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ABSTRACT 

Although bearing condition monitoring and fault diagnosis is 

a widely studied and mature field, applications to automotive 

wheel bearings have received little attention. This is likely 

due to the lack of business case, as while wheel bearings do 

fail due to curb strikes and contamination ingress, the failure 

rates are typically very low in traditional internal combustion 

engine vehicles with 200 – 300k mile lifespans. Rapid 

advancements in battery technology are expected to open the 

door for vehicles with million-mile lifespans, exceeding the 

reliable life of existing wheel bearing designs. Vehicle 

designers and fleet owners must choose between paying a 

higher price for bearings with a longer life or replacing wheel 

bearings periodically throughout the vehicle life. The latter 

strategy can be implemented most effectively with a low-cost 

fault detection system on the vehicle. 

To develop such a system, data collected with healthy and 

faulty wheel bearings is needed. This paper discusses the 

options for generating this data, such as simulation, bench 

tests, and vehicle-level tests. The limitations of each are 

explored, and the specific challenges of developing an 

approach for wheel bearing fault detection are discussed in 

detail. A method for injecting brinell dent failures is 

developed, and the results of injecting 27 faulty wheel 

bearings are presented. Metrics to measure and summarize 

the ground-truth health of a wheel bearing using vibration 

signals recorded on a test bench are explored. We discuss the 

results and challenges of the fault injection process in detail 

and outline the future work for developing a fault detection 

algorithm using data collected on these bearings. 

1. INTRODUCTION 

Bearing fault diagnosis and condition monitoring is a widely 

studied and mature field, given their widespread use and high 

rate of failure relative to other components. For example, 

bearings are known to cause 70% of gearbox failures in wind 

turbines (Machado de Azevado, Araujo, & Bouchonneau, 

2016). Most of the research and development in bearing fault 

detection has been focused on industrial applications such as 

manufacturing and power generation, where a bearing failure 

results in costly downtime. In the transportation industry, 

focus has been on locomotive applications. 

Automotive applications, however, have received little 

attention. This is likely due to the lack of business case for 

implementing bearing fault detection in an automobile, 

especially for the vehicle’s four wheel bearings. The life-

limiting system in an internal combustion engine (ICE) 

powered vehicle is typically the engine, and modern vehicles 

can be expected to last about 200 thousand miles before 

failing (Budd, 2018). Modern automotive wheel bearings are 

designed to exceed vehicle life with low failure rates and are 

relatively inexpensive. If a wheel bearing does fail within this 

vehicle life, the failure symptom is typically a high pitched 

noise and possibly some chassis vibration in extreme cases. 

A driver who is familiar with their vehicle will notice these 

symptoms before the bearing fault becomes safety critical. 

There is therefore little motivation to develop a wheel bearing 

fault detection system in an ICE-powered vehicle owned by 

a retail vehicle owner. 

This story starts to change, however, as the industry shifts 

towards electric powertrains and autonomous vehicles. The 

life-limiting component of an electric vehicle (EV) is the 

battery, and rapid advancements in battery technology are 

expected to open the door for EVs with million-mile lifespans 

(Motavalli, 2020). Designing a wheel bearing to last a million 
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miles requires higher quality materials, and the additional 

part cost may exceed the cost of replacing cheaper bearings 

throughout the vehicle life. In an EV, the likelihood of a 

wheel bearing fault occurring within the vehicle life increases 

drastically.  

Autonomous vehicles (AVs) have received significant 

investment in the past few years, following bold projections 

such as the Deloitte University Press’s (2016) that 

autonomous vehicles may account for half of new vehicle 

sales by 2040. A majority portion of the AV market will be 

taken by robo-taxi fleets managed by companies such as 

Waymo, Cruise, Zoox, and others. In this setting, rides are 

taken by passengers unfamiliar with the vehicle and its usual 

sounds, thus removing the human as a sensor for detecting 

wheel bearing faults. AV fleet managers will be required to 

spend millions per year inspecting their vehicles for problems 

that are only detectable by a human passenger. Automated 

fault detection technologies can offset these costs. Therefore, 

the case for developing automated wheel bearing fault 

detection is strongest in EAVs (electric autonomous 

vehicles), for example those in development by Tesla and 

Cruise, in which the expected wheel bearing failure rate is 

higher due to the EV lifespan and there is no human-in-the-

loop to detect faults.  

This research paper lays the groundwork for developing an 

automated fault detection system for wheel bearings. We will 

outline the possible methods of generating data for 

development and validation of a fault detection system, such 

as simulation, bench testing, and vehicle-level testing. 

Finally, we will present a method for injecting wheel bearings 

with brinell dent failures so that they may be used to collect 

test data for development of a fault detection system. 

1.1. Background 

1.1.1. Automotive Wheel Bearings 

Wheel bearings are critical components of the vehicle chassis 

system. They allow the wheels to rotate with minimal friction 

and are required to operate without noticeable noise or 

vibration (Lee, 2018). Wheel bearings are typically covered 

in a manufacturer warranty, ranging from 3 years / 36,000 

miles at the lower end to 5 years / 60,000 miles at the upper 

end (Carchex, 2018). 

Automotive wheel bearings typically have a dual-race design, 

shown in Figure 1, and therefore four raceways: the inboard 

outer race, inboard inner race, outboard outer race, and 

outboard inner race. The outer races of a wheel bearing are 

fixed to the chassis, and the wheel is mounted to the inner 

races which rotate as the vehicle moves. Driven bearings are 

connected to the driveshaft by a splined interface, whereas 

non-driven bearings freely rotate. Therefore, a front- or rear-

wheel drive vehicle will necessarily have two different 

designs of bearings (driven on the driven axle, non-driven on 

the free axle). 

 

Figure 1: Automotive wheel bearing cross-section. 

Wheel bearing failures can be classified in three main 

categories: fatigue, contamination ingress, and abuse event 

failure. Fatigue failures are characterized by pitting or 

spalling of the bearing’s internal contact surfaces, caused by 

natural wear in the surface materials. Contamination ingress 

occurs when the bearing is exposed to the elements, most 

notably water, either through splashing or submergence. 

When water penetrates a wheel bearing’s seal, it can degrade 

the lubrication and lead to corrosion. Abuse events, such as 

striking a curb or pothole, can result in permanent 

deformation to the bearing raceway and rolling elements. 

Seal failures are the leading cause of bearing failure at high 

mileage (Min, 2007). A damaged seal will allow water and 

contaminant ingress into the bearing, resulting in lubricant 

degradation and corrosion of the bearing raceways and 

rolling elements. The second most common failure mode in 

automotive wheel bearings, and the most common failure 

mode early in vehicle life, is brinelling (Sutherlin, 2017). 

Bearing brinelling occurs when the bearing experiences a 

heavy impact load, such as hitting a pothole or curb. This 

stress results in permanent indentations, known as brinell 

marks, on the bearing raceway. Brinell marks may develop 

on all four raceways and the rolling elements themselves. A 

typical brinell dent depth is on the scale of microns, and 

Sutherlin (2017) found that depths as small as 3 microns can 

yield audible noise. 

1.1.2. Bearing Condition Monitoring 

The central idea in rolling element bearing condition 

monitoring (BCM) is that the rolling elements interact with 

defects at a known frequency (Randall & Antoni, 2011). Most 

BCM algorithms consume a vibration signal and detect peaks 

in the vibration amplitude spectrum that occur at one of these 

frequencies, referred to as the bearing critical frequencies. 

For example, if there is a dent on the outer raceway, we 

expect to see an impulse in the vibration signal whenever a 

rolling element passes over that dent. This collision occurs at 

a frequency known as the Ball Pass Frequency Outer (BPFO), 

which can be calculated from the bearing geometry under a 

no-slip assumption. 
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Figure 2: Bearing cross section. 

The four bearing critical frequencies are summarized in Table 

1. The geometric variables needed to calculate these critical 

frequencies are shown in Figure 2. 

Table 1: Bearing critical frequencies. 

Frequency Formula 

Ball Pass Frequency 

Outer 

𝑁

2
(1 −

𝐵𝑑

𝑃𝑑
cos(𝜙))  

Ball Pass Frequency 

Inner 

𝑁

2
(1 +

𝐵𝑑

𝑃𝑑
cos(𝜙))  

Ball Spin Frequency 
𝑃𝑑

2𝐵𝑑
(1 − (

𝐵𝑑

𝑃𝑑
)
2

cos(𝜙)2)  

Fundamental Train 

Frequency 
(1 −

𝐵𝑑

𝑃𝑑
cos(𝜙))  

 

Note that the equations in Table 1 yield frequencies in 

samples per rotation of the inner race, not samples per second 

(Hz), so bearing rotational speed is not a factor. These 

frequencies are a function of the number of rolling elements, 

𝑁, the pitch diameter, 𝑃𝑑 , the median ball diameter, 𝐵𝑑  and 

the contact angle, 𝜙, which is the angle between the vertical 

plane and the line connecting the points of contact of a rolling 

element and two races. These critical frequency calculations 

assume no slip between the rolling elements and raceways. 

Load variations introduce local rolling diameter variations, 

resulting in slip. Experimental variations of 1-2% from the 

ideal critical frequency formulas is expected (Randall & 

Antoni, 2011). 

Expanding from this central idea is a vast literature of signal 

processing techniques to identify bearing faults. The majority 

of these published methods study bearing fault detection 

using an accelerometer to measure vibrations. Early works 

were based largely on a classical physical model of bearing 

defects proposed by McFadden and Smith (1984), which 

gives that point defects on a bearing race result in an impulse 

train of periodic broadband “bursts”, modulated by both 

bearing load and speed. Preprocessing techniques such as the 

envelope spectrum first proposed by Darlow, Badgley, and 

Hogg (1974) can significantly improve the detectability of 

these “bursts” that occur at the bearing critical frequencies. 

This technique was formulated following the observation that 

although these bursts are modulated by the bearing critical 

frequency associated with the defect, they are carried by the 

bearing natural frequency of vibration. Discussions on the 

best way to bandpass filter the acceleration signal prior to 

demodulation lead to the spectral kurtosis (SK) method first 

explored by Antoni (2006). Many preprocessing techniques 

have been studied to enhance bearing fault signals, such as 

applying unsupervised noise cancellation (Antoni & Randall, 

2004) and minimum entropy deconvolution (Sawalhi, 

Randall, & Endo, 2007) to reduce background noise and 

enhance impulsiveness associated to defects. 

Explorations of time-synchronous averaging applied to 

gearbox and bearing faults revealed that bearing fault 

impulses are not truly periodic, with small random variations 

in period of impact observed (Braun & Datner, 1979). This 

observation opened the discussion to techniques for 

modelling the bearing defect vibration signal as 

cyclostationary (Randall, Antoni, & Chobsaard, 2001). These 

observations serve as useful “top-down” models that describe 

the characteristics of a vibration signal from a faulty bearing. 

In other words, these models can be used to construct a signal 

that is similar to an experimental signal. However, they offer 

no connection between the true characteristics of the bearing 

and the fault (such as the dimensions, materials), and the 

resulting vibration. 

Simulating bearing vibration in the presence of faults has also 

been studied in a “bottom-up” approach, in which the 

kinematics and dynamics of a faulty bearing are modelled and 

used to predict the resulting vibration. Kiral and Karagulle 

(2003) presented a dynamic loading model for bearing 

structures that predicts the vibration response using a finite 

element approach. Patil, Mathes, Rajendrakumar and Desai 

(2010) developed a model in which the rolling elements are 

modelled as spring-mass systems between a rigid inner and 

outer race, which interact elastically with the rolling elements 

according to Hertzian contact deformation theory. Mishra, 

Samantaray, and Chakraborty (2017) build on previous 

works in their paper which compares a 5-DOF spring-mass 

model based on Hertzian contact theory, a multi-body 

dynamic model based on independent models of the two 

races, cage, and the rolling elements, and multibody CAD 

model. The three models are all compared with experimental 

data with a real faulted bearing, which reveals some 

similarities but more importantly many differences between 

the models and experimental data. Most notably, the 

experimental data contained much more broadband noise 

than either model. While any of these models could be 

naively modified by simply adding broadband noise, accurate 

modelling of the noise accounting for the transmission path 

of the vibrations and any external inputs (e.g. from the road, 

in the automotive case) presents a significant challenge. 

This paper is the first of a series on our research efforts to 

develop a fault detection algorithm for automotive wheel 

bearings. In order to develop and validate a fault detection 
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algorithm, experimental data from both healthy and faulty 

wheel bearings is needed to assess performance. The 

remainder of this paper is organized as follows: Section 2.1 

outlines the pros and cons of three possible sources of 

experimental data for algorithm development. Section 2.2 

describes a method to inject a wheel bearing with a brinell 

dent failure and a method to quantify the ground-truth health 

state of a damaged wheel bearing. Section 3 presents the 

results of applying the fault injection method to 27 bearings, 

and Section 4 concludes by presenting a preview of the work 

required to develop a fault detection algorithm using these 

components for vehicle testing. 

2. WHEEL BEARING FAULT DETECTION ALGORITHM 

DEVELOPMENT DATA 

2.1. Review of Data Sources 

For all but the most trivial failure modes, experimental data 

is required to develop and test a fault detection algorithm. In 

automotive applications, there are three general sources of 

data for this type of work: simulation, bench testing, and 

vehicle-level testing. Each of these sources of data comes 

with benefits and drawbacks, and it may be possible to use 

different sources in different phases of developing a fault 

detection algorithm. 

Simulation data is synthetic data that is generated from a 

model and not measured directly from hardware. It is quite 

common in literature to find examples of fault detection 

algorithms developed on simulated data and can be a very 

valuable tool for initial exploration of a concept. Many 

general-purpose vehicle simulators exist, such as CarSim or 

CarMaker, and if configured correctly can be an excellent 

testbed. Simulation environments allow for relatively 

inexpensive generation of large datasets and can be used to 

generate data representative of unsafe or impractical 

scenarios than would be challenging to test on a vehicle.  

The most important criterion for a simulated environment is 

the fidelity in comparison to experimental data. Both the 

symptom of the fault and the sensor must be modelled and 

simulated well to yield data that will accurately reflect the 

real-world equivalent. It is not possible to assess the fidelity 

of a simulation without comparison to real-world data. 

Therefore, simulated data may be useful for a first stage of 

developing a fault detection system, but experimental data 

will be required at some point to confirm the validity of 

simulated data, and possibly enhance the simulation model. 

The simplest form of experimental data comes from a bench 

setup, in which only the system under assessment is 

assembled. The use of benches for test development is very 

common in the automotive industry. For many systems, using 

a bench to collect experimental data is sufficient. For 

example, when developing a fault detection system for an 

electric vehicle’s battery, a bench may consist of the battery 

pack, a charging system, a discharging system, and possibly 

some environmental controls (e.g. temperature), such as the 

dataset collected by Goebel, Saha, Saxena, Celaya, and 

Christophersen (2008). If the goal is to develop an algorithm 

to assess the battery state of health, it is not relevant whether 

that battery is discharged to drive a vehicle or power a house 

– as long as the environment and use conditions are identical, 

the battery is indifferent to what its power is used for. In this 

case, a bench is a sufficient apparatus for experimental data. 

Consider the task of developing a wheel bearing fault 

detection algorithm. Unlike a battery system, the wheel 

bearing is directly involved in the interaction between the 

vehicle and the world around it. It is the final stage in the 

torque flow from the propulsion system to the wheels, and the 

first mobile joint between the road and the vehicle. Therefore, 

if a bench were to be used to collect data, it would be missing 

a major factor that is the input of the road to the system. Not 

to say that it wouldn’t be possible to design a bench that could 

provide road-like feedback, but developing such a bench 

would be expensive, time-consuming, and still less 

representative than pursuing vehicle-level testing. 

Vehicle-level testing is the highest fidelity form of data 

collection, as it allows the developer to see the signals 

consumed by the fault detection algorithm exactly as they 

would be in a production setting. Noise factors such as 

vehicle mass, tire types, road surfaces, vehicle-to-vehicle 

manufacturing variations, and driving maneuvers can easily 

be tested without any risk of modelling error. In many cases, 

acquiring a vehicle for testing is much easier than 

programming a simulation or developing as bench, as 

existing models may be retrofitted for the testing. The 

downside is that these tests are both costly and time 

consuming. They require a full vehicle assembly, large 

testing facilities, skilled technicians, and depending on the 

failure mode under assessment, may pose safety hazards to 

the driver.  

A summary comparison of the three major sources of data for 

fault injection development is shown in Table 2. Note that 

these are simply rules of thumb and will vary depending on 

the complexity of the system under study.  
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Table 2: Comparison of core metrics for each data source for fault detection algorithm development. 

 

2.2. Wheel Bearing Fault Injection 

As was discussed in the above sections, neither simulation 

nor bench data will be sufficient for developing a high fidelity 

wheel bearing fault detection algorithm. Vehicle data is the 

only reasonable pursuit, and this requires a collection of 

bearings of various health states to enable algorithm 

development. Our initial interest is in addressing the top 

failure mode for wheel bearings early in their life: brinell 

denting.  

To generate these bearings, a fault injection method must be 

developed. The goal is to create bearings that have damage 

similar to what would develop in a real scenario of a vehicle 

striking a curb or pothole. This will require a fault injection 

mechanism that resembles the forces of a curb strike. Note 

that there are many variables in developing such a process, 

and it is challenging to design a repeatable fault injection 

mechanism. Part-to-part variations in manufacturing may 

yield bearings with slightly different geometries and yield 

strengths, so an identical process repeated on different 

bearings may yield different results. The exact positioning of 

the rolling elements and cage within the bearing at the 

moment of curb strike will also affect the resulting dent 

locations and depths.  

Given the many challenges of injecting this failure mode, the 

expectation is to repeat this process for many bearings with 

the aim of generating multiple faulty parts with various 

failure levels. To do so, we propose a static load test fault 

injection method to stress the bearings and generate brinell 

dents. The method’s repeatability is explored, and a metric 

for quantifying the resulting fault level in the bearing is 

proposed in the following sections.  

2.2.1. Static Load Brinell Dent Fault Injection 

There is one published example of a process to intentionally 

induce brinell denting in bearings by Sutherlin (2017). Their 

approach was to use a weighted curb-height sled to laterally 

impact a stationary vehicle to mimic the effect of the vehicle 

hitting the curb. While this is a very realistic method and 

served the purpose of studying noise factors relating to brinell 

damage, it lacks controllability due to the dynamic nature of  

the test. We apply a static load method to create similar 

damage to the bearings in a more repeatable manner. 

In the proposed method, the bearings are seated in a custom-

designed mount to the ground. A test table is mounted to the 

hub bolts of the bearing as pictured in Figure 3. This table is 

simply a moment arm than can be mounted to the bearing the 

same way a wheel is mounted by the five hub bolts. This 

setup mimics how a bearing is mounted to a vehicle, in which 

the “ground mount” is analogous to the vehicle chassis, and 

the “test table” is analogous to the wheel. A universal testing 

machine is used to apply a force via hydraulic actuation at a 

distance ℎ𝑐𝑢𝑟𝑏  from the center of the bearing as shown in 

Figure 4. This distance is the difference between the static 

load radius (SLR) of the vehicle wheel and the standard curb 

height (ℎ𝑐𝑢𝑟𝑏) of 5 inches, shown in Figure 5. 

 

   

Figure 3: Brinell fault injection apparatus. 

  

 
Figure 4: Brinell fault injection schematic. 
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Figure 5: 𝒉𝒄𝒖𝒓𝒃 derivation. 

This creates a bending moment about the wheel bearing that 

results in the formation of brinell dents if the resulting 

pressure between the rolling elements and the race exceeds 

the elastic limit of the bearing material. The relationship 

between force applied and resulting brinell depth is unknown, 

and to be derived through experimentation. This relationship 

will enable targeted fault injection, in which a part of 

requested brinell depth can be generated by looking up the 

required injection force. 

Although this procedure results in brinell dent formation, 

there are some key differences between this test and the real-

world equivalent of striking a curb. In the static load test, the 

force is applied gradually over 20 seconds in an effort to 

improve test repeatability, as it was found that rapid 

application made the force difficult to control. Second, this 

test applies a force parallel to the bearing axis of rotation. In 

reality, a curb strike likely does not occur parallel to the axis 

of rotation, but on an angle as the wheel steers towards the 

curb. However, developing a more realistic method (such as 

driving a vehicle in to a curb at a fixed speed) would 

introduce more variations to the resulting bearing damage 

and have poor repeatability.  

2.2.2. Quantifying Ground-Truth 

In order to develop a fault detection algorithm, the ground-

truth health state of each experimental bearing must be 

known. One method of defining the ground-truth would be 

by measuring the dimensions of the brinell marks on each 

race. If it is assumed that the rolling elements are perfect 

spheres and the resulting brinell dents are spherical indents, 

then just measuring depth is sufficient to quantify the indent 

dimensions. The benefit of this method is that it directly 

quantifies the physical damage to the bearing. It can be 

complicated, however, to summarize the damage this way 

with a single metric when there are multiple dents of different 

depths at different locations. For example, using the mean or 

median brinell depth may capture some summary of the 

extent of damage, but it may not translate directly to the 

customer-experienced symptom of the fault (noise or 

vibration). It is unknown whether a large number of shallow 

dents or a small number of deep dents is worse for the 

customer experience. This makes brinell depth a good metric 

for insight to the damage, but a poor summary statistic of the 

overall bearing state of health. 

An alternative approach is to measure the bearing vibration 

on a test bench with an accelerometer, which gives a measure 

that more directly captures the effect the customer 

experiences. One challenge with this approach is the 

dependence of bearing vibration on rotational speed 

(Sutherlin, 2017). To account for this dependence, a 10-

second accelerometer signal was recorded while the bearing 

was operated at each of four different speeds: 400, 600, 820, 

and 950 RPM. At each speed, the G-RMS vibration is 

calculated to be the area under the acceleration amplitude 

spectral density curve between the 4th harmonic of the BSF 

and the 10th harmonic of the BPFI (Simmons, 1997). From 

these four individual measurements, the overall bearing 

health could be assessed by calculating the average vibration, 

weighted average vibration, or area under the speed-vibration 

curve.  

3. RESULTS 

The fault injection method described in Section 2.2.1 was 

applied to a total of 27 wheel bearings for the Chevrolet Bolt 

EV. This vehicle is front-wheel drive, so there are different 

designs for the front (driven) and rear (non-driven) wheel 

bearings. In particular, the rear wheel bearings have two sets 

of races with identical geometries, where the front wheel 

bearings have two races with slightly different geometries, 

one of which matches the rear design. 

One of the initial goals when experimenting with this method 

was to derive the relationship between force applied and the 

resulting brinell depth and vibration profile of the damaged 

bearing. To study this relationship, bearings were injected 

with a range of forces varying from 25 to 60kN. The resulting 

G-RMS vibration at the minimum speed (400 RPM) and the 

maximum speed (950 RPM) are shown in Figures 6 (front 

bearings) and 7 (rear bearings) below. 

 

Figure 6: G-RMS vibration vs. fault injection load at the 

minimum and maximum speed for front wheel bearings. 
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Figure 7: G-RMS vibration vs. fault injection load at the 

minimum and maximum speed for rear wheel bearings. 

As these figures show, the relationship between applied force 

and resulting vibration has significant variance. At high 

speeds, while the general trend is an increase in vibration with 

increasing load, there are still significant outliers such as the 

0.8 G-RMS at 45kN sample from the front bearings, or the 

0.75 G-RMS at 45kN sample from the rear bearings. At low 

speeds there is little relationship to be derived as shown by 

the very low 𝑅2 values for lines of best fit, and there can be 

extreme variability in the measured vibration for bearings 

injected with identical forces.  

This observed variability is highlighted in Figure 8, which 

shows the G-RMS vibration vs speed profile for three 

bearings injected with an identical force of 50 kN. This figure 

highlights the significant challenge with repeatability in this 

fault injection process. 

 

Figure 8: Vibration vs speed profile for three rear bearings 

injected with a 50 kN force. 

One theory that might explain the variability in vibration 

resulting from identical injection forces is that the position of 

the rolling elements about the raceway will have an effect on 

the resulting dent size. 

 

Figure 9: Visual theory possibly explaining the variation in 

vibration from identical injection loads. 

 

Consider two realizations shown in Figure 9, one in which 

there is a rolling element the maximum distance from the 

bending moment axis in Figure 9 (a), and one in which the 

rolling elements are symmetrical about the maximum 

distance from the bending moment axis in Figure 9 (b). 

Intuitively, it may be expected that the configuration in (a) 

would result in the maximum force on the rolling element at 

the position farthest from the bending moment axis, which 

would therefore result in the maximum dent depth. 

Some quick analysis reveals that although the rolling 

elements will experience different forces in different 

positions, the difference between the maximum and 

minimum forces is only about 2% for the Bolt EV bearing 

geometry (see Appendix A). Whether such a large difference 

in vibration can be attributed to such a small difference in 

rolling element force is unknown, but not considered likely. 

Further analysis revealed that bearings with similar vibration 

profiles can have different brinell depths. We dismantled two 

bearings with nearly identical vibration vs speed profiles, 

shown in Figure 10,  in order to measure the depths of their 

brinell marks.  

 

Figure 10: Two front bearings with similar vibration 

profiles. 

After each bearing was dismantled, the locations of the 

brinell dents were visually identified and their depths were 

measured by tracing the raceways at 0.3mm steps.  The 

reported depth is the median depth of all brinell dents. 
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Figure 11: Comparison of brinell depths for bearings with 

similar vibration profiles. 

Figure 11 shows the median brinell depth for the two bearings 

with similar vibration profiles. It can be seen that bearing #5 

has deeper dents on all four raceways, with the largest 

difference on the outboard inner race (200% deeper). These 

results confirm the suspicion that brinell depth is a 

challenging metric to use for summarizing bearing health 

state, multiple dents with different depths will form, and 

condensing them to a single summary metric (median depth 

in the above analysis) may not correlate well with the 

customer-experience metric. 

These results demonstrate the challenges faced when trying 

to inject faults in wheel bearings for the purposes of 

developing a fault injection algorithm. While there is no 

doubt that the injected bearings are in fact faulty, it is 

challenging to control the injection process to generate a 

bearing of the desired failure level. Anyone aiming to re-

create this process should acquire extra bearings knowing 

that some outliers will be generated. 

4. CONCLUSION 

This paper outlined an approach to injecting automotive 

wheel bearings with brinell dent failures and presented a 

detailed analysis of the results of this process. The main 

takeaway from this study should be the inherent challenges 

that will be present when designing a fault injection 

methodology for a complex failure process. We demonstrated 

that brinell dent fault injection has high variability despite 

only a single varied input parameter (the applied force). 

However, the process is still able to meet the goal of 

developing a set of faulty bearings that span the range of fault 

levels expected from vehicles in the field. Given the high 

variability of the process, researchers should expect some 

trial-and-error when using this approach to inject faults at a 

specified level. 

This fault injection study was undertaken to enable the 

development of a fault detection algorithm. From this point, 

the following steps are required to develop a fault injection 

algorithm: 

• Collect vehicle-level test data with both healthy and 

faulty wheel bearings 

• Explore and experiment with methods to detect 

brinell dent faults on the experimental data 

• Assess the proposed fault detection algorithm for 

performance and robustness to noise factors 

• Validate the fault detection algorithm on a set of 

bearings that were not used in development 

These steps, and the results of the development effort, will be 

the subject of future publications from our work group. 
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APPENDIX A: ROLLING ELEMENT LOAD ANALYSIS 

Suppose a bending moment 𝑀 is applied about an axis that is 

planar to a wheel bearing. Since the bearing is static about 

this axis, this moment load is supported by the summation of 

all resulting moments from each rolling element in the 

bearing as expressed in Eqn. A1. 

𝑀 = ∑𝐹𝑖𝑅𝑝𝑖𝑡𝑐ℎsin(𝜃𝑖)

𝑁−1

𝑖=0

 (A1) 

Here, 𝑁  is the total number of rolling elements, 𝜃𝑖  is the 

angular position of rolling element 𝑖 relative to the moment 

axis, and 𝐹𝑖 is the force applied to rolling element 𝑖. These 

variables are shown on Figure 12. 

 

 

Figure 12: Diagram of bearing under planar moment. 

 

The force on each rolling element is a linear function of the 

distance 𝑦 from the moment axis, governed by a slope of 𝛼 

newtons per meter. If we assume that the rolling elements are 

equally spaced, and set a reference rolling element at 𝜃0, then 

the location of the 𝑁 rolling elements is given by Eqn. A2. 

𝜃𝑖 = 𝜃0 +
𝑖2𝜋

𝑁
, 𝑖 ∈ {0, . . , 𝑁 − 1} ,  (A2) 

Combining Eqn. A1, A2, and the constant 𝛼 yields the static 

balance equation in Eqn. A3. 

 

𝑀 = ∑𝛼𝑅𝑝𝑖𝑡𝑐ℎ
2 sin2 (𝜃0 +

𝑖2𝜋

𝑁
)

𝑁−1

𝑖=0

 (A3) 

 

For any unique starting position defined by 𝜃𝑖, we can derive 

the maximum force sustained by a rolling element by first 

calculating 𝛼, and then calculating the maximum of  

 

𝐹𝑚𝑎𝑥 = max (𝛼 𝑅𝑝𝑖𝑡𝑐ℎ𝑠𝑖𝑛 (𝜃0 +
𝑖2𝜋

𝑁
)), 

𝑖 ∈ {0, . . , 𝑁 − 1} 

(A4) 

The results of applying this analysis across all 

unique rolling element configurations accounting 

for symmetry are shown in Figure 13.  

 

 

Figure 13: Results of Eqn. A4 for 𝜽𝟎 ∈ [
𝝅

𝟐
,
𝝅

𝟐
+

𝟐𝝅

𝑵
] 

 

This analysis shows that the difference between the highest 

and lowest maximum rolling element force is just 2% of the 

highest. Note, however, that the configuration with the lowest 

maximum force has two rolling elements bearing the 

maximum load, whereas the configuration with highest 

maximum force has just one. 


