelihood (CDLL) through 

the alternation between the E-step and M-step. CDLL has the 

form 

 𝐶𝐷𝐿𝐿(𝚯) = ∑ log 𝑝(𝑥𝑖 , 𝑧𝑖|𝚯)

𝑀

𝑖=1

  (3) 

CDLL in (3) is difficult to compute since 𝑧𝑖  is unknown. 

Therefore, EM optimizes the Expected Complete data Log 

Likelihood (ECLL) instead, which describes the lower bound 

of CDLL. The E-step and M-Step in EM algorithm can be 

written as: 

Loop until converge  
{ 

E-step: 𝐸𝐶𝐿𝐿(𝚯, 𝚯(𝑡−1))

= 𝐄𝑧[𝐶𝐷𝐿𝐿(𝚯)|𝚯, 𝚯(𝑡−1)] (4) 

M-step: 𝚯(𝑡) = argmax
𝚯

𝐸𝐶𝐿𝐿(𝚯, 𝚯(𝑡−1)) (5) 

} 
 

where 𝚯(𝑡−1)  is the estimated 𝚯 from the previous step. 

Based on the discussions, the algorithm for the parameter 

estimation of GMM can be detailed as given in Fig. 1. 

3.2. Federated GMM for universal baseline modeling 

The proposed method builds the GMM model from 

decentralized databases as shown in Fig. 2.  In the setting of 

machine PHM, the local client servers in Fig. 2 represent the 

database at different organizations, manufacturing plants, 

corporations, etc. Normally, cross-organization data-sharing 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

4 

is not favored due to security concerns, administrative 

reasons, and many others. To overcome the barrier of data-

sharing, this study proposes a novel algorithm called 

Federated Expectation Maximization to develop a Gaussian 

Mixture Model without sharing data across organizations.  

The execution steps of the proposed algorithm are outlined in 

Fig 3. In a broader impact, the proposed modifications to the 

GMM can be easily extended to any other EM-based 

algorithms and most MLE-based algorithms for parameter 

estimation. Based on the information flow outlined in 

Algorithm 2, secure data exchange between the global server 

and local clients can be promoted by homomorphic 

encryption, which will allow computation on the encrypted 

text directly at the global server. Adding homomorphic 

encryption to the proposed algorithm will only affect the 

computation efficiency. The discussions about homomorphic 

encryption in left for future work. The goal of this study is to 

demonstrate and validate the performance of the proposed 

algorithm only.   

3.3. Proposed methodology for failure prognosis 

The proposed methodology is presented in Fig. 4. The 

training set consists of clients (or units) with run-to-failure 

data, and the testing set can be units with any amount of data 

available. The data for each unit can be distributed across 

organizations, plants, etc. in such a way that data-sharing is 

not allowed. Federated training of the global baseline GMM 

model in the global server is performed by the exchange of 

model parameters with each client using the local baseline 

data as described in the proposed algorithm in Fig. 3. The 

deviation metric representing the health of the unit using the 

trained gaussian mixture model is given by weighted squared 

Mahalanobis Distance (MD). The deviation metric is 

evaluated for each client locally. MD is defined by (6), where 

𝒙𝑚
𝑢  denote the sensor measurements for a sample, and 𝚯 =

{𝑐𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1,…,𝐾 denote the parameters of the trained global 

baseline model. 

 

𝑟 =  𝑑𝑢
 (𝒙𝑚

𝑢  | 𝚯)

=  ∑ 𝑐𝑘 .

𝐾

𝑘=1

(𝒙𝑚
𝑢 −  𝜇𝑘)𝑇Σ𝑘(𝒙𝑚

𝑢 − 𝜇𝑘) 
(6) 

The Mahalanobis distance, obtained from one gaussian 

component, follows a 𝛽  distribution (Ververidis & 

Kotropoulos, 2008), as shown in (7), where 𝑅 is the random 

variable representing the Mahalanobis distance, 𝑀  is the 

number of samples used for training, 𝑁 is the dimensionality 

of the data, and 𝑁 < 𝑀 . It is important to note that, in this 

case as information is used from all clients, 𝑀 =

Algorithm 1 

Initialize 𝚯 as 𝚯0 and assign 𝚯(𝒕−𝟏) =  𝚯0 

1) Perform E-step and compute the membership  

𝑟𝑖𝑘 =
𝑐𝑘

(𝑡−1)
⋅ 𝑝 (𝑥𝑖|𝜇𝑘

(𝑡−1)
, Σ𝑘

(𝑡−1)
)

∑ 𝑐
𝑘′
(𝑡−1)

⋅ 𝑝 (𝑥𝑖|𝜇𝑘′
(𝑡−1)

, Σ𝑘′
(𝑡−1)

)𝑘′

  

2) Perform M-step and update the 𝚯(𝑡−1) to 𝚯(𝑡) 

𝑐𝑘
(𝑡)

=
1

𝑀
∑ 𝑟𝑖,𝑘

𝑖
 

𝜇𝑘
(𝑡)

=
∑ 𝑟𝑖𝑘 ⋅ 𝑥𝑖𝑖

𝑐𝑘
(𝑡)

 

Σ𝑘
(𝑡)

=
∑ 𝑟𝑖𝑘 ⋅ (𝑥𝑖 − 𝜇𝑘

(𝑡)
)𝑖 (𝑥𝑖 − 𝜇𝑘

(𝑡)
)

𝑇

𝑐𝑘
(𝑡)

 

3) Repeat 1) and 2) until converge. 
 

Fig. 1 Algorithm for standard GMM 

Algorithm 2 

Give data D={D𝑢}𝑢=1,…,𝑈,where D𝑢 = {𝑥𝑖
𝑢}𝑖=1,…,𝑀𝑢

 is the data 

from local client 𝑢. 

Initialize 𝚯 as 𝚯0  

assign 𝚯(𝒕−𝟏) =  𝚯0 = {𝑐𝑘
(𝑡−1)

, 𝜇𝑘
(𝑡−1)

, Σ𝑘
(𝑡−1)

}
𝑘=1,…,𝐾

 

where 𝐾 is the number of components in GMM 

1) For each client 𝑢, compute the membership  

𝑟𝑖𝑘 
𝑢 =

𝑐𝑘
(𝑡−1)

⋅ 𝑝 (𝑥𝑖
𝑢|𝜇𝑘

(𝑡−1)
, Σ𝑘

(𝑡−1)
)

∑ 𝑐
𝑘′
(𝑡−1)

⋅ 𝑝 (𝑥𝑖
𝑢|𝜇𝑘′

(𝑡−1)
, Σ𝑘′

(𝑡−1)
)𝑘′

  

and the local summation term: 

𝑆𝑋𝑘
𝑢 = ∑ 𝑟𝑖𝑘

𝑢 ⋅ 𝑥𝑖
𝑢𝑀𝑢

𝑖=1  and 𝑆𝐶𝑘
𝑢 =  ∑ 𝑟𝑖𝑘

𝑢𝑀𝑢

𝑖=1  

Send {𝑆𝑋𝑘
𝑢, 𝑆𝐶𝑘

𝑢}𝑘=1,..,𝐾 to the global server 

2) At the global server, compute the updated mixing weights 

and the global mean. 

𝑐𝑘
(𝑡)

=
1

∑ 𝑀𝑢𝑢
⋅ ∑ 𝑆𝐶𝑘

𝑢
𝑢  ;       𝜇𝑘

(𝑡)
=

∑ 𝑆𝑋𝑘
𝑢

𝑢

𝑐𝑘

(𝑡)  

Send global mean {𝜇𝑘
(𝑡)

}
𝑘=1,…,𝐾

to each client server 

  

3) For each client 𝑢, compute the local covariance  

𝑆𝑉𝑘
𝑢 = ∑ 𝑟𝑖𝑘

𝑢 ⋅ (𝑥𝑖
𝑢 − 𝜇𝑘

(𝑡)
)

𝑀𝑢

𝑖=1 (𝑥𝑖
𝑢 − 𝜇𝑘

(𝑡)
)

𝑇
  

Send {𝑆𝑉𝑘
𝑢}𝑘=1,..,𝐾 to the global server 

4)  At the global server, compute the updated covariance 

Σ𝑘
(𝑡)

=
∑ 𝑆𝑉𝑘

𝑢
𝑢

𝑐𝑘
(𝑡) ; 

Send global covariance {Σ𝑘
(𝑡)

}
𝑘=1,…,𝐾

to each client server 

5)  Repeat 1) ~ 4) until the stopping criteria is met 
 

Fig. 3 Algorithm Description for Federated GMM 

 
 

Fig. 2 Decentralized databases for model training 
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 ∑ 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢𝑈

𝑢=1 , where 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  is the number of baseline 

samples in unit 𝑢. 

 
𝑀

(𝑀−1)2 𝑅 ~ 𝑓𝐵𝑒𝑡𝑎 (
𝑀

(𝑀−1)2 𝑟|
𝑁

2
,

𝑁−𝑀−1

2
)  (7) 

The cumulative distribution function is given by (8) where 

𝐼𝑥(𝑎, 𝑏) is the incomplete beta function.  

 𝐹𝑅(𝑟) = 𝐼 𝑀
(𝑀−1)2𝑟

( 
𝑁

2
,
𝑁 − 𝑀 − 1

2
) (8) 

Thus, the threshold for fault detection is derived from the 

𝛽 Limit described by (9) at 𝛼 = 0.99.  

 𝑔𝑢
′ =

(𝑀−1)2

𝑀
. 𝐹−1 (𝛼,

𝑁

2
,

𝑁−𝑀−1

2
) + 𝑔𝑢

𝑑𝑟𝑖𝑓𝑡
  (9) 

To adapt the threshold for a deviation score derived from 

multiple gaussian components, a scaling parameter  𝑔𝑢
𝑑𝑟𝑖𝑓𝑡

 is 

incorporated. This parameter is given by (10), where 𝚯𝑢 are 

the parameters of the local gaussian distribution of the unit 𝑢. 

 𝑔𝑢
𝑑𝑟𝑖𝑓𝑡 = ∑

[𝑑𝑢
 (𝒙𝑚

𝑢  | 𝚯) − 𝑑𝑢
 (𝒙𝑚

𝑢  | 𝚯𝑢)]

𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢

𝑚0
𝑢

𝑚=1

 (10) 

The failure threshold established in (10) is used to detect 

incipient failures. Once the deviation metric in (6) exceeds 

the failure threshold, the incipient failure is detected, and the 

RUL is predicted. To simplify the discussion, the RUL is 

predicted as the mean time to failure (from incipient failure 

detection point to end of life) that is obtained from the 

training units. The training units are used to estimate the 

mean time to failure after an incipient failure is detected. For 

the training units, based on the fault detection time (FDT), 

the true remaining useful life (RUL) is calculated at FDT. 

This is the first instance at which RUL is predicted for a 

typical prognosis task. The RULs at FDT for each training 

unit are shared with the global server to fit into a Weibull 

distribution. The mean time to failure is then evaluated for 

predicting the time to failure at the first instance of detecting 

fault. 

The baseline samples from the testing units also participate 

in the federated training of the global baseline model. The 

deviation metric as well as the fault detection threshold is 

obtained locally for each test unit. Every new incoming 

sample is monitored until the deviation metric crosses the 

fault detection threshold, at which point the remaining useful 

for the test unit is predicted.  

4. CASE STUDIES 

Two case studies are presented to showcase the performance 

of the proposed method. The first case study focuses on the 

performance of fitting a gaussian mixture model in a 

federated application compared to a traditional application on 

a simulated dataset. The second case study highlights the 

performance of the proposed method on remaining useful life 

prediction for Turbofan Engine Dataset.  

4.1. Case Study 1: Simulative Study 

Two simulated datasets are used from previous studies 

(Ververidis & Kotropoulos, 2008) to illustrate the clustering 

capability of the proposed federated expectation 

maximization algorithm. Dataset A is composed of eight 

partially overlapping distributions/clusters, with an equal 

number of i.i.d. samples from each distribution belonging to 

each client respectively. Dataset B is a set of three well-

separated distributions/clusters, with samples from each 

distribution belonging to each of the three clients. Table 1 

describes Dataset A and B, where 𝜇𝑡𝑟𝑢𝑒 and Σ𝑡𝑟𝑢𝑒 represent 

the true mean and true covariances of the distribution from 

which the datasets are generated. 𝑚0  represents the data 

samples for the respective cluster. 

Two approaches are considered for parameter estimation of 

the simulated dataset – i) proposed federated expectation 

maximization, where no data is shared among the clients; and 

ii) traditional expectation maximization or centralized 

approach, where data from clients is aggregated together in a 

central server for parameter estimation.  

Fig. 5 shows the performance of the proposed federated 

expectation maximization algorithm on Dataset A and B. The 

number of components is chosen based on the minimum AIC 

value achieved. Fig. 5(a) shows that the minimum AIC value 

is achieved for 8 components, which matches with the true 

number of clusters for Dataset A. Fig. 5(b) shows the 

probability density of the components over the dataset. The 

 
 

Fig. 4 Proposed Methodology using Federated Global 

Baseline Modeling for Failure Prognosis 
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proposed federated approach can perform at par with the 

traditional approach as can be observed by comparing in 

Table 2. In Table 2, 𝜇𝐹 and Σ𝐹 represent the estimated mean 

and covariance using federated expectation maximization, 

and 𝜇𝐶  and Σ𝐶  represent the same parameters estimated from 

the centralized approach respectively for Dataset A.  

Similarly, Fig. 5(c) shows the performance of the proposed 

method for Dataset B. In Dataset B, each client has samples 

from each of the three distributions. This can be compared to 

a case where each of the distribution can be considered as a 

particular asset operating under different conditions with 

multiple clients. The data from each cluster is randomly 

distributed across every client. This represents the case of 

non-uniform availability of data across clients. Fig. 5(c) and 

Fig. 5(d) show that the optimal number of components or 

clusters for dataset B is correctly estimated as three with the 

presented probability density spread. Table 3 shows the 

estimated parameters of the clusters for Dataset B using both 

approaches and illustrates that the estimation by the federated 

EM approach matches with the estimation by the traditional 

EM approach. With this global model trained in a federated 

way, every client organization has access to more knowledge 

of the dataset distribution irrespective of the local availability 

of the data, preserving data privacy. For data-poor clients, 

this can bring benefit through learned models without having 

to wait for enough data to be collected. 

4.2. Case Study 2: Aero-engine prognosis 

4.2.1. Data and Problem Description 

An implementation of the proposed algorithm is shown for 

collaborative fault prognosis using the Turbofan Engine 

Degradation Dataset (Saxena & Goebel, 2008). The data is 

generated using the MATLAB-based software called C-

MAPPS, which is designed to simulate the behavior of 

commercial turbofan engines and is widely used in the 

literature. The turbofan engines simulated by C-MAPPS are 

formed by several inter-dependent sub-systems, resembling 

the mechanisms typically present in industrial machinery. 

One of the sub-systems included is a limiter, which prevent 

machines from exceeding pre-set tolerances. Simulation 

parameters include environmental, control, and failure 

parameters, including a set of health-parameter inputs that are 

designed to simulate deterioration and fault. Time-series 

variables that represent parameters such as fan speed, 

temperatures at various locations in the system, engine 

pressure ratio, etc. are recorded over the life of the engine. A 

comprehensive diagram and description of the turbine 

simulated by C-MAPPS along with the list of variables 

Table 1 True Mean and Covariance of Distributions used to generate Datasets A and B 

 Cluster # 𝝁𝒕𝒓𝒖𝒆 𝚺𝒕𝒓𝒖𝒆   Cluster # 𝝁𝒕𝒓𝒖𝒆 𝚺𝒕𝒓𝒖𝒆 

Dataset A 1 [1.5, 0] [0.01, 0; 0, 0.1]  Dataset B 1 [0, -2] [2, 0; 0, 0.2] 

2 [1, 1] [0.1, 0; 0, 0.1]   2 [0, 0] [2, 0; 0, 0.2] 

3 [0, 1.5] [0.1, 0; 0, 0.01]   3 [0, 2] [2, 0; 0, 0.2] 

4 [-1, 1] [0.1, 0; 0, 0.1]      
5 [-1.5, 0] [0.01, 0; 0, 0.1]      

6 [-1, -1] [0.1, 0; 0, 0.1]      

7 [0, -1.5] [0.1, 0; 0, 0.01]      

8 [1, -1] [0.1, 0; 0, 0.1]      

 

Table 2 Parameter Estimation for Simulated Data using Federated EM and Traditional EM for Dataset A 

 
Cluster 

# 

Samples 

distributed  

to Client # 
𝒎𝟎 𝝁𝑭 𝚺𝑭 𝝁𝑪 𝚺𝑪 

Dataset 

A 
1 1 200 [1.507, -0.01] [0.013, 0.0; 0.0, 0.083] [1.50, -0.008] [0.013, 0.00; -0.001, 0.083] 
2 2 200 [0.978, 1.018] [0.091, -0.005; -0.005, 0.088] [0.978, 1.018] [0.092, -0.01; -0.005, 0.088] 

3 3 200 [-0.05, 1.486] [0.084, 0.003; 0.003, 0.01] [-0.05, 1.486] [0.084, 0.003; 0.003, 0.011] 

 4 4 200 [-0.982, 1.01] [0.11, 0.004; 0.004, 0.101] [-0.98, 1.005] [0.11, 0.003; 0.003, 0.101] 

 5 5 200 [-1.47, -0.041] [0.009, 0.003; 0.003, 0.967] [-1.47, -0.041] [0.01, 0.003; 0.03, 0.098] 

 6 6 200 [-1.017, -1.0] [0.082, 0.011; 0.011, 0.096] [-1.016, -1.0] [0.082, 0.011; 0.011, 0.1] 

 7 7 200 [0.024, -1.48] [0.964, 0.024; 0.024, 0.0111] [0.023, -1.48] [0.097, 0.002; 0.002, 0.011] 

 8 8 200 [1.02, -0.97] [0.096, -0.001; -0.001, 0.075] [1.02, -0.978] [0.097, -0.002; 0.0, 0.076] 

 

Table 3 Parameter Estimation for Simulated Data using Federated EM and Traditional EM for Dataset B 

 
Cluster 

# 

Samples 

distributed  

to Client # 

𝒎𝟎 𝝁𝑭 𝚺𝑭 𝝁𝑪 𝚺𝑪 

Dataset 

B 
1 1, 2, 3 100 [0.062, -2.01] [2.401, 0.078; 0.078, 0.213] [0.061, -2.02] [2.403, 0.077; 0.077, 0.21] 
2 1, 2, 3 100 [-0.08, -0.023] [1.78, 0.037; 0.036, 0.29] [-0.07, -0.025] [1.77, 0.038; 0.038, 0.224] 

3 1, 2, 3 100 [0.014, 2.031] [1.503, 0.061; 0.061, 0.1807 [0.0, 2.025] [1.503, 0.062; 0.062, 0.179] 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021 

7 

recorded can be found in (Saxena & Goebel, 2008). The 

dataset used in this work considers operation at sea level and 

degradation of High-Pressure Compressor (HPC) and 

consists of 100 multi-variate run-to-failure time series. Each 

time series represents a different engine unit. Each engine 

starts with different degrees of initial wear and manufacturing 

variation which is unknown to the user. This wear and 

variation are considered normal, i.e., it is not considered as a 

fault condition. The recorded data is contaminated with 

sensor noise. Measurements from seven sensors – 2, 3, 4, 7, 

11, 12, and 15 – are used in the analysis based on the past 

literature (Wang, Yu, Siegel & Lee, 2008). The engine is 

operating normally at the start of each time series and 

develops a fault at some unknown point during the operation. 

The fault grows in magnitude until system failure, and the 

number of operational cycles until failure is recorded. 

The problem addressed in this case study is to predict the 

remaining useful life of the engine units at the point of fault 

detection. The methodology proposed in Figure 4 is followed 

for this case study. Two experimental settings are used for 

evaluation. In Experiment Setting I the entire dataset is 

divided into training and testing units, wherein the failure 

time of the training units is known, and the failure time of the 

testing units is unknown. The training units are used to 

estimate the mean time to failure from the point of first fault 

detection, and the accuracy of the prediction is evaluated on 

the testing units using root mean square error (RMSE). An 

iteration consists of using 75% of the total units randomly 

selected for training, and the remaining 25% used for testing, 

with a four-fold cross validation. Each iteration is repeated 

ten times. In Experiment Setting II all the 100 units are used 

as training units to estimate the bounds of the mean time to 

failure. The difference between the upper and lower bound 

of the estimated mean time to failure is used as the metric of 

performance.  

4.2.2. Performance Benchmarking 

The performance of the proposed federated learning 

approach is compared with the following traditional 

approaches. The fault prognosis architecture remains the 

same for each of the following benchmarking methods 

except for changes in the data sharing strategy, baseline 

modeling techniques, and fault detection metrics. All 

methods labeled Stand-Alone (SA) make use of only the local 

data to train a local baseline model representing the scenario 

where no data sharing is allowed. In these methods, each unit 

has their separate local baseline models instead of a global 

baseline model. 

1. No Baseline: A Weibull distribution is directly fitted to 

the training dataset for predicting time to failure without 

using a baseline model to detect the point of fault 

occurrence. 

2. GMM-SA: This method is a stand-alone (SA) 

implementation of training the local gaussian mixture 

model for each unit. It does not collaborate with other 

units either through data or model for training the 

baseline model. 

3. SOM-SA: This method uses only the local data to train a 

self-organizing map for fault detection. The baseline 

Minimum quantization error is used as a deviation 

metric, for which a 3-sigma limit is used as a threshold. 

4. SVM-SA: A one-class support vector machine is used to 

train the local baseline model. A radial basis function 

kernel is used with a lower bound of the fraction of 

support vectors relative to the total number of training 

examples as 0.05. A fault is detected when consecutive 

samples equal to the length on the moving window are 

labeled as outliers. 

 
Fig. 6 Performance of various methods using RMSE on RUL 

Prediction using Experiment Settings I 

No Baseline GMM-SA SOM-SA SVM-SA Proposed Ideal
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Fig. 5 Performance of proposed federated EM algorithm on simulated Dataset A (a) and (b) and Dataset B (c) and (d). 
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5. Proposed: This is the proposed method that uses 

federated training of a global gaussian mixture model for 

fault detection as described in Fig. 4. 

6. Ideal: This method trains a global gaussian mixture 

model by allowing sharing of data. It represents the 

traditional method for model training and signifies the 

best possible scenario for fault detection using gaussian 

mixture model. 

4.2.3. Results and Discussion 

The root mean square error of all six methods for 100 units 

using Experiment Settings I is shown in Fig. 6 as a box plot. 

𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  is considered as 10 samples. The proposed and the 

ideal methods perform significantly better than any of the 

stand-alone approaches or when no baseline model is 

considered. This highlights the huge benefit of performing 

collaborative prognosis. These results represent a scenario 

where each individual unit may belong with a different client 

organization or user and data sharing across organizations 

may not be allowed. Using the proposed federated method for 

collaborative fault prognosis allows achieving performance 

as good as performing fault prognosis traditionally using data 

sharing. Using the proposed method, both the mean and the 

spread of the RMSE is better than SA approaches and at par 

with the ideal scenario. 

Since the performance of stand-alone methods can be 

affected by the number of baseline samples, 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢 , 

available for model training, Fig. 7 shows the average RMSE 

of each method by varying the number of baseline samples 

per unit. The model with no baseline is unaffected as it does 

not use a baseline model for fault detection. The performance 

of the stand-alone method improves as the number of baseline 

samples per unit increases, but only until a certain level. After 

about the value of 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  = 70, the performance either 

worsens or remains unaffected for every stand-alone method. 

However, the proposed approach remains consistently better 

and unaffected by the local change in 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢 . This again 

highlights the benefit of collaborative learning, where the 

shortcomings of one organization can be overcome by the 

strength of other organizations. This advantage is most 

significant for units with less amount of baseline data. Even 

for units with a high amount of baseline data, the proposed 

approach remains better than stand-alone approaches and at 

par with the ideal scenario.  

For effective collaboration for fault prognosis, the number of 

collaborating organizations or collaborating users plays an 

important role. Moreover, there can scenarios where data 

sharing may be possible among units that belong to one 

organization. For organizations with a huge fleet and the 

possibility of data sharing, using federated learning may not 

always be the solution for improved performance. But for an 

organization with one or few units, as is the case in Fig. 6 and 

Fig. 7, it can be very beneficial to collaborate with a large 

number of organizations. Thus, it becomes important to make 

recommendations on where federated learning can be 

 
 

Fig. 7 Performance of various methods using Average 

RMSE on RUL Prediction by varying 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  using 

Experiment Settings I. 
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Fig. 8 Effect of Collaborating Organizations on Robustness 

of Failure Prediction for 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  = 10 using Experiment 

Settings II 

 

 

 
 

Fig. 9 Effect of Collaborating Organizations on Robustness 

of Failure Prediction for 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  = 20 using Experiment 

Settings II 
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beneficial. Fig. 8 and Fig. 9 present the performance of 

proposed methods for decreasing the number of collaborating 

organizations and use Experiment Settings II. 100 units are 

distributed equally over the number of organizations. For 

example, for 100 collaborating organizations, each 

organization has 1 unit, whereas, for 2 collaborating 

organizations, each organization has 50 units. The case of 

only 1 organization represents the ideal scenario where data 

sharing across all units is allowed. For this analysis, the 

standalone notation is updated to local notation, as data 

sharing within the organization is allowed. 

The value of 𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢  for the results reported in Fig. 8 is 10 

and in Fig. 9 is 20. From both the figures four major 

inferences can be made. First, the performance of the 

proposed method is consistent and almost at par with ideal 

method irrespective of the number of collaborating 

organizations. This further validates the competency of the 

proposed method allowing minimum deviation from ideal 

scenario even with having data barriers for privacy protection 

in place across units. Secondly, the benefit of federated 

collaborative learning is dependent on the number of 

collaborating organizations. As the number of collaborating 

organizations decrease and the number of units within an 

organization increase, it becomes less favorable to 

collaborate. Thirdly, by comparing Fig. 8 and Fig. 9, for 

collaborating organizations greater than 10, the RMSE value 

decreases significantly with the increase in the value of 

𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑢 . However, the performance of local models 

becomes better than the collaborative model only for more 

than 10 collaborating organizations. Thus, collaboration is 

most beneficial for units with a lesser number of baseline 

samples. Finally, the performance of the gaussian mixture 

model can be affected by the increase in the size of data. On 

the other hand, the performance of SOM and OCSVM follow 

a consistent trend of reduction in RMSE as the number of 

collaborating organizations decreases. This happens as the 

tendency of the expectation maximization algorithm to 

converge at a local-optimum increases with an increase in 

data size. Advanced versions of gaussian mixture model 

training such as (Balakrishnan, Wainwright & Yu, 2017; 

Zhao, Li & Sun, 2020) could be further developed to be 

implemented in federated settings to address this issue and 

forms the future scope of this work. 

5. CONCLUSION 

A systematic analytical methodology to build collaborative 

prognostic models from decentralized databases addressing 

limitations of data-privacy and local label scarcity is 

proposed. The methodology facilitates effective learning of 

asset health conditions for data-scarce organizations by 

collaborating with other organizations preserving data 

privacy. Collaboration is more beneficial when data for 

common assets is sparsely distributed across organizations. 

This is most suitable for a servitization model for Overall 

Equipment Manufacturers who sell to multiple organizations.  

While the presented work assumes same type of fault (labels) 

in the distributed datasets for prognosis, future work can 

consider development of methods addressing variations in 

fault types, machine operation conditions, etc. This is more 

likely to occur in real life scenarios as model aggregation 

happens across different organizations. Such variations make 

structured datasets with same labels even more scarce and 

distributed leading to the overall data distribution becoming 

non i.i.d.. For such situations, federated learning can prove 

even more valuable as advanced algorithms are developed to 

train models from non i.i.d. data distributions under this 

framework. 
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