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ABSTRACT 

The goal of this paper was to identify strategies that can be 
employed to improve the robustness of a health monitoring 
system. Strategies used included: 

• Selective signal manipulation which is based on a 
strategy to apply unique pre-processing and post-
processing manipulation techniques to improve the 
robustness of a health indicator (HI). 

• Selective signal blocking which is taking advantage 
of setting enabling conditions for the algorithm so 
that signals and the associated noise effects are 
ignored when the performance of the algorithm is 
poor. 

• Selective signal and HI amplification which is 
defined as when the system is reconfigured to 
amplify the signal factor without significantly 
amplifying the noise effect. An example of such 
strategy is by applying Time Synchronous 
Averaging (TSA) to attenuate high-frequency 
components of a signal with a suspected periodic 
component. 

• Selective HI construction is based on the idea that 
different sources of signal for development of a 
prognostics algorithm will lead to different 
performances and if higher performing HIs in terms 
of robustness are designed and selected, then the 
overall performance of the algorithm will be 
improved. 

• Selective signal shaping which is based on the 
strategy to modify, normalize or change the shape of 
the input signals to capture some of the relationships 
between various input signals to the algorithm and 
improve the robustness and reduce the noise effect.  

• Reduce noise effects at the source by applying 
appropriate filters. 

• Generate independent decisions and take an average 
response and mature the decision. 

• Robust parameter design by optimizing the control 
parameters that impact the performance of the 
algorithm which can be tweaked and selected by the 
designer. 

This study tested the strategies suggested to a brake rotor 
health monitoring system and aimed at understanding the 
influence of vehicle noise factors of tire type, tire pressure 
and passenger count on a methodology that we developed to 
detect and isolate early degradation in brake rotors (Kazemi 
et al. 2019). The fault detection algorithm is designed to 
detect large rotor thickness variation (RTV), which is the 
difference between the maximum and minimum thickness of 
a brake rotor about its circumference. Full factorial 
experiment was designed, and data collected from vehicle 
with various healthy and faulty brake rotors. 

Robustness of the algorithm to three noise factors of tire type, 
tire pressure and passenger weight (gross vehicle mass) were 
investigated. For each noise factor, two levels were 
considered for comparison. That is, summer tires vs. winter 
tires, tire pressure at 30 psi vs. 47 psi and passenger count of 
1 vs 3 (equivalent to additional weight of 145 kg vs 290 kg to 
the gross vehicle mass). State of Health estimates across two 
levels of each noise factor were compared using paired t-test 
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or signed-rank test and significance levels were considered at 
p<0.05.  

We implemented various strategies to develop a robust health 
monitoring solution. Selective signal blocking and defining 
enabling conditions to only use the signals during braking 
actions that meet specific criteria and ignoring both signals 
and associated noise effects elsewhere helped significantly 
improve the robustness. The enabling conditions for the 
algorithm was defined as when the Vehicle Speed is greater 
than 10 km/h and Brake Pedal Position (BPP) Feedback is 
greater than 6 mm and the absolute value of the Brake Pedal 
Position Gradient (BPPG) is less than 0.005 delta mm and 
MCP is greater than 1 kPa and longitudinal acceleration (AX) 
is less than 0 m/s^2 and the ABS Control, stability and 
traction control statuses are inactive. 

Another example of applying selective signal blocking is 
detecting when the vehicle is traveling on a rough road and 
ignoring the vibrations caused in the wheel speed during that 
period.  

We also employed selective signal amplification strategy 
when constructing some of the HIs. The difference of the 
order analysis of AX signal between the braking period and 
the normal driving period (non-braking) was employed to 
reduce the background noise and improve the algorithm 
robustness. Results showed that the use of this strategy based 
on measuring the noise during non-brake events and 
attenuating it by subtracting it from brake events helped 
robustly predict the thickness variation fault.  

In addition, we employed the ‘selective signal and HI 
shaping’ strategy. We observed that the ground truth (RTV) 
and the HIs used to detect RTV (e.g. the envelope of 
detrended MCP) changes as a function of BPP and therefore 
there was a need to normalize the HI with respect to BPP. 
This selective HI shaping and refinement based on another 
vehicle signal improved the robustness of the algorithm. 

Another strategy that we implemented to make the 
performance of the algorithm less sensitive to the noise 
factors was through robust parameter design. That is, to 
optimize the control parameters that can be selected by the 
designer. In this approach, we systematically explored 
control factor parameters and searched through the design 
space while varying noise factors to improve the robustness 
by optimizing the control and design settings. The choice of 
pre-processing, filter type and order, maturation window size, 
enabling condition parameters were some of the factors that 
were fine tuned to make the system response relatively 
insensitive to noise factors.  
 
After applying the discussed strategies, the robustness of the 
overall brake rotor health monitoring algorithm was 
evaluated. Figure 1 shows the results of executing the paired-
samples robustness analysis to the detrended MCP envelope 
HI, one of the highest performing HIs for rotor fault 

detection. The histograms show the distribution of paired 
sample differences, which is the difference in average HI 
value between two tests with all test parameters equal except 
for the noise factor under test. Note that all three paired-
samples error distributions fail the Anderson-Darling (AD) 
test for normality (𝑝𝑝𝑛𝑛 < 𝛼𝛼), requiring the signed-rank test to 
be used to assess robustness. All noise factors have p-values 
much greater than the significance threshold, leading us to 
conclude that there is no clear evidence of non-robustness, 
and that this HI is robust to these three noise factors. 

 
Figure 1: Paired-samples robustness analysis results for the 

Detrended MCP Envelope HI 
 
In essence, results showed that application of the suggested 
strategies improved the robustness of the algorithm and made 
the performance of the brake rotor health monitoring system 
less responsive to the noise factors. 
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(b) Tire Pressure (30 vs 47 psi)
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