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ABSTRACT

This article presents a novel approach to diagnose faults in
production machinery. A novel data-driven approach is pre-
sented to learn an approximation of dependencies between
variables using Spearman correlation. It is further shown,
how the approximation of the dependencies are used to cre-
ate propositional logic rules for fault diagnosis. The article
presents two novel algorithms: 1) to estimate dependencies
from process data and 2) to create propositional logic diag-
nosis rules from those connections and perform consistency-
based fault diagnosis. The presented approach was validated
using three experiments. The first two show that the presented
approach works well for injection molding machines and a
simulation of a four-tank system. The limits of the presented
method are shown with the third experiment containing sets
of highly correlated signals.

1. INTRODUCTION

Diagnosing faults in physical systems such as production sys-
tems is an increasingly important task. In the past, it was
common for operators of production machinery to employ
people to operate, maintain, and repair their machines. The
specific knowledge would be inherent in the minds of the hu-
mans employed within the company. Current trends in au-
tomation, however, lead to fewer workers on the factory floor,
an increase in automation, and a resulting increasing auton-
omy of each production system.

One major element of autonomous production systems is self-
diagnosis in the presence of faults. A fault is defined as some
unwanted deviation from normal operating behaviour. Once
a fault occurs, production is usually disrupted, which can
lead to the destruction of components, loss in revenue, and
even harm humans. In the literature, many logic-based ap-
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proaches to diagnose physical systems have been presented .
But only very few approaches are actually usable outside of
limited use-cases (Feldman, Provan, & van Gemund, 2009;
Feldman, Provan, & Van Gemund, 2010; Stern, Kalech, &
Elimelech, 2014; Khorasgani & Biswas, 2017). However,
other domains seem to have tackled the problem (Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995;
Leitão, Rosso, Leal, & Zoitl, 2020; M. J. Daigle et al., 2010).
Major challenges in real-world systems exist in dealing with
changing system parameters, small batch or lot sizes, insuffi-
cient instrumentation, and complexity associated with creat-
ing manual models of faulty behaviour (Diedrich, Balzereit,
& Niggemann, 2019).

Those manual models are often not available for many indus-
trial use-cases, often because of monetary reasons or because
process experts were not convinced to give up their knowl-
edge (Bobrow & Whalen, 2002). It is therefore necessary to
develop a method for fault diagnosis that works with approx-
imated diagnosis rules.

In this paper we present a data-driven methodology (based on
statistics i.e correlation) inspired by the qualitative physics
approaches of De Kleer (De Kleer & Brown, 1984) and For-
bus (Forbus, 1984a). These are motivated by the analogy to
reason about quantitative processes (such as the influence of
temperature on pressure within a tank) in a similar way to
human thought processes. Humans, instead of calculating
the exact amount pressure increase given an increase in tem-
perature, look for some simplification. These are often of
a qualitative nature. Qualitative physics captures the qual-
itative nature of physical processes by describing a process
through discrete values such as low (⊥), high (>), normal
(0). Diedrich et al. (Diedrich, Maier, & Niggemann, 2019)
showed how well-known and proven diagnosis algorithms are
used in conjunction with such discrete values to perform di-
agnosis using a logic-based formalism. Here we use the same
methodology, but base it on qualitative physics rather than
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calculating residual values from quantitative (i.e. control the-
oretic or machine learning) methods.

To diagnose physical systems three requirements must be
met:

1. It must be known which components are used in the sys-
tem and how those components behave. For example,
that a pump moves a liquid with a certain velocity.

2. It must be known how those components are connected
with each other and to the outside world

3. The dependency between components must be known.

Instead of attempting to solve and to prove the self-diagnosis
problem for all physical systems, we lay our focus on injec-
tion molding machines and similar processes. Injection mold-
ing machines are common in many industrial areas and are
usually used for high-throughput processes. Thus, if a fault
occurs, it is of utmost importance to identify its root-cause
and find a suitable solution.

Within this article we make the following contributions:

• We adapt a quantitative physics approach to learn weak
fault models (only models of normal behaviour) of indus-
trial injection molding machines and similar processes (a
tank system and a compounding process).

• We show how propositional logic rules can be approxi-
mated from process data alone

• We show how well-known diagnosis algorithms are used
to correctly diagnose injection molding machines, given
approximate logic rules

The article is structured as follows: The next section will an-
alyze prior art and identify relevant research gaps. Section
3 will show how a typical industrial process is modelled us-
ing qualitative physics. Section 4 will use the created model
to introduce a novel diagnosis methodology. The following
section will present results using real data from an injection
molding machine as well as provide a theoretical evaluation
of the approach. Section 7 summarizes the findings.

2. STATE OF THE ART

The idea of physical causality was introduced by the works
of Forbus (Forbus, 1984a) and De Kleer (De Kleer & Brown,
1984; De Kleer, 1984). With the idea of envisioning De Kleer
(de Kleer & Brown, 1982) introduced a powerful methodol-
ogy for diagnosis use cases. In this context time intervals
are understood in the way introduced by Allen (Allen, 1983,
1984), which cuts continuous time into very small chunks
where a system behaves static.

Williams (Williams, 1984) and Raiman (Raiman, 1990) ex-
tended Qualitative Process Theory with possible discretiza-
tion steps in the time domain. Common misconceptions about
qualitative physics were answered by Williams and De Kleer
in 1991 (Williams & de Kleer, 1991)

Within this article we deal with causal physical systems,
meaning systems in which the outputs of one part directly
influence the inputs of other system parts (Pearl & Dechter,
2013). Perumalla et al. (Perumalla et al., 2019) have studied
how sensor placement and causality in cyber-physical sys-
tems can be inferred with data-driven approaches. Guo et al.
(Li et al., 2008) have shown how causality graphs can help
to understand system behaviour and can be used for diagno-
sis. Faghraoui et al. (Faghraoui et al., 2014) introduced an
entropy-based method for building causality graphs for di-
agnosis. Kiaei and Lotifard (Kiaei & Lotfifard, 2019) have
modelled causality through Petri networks to diagnose power
grids.

Many works (P. J. Mosterman & Biswas, 1998; P. Mosterman
& Biswas, 1999; Khorasgani & Biswas, 2017; Narasimhan
& Biswas, 2007; Roychoudhury, Biswas, & Koutsoukos,
2006; Roychoudhury, Daigle, Biswas, & Koutsoukos, 2011;
M. J. Daigle et al., 2010) carry on the idea of flow-like and
effort-like propagation through the introduction and qualifi-
cation of hybrid bond graphs. Matei et al. (Matei et al., 2019)
have recently attempted to bridge the gap between qualitative
and quantitative approaches by combining parameter tracking
with analytical redundancy relations.

Struss (Struss, 1997) published a paper on the fundamentals
of model-based diagnosis of dynamic systems. He proposed
to capture the temporal and dynamic behaviour of a hybrid
system in a set of modes which model the system. He demon-
strates his approach on a car’s anti-braking system. Struss
was also one of the first to describe the introduction of strong-
fault models into GDE (Struss & Dressler, 1989). Daigle et
al. (M. J. Daigle et al., 2010; M. Daigle et al., 2007) have
adapted a discrete event approach to diagnose continuous sys-
tems. Grastien et al. and others (Grastien, Haslum, Thiébaux,
et al., 2012; Meskin, Khorasani, & Rabbath, 2010) have de-
veloped an approach to extend Reiter’s diagnosis algorithms
which was described for binary circuits to include DES (Dis-
crete Event Systems) and hybrid systems. Their approach is
similar to Daigle et al., Struss, and Provan in so far as they
transform the continuous parts of a model into qualitative
states.

Narasimhan and Biswas (Narasimhan & Biswas, 2007) have
proposed an FDI (Fault Detection and Isolation) system for
diagnosing the fuel-transfer system for fighter aircraft. In
their approach they model the fuel-transfer system with hy-
brid bond graphs. The model consists of an extended Kalman
filter and a state-space representation. For fault identification
they compute the Taylor series expansion as the continuous
residual signal transient. These residual values are compared
to a fault signature generated from the hybrid bond graph.
From this they create hypotheses which are used for fault di-
agnosis.

In another work Khorasgani and Biswas (Khorasgani &
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Biswas, 2017) describe a hybrid system model through hybrid
minimal structurally overdetermined sets (HMSOs). These
are sets of differential equations and (in-) equations which
model the behaviour of a hybrid system.

Many diagnosis approaches have been tried out in indus-
trial use cases. For example in rotor systems (Babu Rao
& Mallikarjuna Reddy, 2021; Leitão et al., 2020), smart-
grids (Jiang, Zhang, Gao, & Wu, 2014), wind turbines (Svärd
& Nyberg, 2011), automotive (Struss, 2002; Stein, 2009),
power electronics (Poon et al., 2017), embedded systems
(Zoeteweij, Pietersma, Abreu, Feldman, & Van Gemund,
2008), process industry (Kallesoe, Cocquempot, & Izadi-
Zamanabadi, 2006; Struss & Ertl, 2009), and spacecraft
(Bajwa, Sweet, & Korsmeyer, 2003; Balaban, Narasimhan,
Cannon, & Brownston, 2007; Biswas et al., 2016b, 2016a).

This work is most similar to works from De Kleer (De Kleer
& Williams, 1987) and Pearl (Pearl, 2009). It is certainly
less rigorous than Pearls approach or Granger’s (Bressler &
Seth, 2011), but it facilitates model creation for diagnosis in
a statistical, data-driven manner. Therefore we use the tradi-
tional approach to diagnosis presented by De Kleer and others
(De Kleer & Williams, 1987; Reiter, 1987; Grastien, 2013),
but augment the model building with our algorithm to find
dependencies between signals. It is therefore a more flexible
approach than the above-mentioned expert-knowledge driven
methods by Narasimhan (Narasimhan & Brownston, 2007),
Khorasgani (Khorasgani & Biswas, 2017), or Roychodhury
(Roychoudhury et al., 2006).

3. QUALITATIVE MODELLING OF INDUSTRIAL SYS-
TEMS

Often injection molding machines operate batch-wise. They
produce a product for several hours, while the quality is
sampled once during the production time. If the quality is
insufficient, either because of faults or because of unfore-
seen changes in the production environment the production is
stopped and the faulty products are destroyed (i.e. shredded)
and their material mostly reinserted into production. This can
lead to significant losses for companies.

This section shows how a data-driven method can be used
to remedy some of the drawbacks of finding faults in batch-
wise production with physical systems. In the past, qualita-
tive physics (Forbus, 1984b) and consistency-based diagnosis
algorithms (De Kleer & Williams, 1987; de Kleer & Brown,
n.d.) were used. However, the amount of expert knowledge
and time required is prohibitive for many companies. Espe-
cially for the small and medium sized enterprises (SMEs),
which often use smaller production systems such as injection
molding machines. Therefore, we propose our data-driven
method. By relying only on the available process data we
expect our method to perform worse than many traditional
methods. However, it may provide a first approach to make

Figure 1. A four tank system system without pumps

the benefits of fault diagnosis available to smaller companies
with no resources for modelling.

3.1. Overview

To be helpful for SMEs an automated method is needed which
can be deployed on SME production floors, but requires lit-
tle to no attention from experts. It needs to learn a diagno-
sis model on its own and inform experts only when faults
occur. Therefore, our method is based on automatically cal-
culating the Spearman correlation between signals in histor-
ical process data. We define process data as two time se-
ries S and M , where S contains data such as setpoints, ma-
chine parameters, process parameters etc. and is of the form
((t0, x0), ..., (tn, xn)), with t being a timestamp and some
value x ∈ R. M contains measured sensor data and quality
data and is of the form ((t0, x0), ..., (tn, xn)).

We assume that for physical systems a sufficient correlation
between two signals implies a certain amount of temporal de-
pendency. What follows can to some degree be likened to
Pearl’s causal graphs (though with the limitation that we as-
sume a somewhat accurate causation through high correla-
tion). Pearl has shown that for physical systems one can draw
a causal graph G = (V,E) (Pearl, 1995) with nodes V and
edges E, where each node describes a signal and an edge
denotes causation. Taking this approach we change the defi-
nite causation to mean the existence of a correlation above a
threshold τ .

3.2. Running Example

We will use the four-tank system (Diedrich & Niggemann,
2018) depicted in figure 1 as a running example. The figure
shows four tanks connected though pipes and valves. The
input to each tank is protected by a valve, as well as the out-
put of the rightmost tank. We chose a tank system as these
are common in the consistency-based diagnosis field and can
provide some practical insights into the methods described
below. It must be noted that the example has been created
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using OpenModelica 1.13 on Windows in 64-bit. The dataset
of the simulation contains 1939 variables of which only a few
have been selected for this running example by filtering the
signal names to only those which were associated with tem-
perature, flow, and water level

3.3. Processing correlation

We use Spearman correlation to describe the nonlinear and
distribution independent relationships between variables.
Spearman correlation is defined as

ρ =
cov(rX, rY ))

σ(rX) · σ(rY )
(1)

, where rX and rY are the ranks of two signals, σ is the
standard deviation, and cov is the covariance. Hallin and
Peri (Hallin & Puri, 1991) have shown that using rank-based
methods work well for time series data.

Calculating ρ consisting of the signals S ∪ M tells us how
far different signals are correlated. We only take the lower
triangular matrix from ρ to remove redundant information.

We aim to reformulate the matrix ρ such that one signal m ∈
M is associated to signals si ∈ S. The reformulation from
matrix to tuple is done by selecting one signal mj ∈ M and
then selecting ∀si ∈ S, with |si| > τ for all signals m ∈ M .
This ensures that only those signals are represented within the
tuple whose Spearman correlation is greater than threshold τ
and thus have a meaningful contribution to the sensor value
mj (i.e. the assumed causation). The result is a set of tuples
with variable length of the form (s0, s1, ...si,mj). The set of
all tuples is denoted as T .

The set consists of tuples of the form

(s0, s1, ...sx,m0)

(s0, s1, ...sy,m1)

(s0, s1, ...sz,m2)

...

(2)

, for example. I.e. a subset of sensor values s is associated
with one measurement variable m ∈ M . For the running
example this translates to the tuples

(t1level, t1medT, valve4flow)

(t1level, t1medT, t2level, t2medT, valve5flow)

(t1medT, valve6flow)

(t1level, t1medT, t2t4flow)

(t1level, t1medT, t2level, t2medT, t3t4flow)

(t1medT, t4sinkflow)

(3)

The tuples have been identified on a threshold τ = 0.3. The
rightmost signals are the measurement variablesm ∈M . The

rules establish a clear relationship between sensors at the sys-
tem input to sensors at the system output. The prevalence
of the medium temperature tXmedT is due to the simulation
being executed in a very stable process with low variance.

4. DIAGNOSING QUALITATIVE MODELS

Within this section we show how to reformulate the set of tu-
ples T into propositional logic rules, which can be used for
consistency-based diagnosis and thus leads to the identifica-
tion of faults in physical systems. We focus on the formula-
tion of weak fault models (Stern et al., 2014). Such models
only describe the system’s normal behaviour.

In the research field of consistency-based diagnosis (De Kleer
& Williams, 1987; Reiter, 1987; De Kleer & Kurien, 2003)
faults are located by attempting to satisfy the set of proposi-
tional logic expressions

SD ∩ α 0⊥ (4)

, where SD is the system description and contains proposition
or predicate logic formulae and α are observations.

The general idea in traditional consistency-based diagnosis,
which was defined on binary circuits is as follows: Analysing
binary circuits SD contains formulae describing the be-
haviour of logic gates such as AND, OR etc. And α are actual
values from the system inputs, outputs, and intermediate val-
ues.

In this article we adapt this approach to the field of produc-
tion machinery. To adapt the formalisation from traditional
consistency-based diagnosis to physical systems we redefine
the system model SD and the observations α. Therefore, SD
is defined as

Definition 1 (System Description - SD). Given a set of vari-
ables COMPS and a set of measurements M , SD is a con-
junction φ =

∧
c∈COMPS ok(si) → ok(mi), with mi ∈ M

that relates the variables in COMPS to one measurement
each. The ok-literals are interpreted in McCarthy’s way
(McCarthy, 1989).

Within the running example of the four-tank system the defi-
nition of SD translates to

t1level ∧ t1medT → valve4flow

t1level ∧ t1medT ∧ t2level ∧ t2medT → valve5flow

t1medT → valve6flow

t1level ∧ t1medT → t2t4flow

t1level ∧ t1medT ∧ t2level ∧ t2medT → t3t4flow

t1medT → t4sinkflow
(5)

in propositional logic.

Consequently observations are defined as a grounding of the
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measurement variables by assigning a truth value to them.
Formally, an observation is defined as
Definition 2 (Observation - α). Given a sensor value α̃ and
a discretization function d : R → {0, 1} the observation
α = d(α̃, τ) is a binary discretization of the sensor value,
with parameters τ .

We limit the projection of the discretization function d(·)
to binary values. Alternative formulations include ternary
logic ({−1, 0, 1}), and the calculation of residual values
(Khorasgani & Biswas, 2017). By interpreting the number
0 as false (⊥) and 1 as true (>), we can establish a direct
relationship between sensor values and logic statements.

Taking the set of tuples T introduced in section 3 we can use
a bijective projection to assign the sensor values si to com-
ponent symbols in COMPS. It must be noted that in tradi-
tional consistency-based diagnosis the symbols in COMPS
represent discrete components within a system (for example
pumps, transformers, pipes, resisters etc.). Since we are using
a purely data-driven approach, we must relax this constraint
in that the symbols in COMPS stand for sensor names. It is
the task of the process expert to find the suitable components
in case of faults.

Beside assigning the sensors of each tuple to the COMPS
in each rule, we can also assign the measurement from the
tuple to the mi within the rule. Consequently, we create the
rules set Φ = {φ0, φ1, ...}. This rule set is the basis to use
traditional diagnosis algorithms such as GDE (De Kleer &
Williams, 1987), Reiter’s diagnosis lattice (Reiter, 1987), or
SAFARI (Feldman et al., 2010).

The assignment of the discretized sensor values to the vari-
ables in the running example is done through adding the
propositional logic constraints

valve4flow ⇔ >
valve5flow ⇔ >
valve6flow ⇔ >
t2t4flow ⇔ >
t3t4flow ⇔ >

t4sinkflow ⇔ >

(6)

, if no fault exists within the system. > denotes a true value
and is interpreted such that no fault exists. According to Mc-
Carthy’s AB-literals (McCarthy, 1989) this would, for exam-
ple, be written as ok(valve4flow) = >.

The goal of diagnosis algorithms is to calculate a set of diag-
noses
Definition 3 (Diagnosis). Given a fault-augmented model
SD with fault variables COMPS and an observation α, a
diagnosis ω is defined as an assignment to all fault variables
in COMPS such that ω |= SD ∧ α.

, where the assignment to fault variables is done by

Definition 4 (Health Assignment). A health assignment is
a binary assignment to all elements in COMPS, such that
SD ∩ α 0⊥

A diagnosis algorithm outputs a diagnosis for each possible
assignment to COMPS given the observations α. In prac-
tice, when diagnosing large systems with hundreds of sensor
values, the amount of possible diagnoses can become quite
large. Therefore, it is common to introduce the assumption
that always the least amount of components may fail. So
when a fault occurs it is sensible to first look at those diag-
noses containing the least amount of possible faulty compo-
nents. This set is defined as the minimal cardinality diagnosis
Definition 5 (Minimal-Cardinality Diagnosis). A diagnosis
δmin is minimal, if no diagnosis δ̃min ⊆ δmin exists that is
also a diagnosis.

To show how to perform diagnosis on the running example we
assume Φ to be grounded with a random health assignment

t1level ∧ t1medT → valve4flow

t1level ∧ t1medT ∧ t2level ∧ t2medT → valve5flow

t1medT → valve6flow

t1level ∧ t1medT → t2t4flow

t1level ∧ t1medT ∧ t2level ∧ t2medT → t3t4flow

t1medT → t4sinkflow

valve4flow ⇔ >
valve5flow ⇔ >
valve6flow ⇔ ⊥
t2t4flow ⇔ ⊥
t3t4flow ⇔ >

t4sinkflow ⇔ >
(7)

in this case the diagnosis would compute the set of di-
agnoses {{t1level, t1medT}, {t1medT}} through a hitting
set calculation. Identifying the minimum cardinality diag-
nosis would mean to take the smallest set, thus returning
{t1medT} as the correct diagnosis.

4.1. An algorithm for data-driven diagnosis of produc-
tion systems

Given the above definitions and the set of tuples T defined in
section 3, it is possible to state the algorithm in listing 1.

The algorithm DDRC takes a time series as its input, where
signals are divided into two groups. The first group S are
signals that influence the production process and the second
group M are signals from quality control measurements. The
Spearman correlation coefficient is calculated and converted
into a lower triangular matrix. The matrix is then traversed
and evaluated according to threshold τ . The result from this
evaluation is a set of edges, describing which signals are
highly correlated (above the threshold). The set of edges is
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Algorithm 1: DDRC: data-driven diagnosis rule creation
Data: X = ((t0, x0), ..., (tn, xn)), τ
Result: T

1 ρ← Spearman(X); // Eq.1
2 ρl ← toLowerTriangular(ρ);
3 edges← ∅;
4 foreach row, column ∈ ρl do
5 if ρ(row, column) > τ then
6 edges← edges ∪ (row, column);
7 else if ρ(row, column) < −τ then
8 edges← edges ∪ (row, column);
9 T ← ∅;

10 foreach m ∈M do
11 Sm ← select(edges,m);
12 t← (Sm,m);
13 T ← T ∪ t;

then converted into the set of tuples T , where one measure-
ment m is related to a subset of sensors. The algorithm re-
turns the set T .

The diagnosis algorithm DDA-IM uses a set of tuples T and
actual observations α to compute minimum cardinality diag-
noses δmin. As described above, the set T is translated into
propositional logic and used for diagnosis.

Algorithm 2: DDA-IM: data-driven diagnosis algorithm
for physical systems
Data: T, α̃
Result: δmin

1 Φ← toSymbolic(T ); // Def.1
2 α← d(α̃); // Def.2
3 ω ← diagnose(Φ, α); // Def.3
4 δmin ← min(ω); // Def.5

The algorithm DDA-IM (Listing 2) takes the output from al-
gorithm DDRC and creates symbolic rules for diagnosis out
of the set of tuples T . The function toSymbolic(T ) inserts a
conjunction (∧) between the sensors of set S and creates an
implication to each variable m. Therefore, the result is of the
form: φi :

∧
si
s → m. All symbolic rules comprise the set

Φ. Function d() discretises the sensor measurements α̃ into
a binary representation. Function diagnose() assigns the ac-
tual values α to variablesm ∈ Φ and then runs the GDE diag-
nosis algorithm. The result is a set of diagnosis candidates ω.
DDA-IM returns only the smallest diagnosis candidate δmin,
according to the minimal cardinality assumption.

5. EMPIRICAL EVALUATION

We have evaluated our approach on several systems. System
1 is an injection molding machine. System 2 is a simula-
tion of a four-tank system, which has extensively been used
in consistency-based diagnosis research (Diedrich & Nigge-
mann, 2018; Diedrich, Maier, & Niggemann, 2019). System

Table 1. The results for System 1

Threshold: τ 0.1 0.3 0.5 0.7 0.8 0.9
Sensible rules achieved x x x x x x
Diagnosis correct x x x x x x

3 is a compounding process for rubber pre-products. Using
three different processes we can show that our approach is
able to generalise to other kinds of systems.

We executed all experiments with Python 3.7 on a 64-bit Win-
dows computer with 16GB of RAM and Intel i7-9750H pro-
cessor. To set up the diagnosis rules Φ we used only data from
normal operating conditions without any anomalies to create
the weak fault models. Faults were simulated by assigning a
random value ({>,⊥}) to all variables m ∈ M . This results
in a varying amount of faulty components for each experi-
ment run. Thus, calculating and tracking symptoms of the
systems was omitted.

The goal of the evaluation is to prove the following:

1. The diagnosis rules Φ shall be approximate correct to
perform diagnosis. I.e. they should differ among each
other and make sense to an expert.

2. The diagnosis algorithm shall be able to identify the in-
jected fault(s)

Our experiments show that a completely uninformed data-
driven approach is sufficient to perform some rudimentary di-
agnosis. This provides a baseline to augment the algorithms
DDRC and DDA-IM with some expert knowledge to improve
diagnosis in real industrial use-cases.

5.1. System 1: Injection Molding Machine

The injection molding machine produces plastic casings for
Raspberry PI systems. For our method we split the time series
data from the machine into the subsets S and M . In set S we
captured signals such as temperatures, cycle times, pressure
values, and speed of various components. In set M we repre-
sented measurements from an optical quality control system.
The size of the datasets was 11 signals for S and 10 signals
for M . Faults were injected through randomly setting some
signals in set M to false, which corresponds to wrong size
measurements of the produced parts in the real world.

Table 1 contains the results for system 1 over different thresh-
olds. The first row shows, whether the generated rules were
suitable for diagnosis. The second row shows whether the di-
agnosis algorithm was able to determine the injected faults.
This shows that our methods works well for the intended use-
case of injection molding machines. Only few signals are
highly correlated such that causation can be assumed. The
correct diagnosis was found in each experiment and the gen-
erated diagnosis rules are approximately correct, given the
coarse data-driven approach.
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Table 2. The results for System 2

Threshold: τ 0.1 0.3 0.5 0.7 0.8 0.9
Sensible rules achieved - x x x x x
Diagnosis correct x x x x x x

Table 3. The results for System 3

Threshold: τ 0.1 0.3 0.5 0.7 0.8 0.9
Sensible rules achieved x x - - - -
Diagnosis correct x x - - - -

5.2. System 2: Four-tank system simulation

The simulation of the four-tank system created with
OpenModelica 1.13 contained 1939 signals including all
Modelica-internal variables. Of these, 18 were identified
as measurement variables, by filtering the signal names to
only those which were associated with temperature, flow,
and water level. Given the size of the dataset we argue that
our approach shows good results as can be validated on the
running example and by choosing a reasonable value for τ .
Table 2 contains the results for system 2 over different thresh-
olds. The first row shows, whether the generated rules were
suitable for diagnosis. The second row shows whether the
diagnosis algorithm was able to determine the injected faults.
Again, faults were injected through randomly setting some
signals in set M to false, which simulates wrongly closed
valves or a leaky tank. This evaluation shows that apart from
injection molding machines, which perform very well for this
approach, the standard four-tank systems established in the
literature perform quite well given this uninformed approach.

5.3. System 3: Compounding process

The production of rubber products requires a batch-wise com-
pounding process in which different ingredients are mixed
according to a defined recipe. For this experiment we used
time series of single batches encompassing 6506 rows of 87
signals. Of these 35 were identified to be quality control sig-
nals from laboratory data, thus forming set M and the rest
being contained in set S. Table 2 contains the results for sys-
tem 2 over different thresholds. The first row shows, whether
the generated rules were suitable for diagnosis. The second
row shows whether the diagnosis algorithm was able to de-
termine the injected faults. In contrast to systems 1 and 2
signals within the compounding process are not highly cor-
related. This is partly due to some signals being aggregated
over time. For example the laboratory data is only available
once a batch is finished and has been stored for some time.
As a result only few distinct rules exist such that Φ is com-
paratively small (about 8 rules with τ = 0.3. Above a thresh-
old τ = 0.5 only one rule exists, which is insufficient for
diagnosis. The injected faults were simulated through ran-
domly setting some signals in set M to false. This simulates

wrong measurements of ingredients, viscosity, or other mate-
rial properties.

6. DISCUSSION

The running example (section 3) and the evaluation section 5
show that creating diagnosis rules (i.e weak fault models) in a
completely statistical, data-driven manner for injection mold-
ing machines is possible, but with some drawbacks. Injection
molding machines produce time series with only few highly
correlated signals. These highly correlated signals lead to rule
sets Φ that facilitate the usage of hitting set algorithms such as
GDE (De Kleer & Williams, 1987). Some rules may be sur-
prising (such as the reliance on the medium temperature in
the four-tank system), but are due to artifacts within the sim-
ulation. However, for both systems diagnosable rules could
be obtained.

The experiment with system 3 has shown that our proposed
method breaks down for processes with many highly corre-
lated signals. In this case, the resulting rules contain mostly
the same symbols and thus do not lead to helpful diagnoses.

The diagnosis rules and the resulting diagnosis sets help pro-
cess experts to quickly locate faults within injection molding
machines. The diagnosis output is a set of signals causing the
faulty behaviour. The process expert can use this information
and act accordingly.

Future work should extend this method with more expert
knowledge to create better diagnosis rules. This could be
through integrating the results of existing Failure Modes Ef-
fects Analyses (FMEA) or other methods to capture expert
knowledge. Further, to remedy the difficulties encountered
with system 3, we plan to use more elaborate methods such
as Granger Causality and Transfer Entropy (Bressler & Seth,
2011).

7. CONCLUSION

Within this article we have presented a novel method for the
data-driven creation of diagnosis rules in propositional logic.
To obtain these rules we presented an algorithm to estimate
a qualitative physics model using Spearman correlation. We
have also introduced an algorithm which uses the qualitative
physics model to create propositional logic rules, merge them
with disretized observations, and compute a diagnosis.

The evaluation has shown that the estimated rules work well
for injection molding machines and the four-tank system, but
break down for systems with highly correlated signals.
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