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ABSTRACT 

Although Maintenance data is crucial for authoritative 

reporting reasons and is generally used to optimize 

maintenance planning in terms of budget, scheduling and 

logistics, the potentials of the implicit given information for 

Prognostics and Health Management (PHM) frameworks are 

not yet completely leveraged. Traditional PHM frameworks 

typically rely exclusively on sensor data to derive a system’s 

health status, while maintenance, repair and overhaul (MRO) 

data is not investigated. However, maintenance data contains 

valuable information on which part of a system is checked, 

serviced or replaced. In the presented work, a novel approach 

to fusion maintenance data into a traditional (sensor-based) 

PHM/condition monitoring framework is introduced. This 

fusion enables a model update of the condition monitoring 

framework and hence improves its diagnostics performance 

in terms of classification accuracy. The presented work uses 

data from a simulation framework to develop and evaluate 

the method. A sensitivity analysis shows influences of 

various sources of uncertainty and constraints of the 

approach. First results do not show significant improvements 

compared to a benchmark approach, but the variety of setting 

parameters in the simulation environment and their influence 

on uncertainty are subject of further research.  

1. INTRODUCTION AND PROBLEM DESCRIPTION 

1.1. Introduction 

Modern systems, and especially aircraft systems, are 

becoming more and more complex. With increasing number 

of sensors for supervising systems and increasing system 

complexity, the amount of available information for 

diagnostic purposes is increasing and the diagnostic process 

itself is getting more complex as well.  

One important source of information is maintenance (MX) 

data. While this data is collected and archived since decades 

and typically used for reliability engineering and 

maintenance effectiveness analysis, its potentials for the 

enhancement of condition monitoring frameworks are not yet 

completely leveraged. One of the reasons, why this data is 

stored initially in the aviation industry, is of authoritative 

nature: to comply with EASA Part-M / Part 145 regulation 

(European Union, 2014). Furthermore, the data is only 

collected, when damages are already present while the initial 

activation point in time is unknown and hence it is not trivial 

to build prognostic methods based on it. On the other side, 

especially in case of MRO companies, these data contain the 

core know-how of the organization, since mechanics and 

engineers write down their experiences, diagnoses and 

actions.  

In the presented work, a new approach to include the valuable 

information of MX data into condition monitoring 

frameworks is proposed. The main hypothesis is that this 

information gain will reduce fault classification uncertainty 

and will enable a model update through maintenance 

evidences.  

The remainder of this paper is structured as follows: Section 

1 gives an introduction into the topic, the research problem 

and the state of the art. Section 2 describes the methodology 

to fusion MX data into a traditional monitoring framework 

and the corresponding preprocessing steps. In Section 3, a 

simulative framework and use case is introduced. The paper 

closes with the discussion of the results in section 4 and 

conclusions and an outlook on further research in section 5. 

1.2. Problem description 

The core idea of PHM and condition monitoring frameworks 

is to enhance the understanding of the systems’ health status 

through constant monitoring and to enable condition based 

maintenance (CBM). Process models like the Open System 

Architecture for Condition Based Maintenance (OSA-CBM), 

or the Cross Industry Standard for Data Mining (CRISP-DM) 

propose structures and guidelines for the development of 
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PHM methods. The basic assumption is, that the steps for 

developing such methods are sequential, starting with a data 

acquisition and data/problem understanding phase, followed 

by the diagnostic and prognostic step and finishing with the 

advisory generation and health management step.  

The presented work focusses on the diagnosis part, proposing 

a new methodology for improving the performance 

(accuracy) and reducing the uncertainty of damage 

classification problems. The prognostic step and Remaining 

Useful Lifetime (RUL) estimation is explicitly not part of this 

work. The research in the field of PHM is manifold. In this 

paper we will focus on two specific aspects, before presenting 

the new approach: On the on hand classical PHM and 

monitoring frameworks based on time-series (sensor) data 

and on the other hand the usage of event and MX data, mostly 

used for planning optimization with a multitude of different 

goals. 

The constant monitoring of the systems health status (and 

thus the basis for any prognostic efforts) requires up-to-date 

information from the system itself. In most cases, this is 

realized through sensors, which deliver data, which is then 

processed in models and gives indication for the systems 

health status. The research in this context is mainly focused 

on data based methods with strong focus on RUL prognosis 

in the recent years and decades. The availability of increasing 

amounts of data and computing resources enables the usage 

of artificial intelligence and machine learning.  

In (Nguyen and Medjaher, 2019) a Long Short-Term 

Memory (LSTM) network is presented to build a new 

dynamic predictive maintenance framework based on sensor 

measurements. Susto (Susto et al., 2015) proposes a multiple-

algorithm classification approach with different prognostic 

horizons as decision support. With higher regard to 

environmental and operational parameters influencing 

maintenance processes, (Reder et al., 2018) are looking for 

approaches to model weather influences on wind turbine 

failures and (Verhagen and Boer, 2018) proposes time-

dependent proportional hazard models to identify operational 

factors influencing maintenance event occurrences. Also in 

the context of wind turbines, (Asgarpour and Sørensen, 2018) 

present a Bayesian approach for a prognostic model and 

degradation monitoring. The usage of Decision Trees and 

Neural Networks and a general review of various PHM 

algorithms are discussed by (Carvalho et al., 2019) and 

(Accorsi et al., 2017). The widespread problem of high class 

imbalance through un underrepresented damage class is 

analyzed and discussed by (López et al., 2013).  

Looking deeper into probabilistic approaches, Bayesian 

statistics and networks are often used to build diagnostic 

models. In (Ashasi-Sorkhabi et al., 2017), the authors 

propose a CBM implementation based on Bayesian statistics 

for a train gearbox, (Zhang et al., 2014) propose a Bayesian 

Belief Network for the lifetime prediction of bearings, (D. 

Huang et al., 2020) use Bayesian Neural Networks for RUL 

Prediction in Aircraft Engines. 

While most publications focus on the development and 

application of methods for individual components, systems 

with interacting degradation effects are often not considered. 

In (Bian and Gebraeel, 2014) a Bayesian based model is 

created to estimate remaining useful lifetimes of multi-

component systems with interaction of degradation effects. A 

dynamic reliability assessment for systems of systems 

through a state model is proposed by (Heier et al., 2018).  

The second source of data of particular interest for this work, 

is MX data. This data is categorized as time-discrete temporal 

data or event based data. The individual events do happen 

independently of each other and do not follow a constant time 

interval. MX data analysis is typically used for optimization 

of MX intervals, budget, logistics or personnel. In this 

context, (Dinis et al., 2019) built a maintenance capacity 

planning algorithm based on Bayesian Networks for the use 

in CBM, (Eickemeyer et al., 2013) describe the use of 

Bayesian Networks for the estimation of workload in 

maintenance processes and (Jones et al., 2010) analyze the 

influence of various parameters onto the failure rates of 

systems. The necessary infrastructures and architectures for 

collecting and processing of MX data are discussed in 

(Albano et al., 2018) and (Mourtzis and Vlachou, 2018), 

where modern Cyber Physical Systems and Cloud 

architectures for Predictive Maintenance applications are 

discussed. 

The collection of maintenance data, especially in the aviation 

industry, comes with its own complications: One of the core 

challenges in the large scale use of this data lies in the 

presence of natural language, which is used to describe a 

given problem, identified findings and maintenance actions. 

Maintenance, Repair and Overhaul (MRO) companies, like 

Lufthansa Technik AG, collect large amount of MX data, 

which are hardly analyzed automatically. Current research 

topics in the industry are therefore investigating the potentials 

of Natural Language Processing (NLP) on MX data. In (Dixit 

et al., 2021) and (N. B. Niraula et al., 2020) NLP methods are 

applied in order to extract information like specific parts and 

conditions from the MX entries, enabling automatic 

diagnostics. In (Welz et al., 2017; Welz, 2017), the author 

proposes the use of maintenance action dependent models to 

incorporate imperfect maintenance actions. In (Martorell et 

al., 1999) an age-dependent reliability model is introduced 

incorporating both working conditions and maintenance 

effectiveness, quantifying the effects on the equipment age of 

a nuclear power plant. Similarly (Chuang et al., 2020) 

proposes a new condition based maintenance approach under 

imperfect maintenance for slowly degrading, continuously 

monitored systems, including the effect that systems do not 

restore to a as-good-as-new state after maintenance.  

The preprocessing of event based data, like MX data, is one 

of the core challenges in the presented work. Several 
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approaches to align event data with time series data are 

described by (Korvesis et al., 2018), looking explicitly into 

the preprocessing of Post Flight Reports for diagnostic and 

prognostic purposes. In (Same and Govaert, 2012) a 

sequential time series segmentation approach is introduced 

and (Yu et al., 2011) compare Period-based and Event-driven 

through a Bayesian prediction model.  

2. METHODOLOGY OF THE DIAGNOSTIC MODEL 

In the context of monitoring and prognostics, maintenance 

and inspection information are often used for the data 

labeling, post-event diagnostics or the selection of use cases 

for PHM methods. Monitoring and performance assessment 

methods only rely on sensor data. Labels, which are given 

through maintenance data, are used to train and validate 

models and to evaluate the results. In the proposed 

methodology however, maintenance data will be used in the 

forward modelling phase of a condition monitoring 

framework. Hence, the information, which is inherently 

given in the maintenance data, will be fed to the diagnostic 

model. The key to achieving this, lies in the correct 

preprocessing of the maintenance data. To the author’s best 

knowledge, this is the first time that this fusion approach is 

investigated and compared to a benchmark. 

The general idea proposed in the paper and the evaluation 

process is shown in Figure 1. The traditional processing path 

is shown on the left, where the sensor data is preprocessed 

and then fed to a learning model leading to the diagnosis, 

which is understood as a classification problem: A damage 

will be classified as active or inactive based on sensor data. 

The new methodology, shown on the right, includes MX data 

into this approach, which needs an advanced preprocessing 

in order to align the temporal data structure with the time 

series. This leads to a different (ideally more accurate) 

classification result. The delta between the benchmark and 

the MX-fusion approach, quantified through classification 

metrics, can be directly linked to the additional input data. 

The prosed approach is throughout this paper referred to as 

MX-fusion approach. 

 

Figure 1: Concept of fusion maintenance data with sensor 

data 

The input data is two-fold: The benchmark algorithm is only 

considering sensor data from the observed systems directly. 

The secondary data source is MX data. An exemplary plot of 

the sensor data, derived in the case study in section 3, is 

shown in Figure 2. The data shows the typical degrading 

pattern over time, with sudden jumps, which mark the 

exchange or repair of damaged components. 

 

Figure 2: Sensor data over time 

The sensor data is preprocessed in order to cope for the 

evolution of the signal over time. Therefore time lag features 

are taken, meaning that new input features are generated from 

sensors signals of previous time steps. The interval is varied 

from 5 to 50 datapoints per sensor signal. The rest of the 

standard preprocessing steps, like cleaning and smoothing the 

data, is done through the simulation framework (see section 

3). 

One of the key challenges to be able to include maintenance 

data in a monitoring framework is the correct preprocessing: 

The time-discrete, temporal data have to be aligned with the 

sensor data and thus have to be translated to time-series data. 

In a first setup, which is presented in the scope of this work, 

the event data is preprocessed in such a way, that it can be 

added to a classification algorithm, which is based on time 
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series data. In essence, new feature columns are generated 

and forwarded to the algorithm. The method used for this will 

be explained in the following. 

Maintenance data logs typically consist of a timestamp, 

categorical mapping parameters (Air Transport Association 

(ATA) chapters1 in case of aviation industry), event-ID, an 

optional reporting, action and finding. An example for a 

(simplified) maintenance log is shown in Table 1. The 

timestamp marks the exact time of the maintenance action 

(and can furthermore include the exact time of the damage 

occurrence), the categorical mapping parameters allows a 

rough information on where the damage is located in the 

system, in aviation ATA codes are used denoting broad 

categories such as landing gear (ATA 32) or engine (ATA 

72). The reporting column contains a problem description and 

can be filled automatically (fault log), or through personnel 

with natural language (by pilot, cabin crew or maintenance 

personnel). The action and finding columns contain 

information of the maintenance event itself, also mostly 

reported in natural language. The analysis of the natural 

language leads to uncertainties in the labelling process, but 

will not be part of this work. For the purpose of this paper, 

only timestamp and findings are of interest, assuming that the 

exact finding can be taken from the technical logs.  

Table 1: Maintenance log example 

Time 

stamp 
… ATA Reporting 

Finding/ 

Action 
2021-04-01 

15:56 

Sys 

ID 
32-50 

Landing gear 

steering issue 

bolt broken, 

replaced 

2021-04-05 

02:08 

Event 

ID 
79-11 / 

EOS 

performed 

2021-04-12 

21:35 

Comp 

ID 
25-35 

Galley latch 

loose  

Latch adjusted 

2021-04-23 

01:04 

… 
29-11 

Hyp pump 

failure 

Perform tests 

… … … … … 

 

In the following, the methodology of preprocessing of the 

MX data will be explained. It is based on (Korvesis et al., 

2018) and adapted slightly, to incorporate for the special 

characteristics of MX data. Figure 3 shows a visual 

interpretation of the segmentation process. 

𝐷𝑀𝐺𝑥 , 𝐷𝑀𝐺𝑦 , 𝐷𝑀𝐺𝑧  represent three possible damages, their 

active signal is shown in blue, values of one indicating the 

damages is active, zero it is inactive. Below each Damage-

Signal plot, “x” marks, when a damage is detected and 

repaired. Our goal is to find the damage 𝑑? ∈ 𝐷𝑀𝐺 , with 

𝐷𝑀𝐺 = {𝑑1, 𝑑2, … , 𝑑𝑘} being the set of possible damages. 

We start by dividing the dataset into individual episodes 𝑒𝑝𝑖
𝑗 

which correspond to the time between two consecutive 

(target) damages. Each episode will later be used for training 

process separation, meaning that each episode represents one 

 
1 https://en.wikipedia.org/wiki/ATA_100 

training data set. The figure shows the episodes 

corresponding to 𝐷𝐺𝑀𝑥. In the next step, the damages within 

each episode are aggregated over the length of constant time 

segments 𝑠𝑒𝑔𝑡, marked by vertical dashed lines in the figure. 

The length of the segments is not fixed to the damages and 

adapted to the problem, in our case a length between 500 and 

2000 time steps is considered.  

 

Figure 3: Preprocessing step of maintenance data 

Segments are represented by vectors 𝑥 ∈ ℕ|𝐷|×1 containing 

the sum of all damages which occurred in the equivalent 

segment. The segments are identified by the application of 

the sliding window method in order to oversample the low 

amount of damages. The main difference compared to 

(Korvesis et al., 2018) would be, that we take damage 

occurrences (maintenance actions) instead of fault logs, 

which will lead to uncertainties (further explained in section 

2.3). Additionally to this segmentation approach, a more 

simple feature is introduced: The time since the last repair, 

which is just cumulating the time steps since the last 

maintenance action, comparable with mean time between 

failure (MTBF). Third, the cumulative sum of undertaken 

checks after a damage detected/reset event is taken as feature. 

This should further incorporate the idea of a rising damage 

probability over time.   

Classification 

The problem is developed as a multi class classification 

problem. There are many off the shelf algorithms, which can 

be used for this. In the first setup, which is presented in this 

work, random forest (Breiman, 2001), Multi-Layer 

Perceptron Neural Network and Support Vector Machine 

classification algorithms are established and compared with 

each other. Since the development of the algorithm is not in 

the focus of this work, but the preprocessing methodology 

and general idea behind the data fusion, no distinct 

optimization of the algorithms through hyper parameter 

tuning is done.  

Since multiple damages can be active at the same time, the 

problem is furthermore defined as a multilabel classification 
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problem. This leads to the circumstances, that in praxis, one 

classifier is fitted for every damage (class).  

2.1. Primary contribution 

The primary goal of the methodology is to optimize the 

diagnostic performance of the monitoring framework. 

Optimization is in this case understood as increasing the 

overall accuracy and reducing the uncertainties. The resulting 

research hypothesis is, that an additional information source 

will be beneficial for the classification algorithm. 

2.2. Secondary contribution 

The secondary goal is the fundamental analysis and critical 

discussion of all influencing parameters on the whole 

maintenance complex. Since the data to build and assess the 

methodology comes from a generic simulation framework, 

influences of uncertainties and noise as well as confidences 

on the results of the fusion methodology can be assessed. 

Hence, one goal of this research is to fully understand, 

quantify and describe the influence of the various sources of 

uncertainties, concerning the sensor data: 

• The number and placement of available sensors. 

• The resolution (time and amplitude) of the sensor signal. 

• The influence of noise/uncertainty in the sensor signal. 

And concerning the maintenance data: 

• Faulty labeling during the logging process (not 

investigated yet). 

• Uncertainty due to faulty labeling during NLP (assuming 

automatic processing of MX logs). 

• Influence of inspection interval variations. 

• Interaction of multiple damages. 

• Difference of routine and non-routine events in the 

processing setup. 

• Ambiguity due to corrective v/s preventive actions taken 

in the maintenance.  

• Ambiguity due to action taken in maintenance was to 

address the symptom but not the root cause 

 

From these investigations, general guidelines to the data 

bases and data quality can be derived: For example for a MX 

operator who is establishing NLP for MX records, it would 

be very beneficial to quantify a minimum label confidence, 

which is necessary for useful postprocessing of automatically 

analyzed and classified maintenance data. This is one of the 

secondary goals, which are part of ongoing research and 

planned to be presented in 2022.  

2.3. Assumptions and limitations 

As for all simulation frameworks, several simplifications 

were made. Thus the following assumptions and limitations 

have to be defined to the investigated use case: 

• A slowly degrading system is assumed (no random 

failures). 

• The system is component-based (line replaceable units). 

• Perfect maintenance is assumed, components are 

replaced with brand new material 

• A minimum amount of system complexity and damage 

interaction is required, as the methodology is not 

expected to improve results, when only monitoring 

single components. 

• A maintenance history is generally available: Rather 

short inspection intervals with reliable findings. 

Requirements to the input data: 

• Sensor signals are available. 

• Component changes with findings (i.e. labels, which 

damages occurred) are available. 

• Mapping of damages to components is generally 

possible. 

Requirements to the methodology: 

• Only diagnosis (no RUL prognosis) phase. 

• The problem is understood as classification setup, 

multiclass, meaning there are more then two classes 

(more than one damage) and multilabel, meaning that 

one time step can include one or more damages being 

active. 

• A probabilistic approach with confidence interval is 

desired. 

• For the first step we take the MX findings as ideal and 

trustworthy. In practice, however, one would have to 

extract the findings from the maintenance logs through 

NLP, which comes with uncertainties. 

3. CASE STUDY / NUMERICAL ANALYSIS 

In the following, the underlying data basis will be presented 

and the case study will be formulated. The data for the 

development and evaluation of the methodology comes from 

a MX simulation framework, which will be presented at first. 

3.1. Maintenance simulation framework 

For the generation of data, a generic simulation framework 

was developed. The benefits of the development inside a 

simulation framework are, that the complexity, general noise 

of the data and the uncertainties can be adapted, allowing to 

define exact limits of the methodology and to derive 

requirements concerning the real world data. 
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The simulation framework consists of four main objects and 

a system class to combine all objects: sensors, components, 

damages and inspection/maintenance events. Every object 

has dependencies to the others and multiple parameters for 

the tuning of noise and uncertainty. A simplified UML-

Diagram is shown in Figure 4. 

 

Figure 4: Simplified UML-diagram of the mx-simulation 

framework 

At the initialization, the duration 𝑁 of the simulation as well 

as the four main objects sensors, components, damages and 

inspections are getting defined by the user and fed to a system 

class, which defines their integration and runs the simulation. 

Each timestep   of the simulation is defined by an integer. 

The initial value of a sensor 𝑠  is drawn from a normal 

distribution around a reference value and is constant. 

Subsequently, the signal has assigned a noise value 𝑟𝑠( ) at 

each timestep. Sensors can be simultaneously affected either 

positively or negatively by multiple components. The 

influence of a component   on the sensor 𝑠  is denoted as 

proportional factor 𝑤 
𝑠  and thus can be set to zero if the 

component does not influence the sensor at all. One 

component can also influence several sensors differently. 

After again adding uncertainty �̃�𝑠 through noise, the value of 

the sensor 𝑠 at timestep   is given by eq. (1): 

𝑠( ) = 𝑠(0) + 𝑟𝑠( ) + ∑ ±  ( ) ∙ 𝑤𝑐
𝑠 + �̃�𝑠( )𝑐 . (1) 

A component   has a starting value of one and can only 

decrease to a minimum of zero hence reflecting the condition 

of the component. Each component   degrades due the 

influence of degradation 𝑣𝑑
  caused by damage 𝑑  which is 

modelled by a random walk behavior. This is a further 

simplification, as the sensor signal (degradation) is directly 

related to the component health. However, especially 

vibration sensor signals are underlying a more complex 

relation to components in real world. More sophisticated 

models are part of ongoing research. An uncertainty |𝑟𝑐( )| is 

additionally added. Thus, resulting in eq. (2) for the value of 

component   and timestep  : 

 ( ) = 1 − ∑ ∑ 𝑑( ) ∙  𝑣𝑑
𝑐𝑡

0𝑑 − |𝑟𝑐( )|. (2) 

 A damage 𝑑  can only have a value of zero, indicating a 

disabled damage, or one, indicating an active damage. A 

damage 𝑑  is randomly activated based on a user-specified 

probability 𝑝
𝑑

 and remains active for upcoming timesteps 

until it is deactivated by an inspection 𝑀. An inspection can 

either investigate entire components, observing the amount 

of degradation caused by each damage specifically 

influencing this component, or damages, observing their 

influence on the degradation of each system component. An 

inspection takes place at intervals specified by the user 

although the exact timing is also subject of uncertainty. A 

damage can only be detected by an inspection if it is active 

and has already led to a minimum degradation since the last 

time it was deactivated. Even if these conditions are met, 

there is still a probability 𝑝
𝑀

 that the damage 𝑑 will not be 

detected by an inspection 𝑀 . Both, the minimum 

degradation, as well as the probability 𝑝
𝑀

 can be predefined 

by the user. If a damage is detected, it is deactivated. The 

degradation of components caused by the deactivated 

damage is set to zero indicating a repair of the component. 

The incident is documented in a Techlog object.  

3.2. Simulation setup 

The framework is completely generic and thus almost every 

technical system can be reproduced. For first results, a 

fictious system is designed. The different objects and causal 

relations are shown in Figure 5. The setup consists of three 

sensors, two components, two damages and two inspections. 

Several levels of interaction, especially of components on 

sensors, are implemented. The thickness of the connecting 

lines mark the qualitative size of influence.  

 

Figure 5: Fictious system simulation design 

The setup, which is shown above, is run in a Monte-Carlo like 

setting. The resulting dataset consists of 100 simulation runs, 

each with small variations in the input parameters. An 

example plot with two sensor signals and two damages with 

corresponding inspections/repairs is shown in Figure 6. The 

top plot shows the sensor signal of SNS A over time, the plot 

below (second plot) shows the equivalent damage DMG X. 

Values of  one corresponding to an active damage, values of 

zero to an inactive damage. The same is shown in the two 

lower subplots for sensor SNS B and damage DMG Y. 

SNS
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C
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Figure 6: Plot of sensor signals and damage activation for 

the case study 

The data is split into training and validation data. Since 

multiple simulation sets are available, 80% will be used for 

training, and 20% are used for validation. The data will be 

trained only on time steps, were inspections happened. This 

is important, since this ensures a oversampling of the damage 

classes, but it reduces the dataset tremendously at the same 

time. Inspections do not necessarily mean, that an active 

damage is present. The share of active damages is about 10-

20% in the training set, depending on the setting. Due to false 

negative inspections (a damage is not detected, even though 

it is active), errors in the training data may be present. 

Alternatively the complete dataset could be used, which 

would require methods to address the class imbalance (the 

share of detected damage entries goes below 0.1%). For the 

validation set, the whole dataset with no over- or 

undersampling is taken. The resulting share of active cases 

varies between 5% and 40%, depending on the damage and 

the setup.  

3.3. Classification results 

For the classification a Support Vector Machine (SVM) is 

used. The training set consists of 1600 datapoints. In case of 

the benchmark approach, only sensor raw sensor values of the 

last 10 time steps are used, results in 30 input features. For 

the MX-Fusion approach, the same sensor values are used 

plus additional features as described in chapter 2, resulting in 

36 input features. The SVM is not further tuned or optimized. 

The classification results of the basic setup are shown over 

time in Figure 7. The two subplots show the results for the 

individual damages. The true damage activation profile is 

shown as the solid black line, indicating whether the damage 

is active or not. The classification results are indicated as 

vertical bars: blue bars marking classification results of the 

benchmark approach, orange bars marking results of the MX-

fusion approach. True positives are when the damage 

activation profile is active and bar plot of the benchmark or 

MX-fusion are also positive. False positives are given when 

the true signal is healthy, but bar plots are positive, false 

negatives are given when the true signal is active, but 

classification results are healthy. 

 

Figure 7: Classification results  

The plots over time do not allow an interpretation of the 

results. The corresponding confusion matrices are shown in 

Figure 8.  

 

Figure 8: Confusion matrices for the classification results 

In the next section the results will be evaluated and discussed 

based on evaluation metrics. 

4. DISCUSSION  

The discussion of the results is based on error metrics. For 

the evaluation of the methodology, we use standard metrics 

for classification (Saxena et al., 2008): 

• Accuracy: 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Precision: 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
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• F1-score: 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

The results are evaluated for each damage class, resulting in 

three metrics per classification run. Even though multiple 

different setups and variations where investigated, we will 

only present one result here, being representative for the 

overall results. The classification results of the basic setup, 

shown in Figure 7, are listed in Table 2. The metrics show no 

significant change between the two classification setups. As 

can be seen from the evaluation metrics, there is only a minor 

increase in Precision and F1-Score for damage X, otherwise, 

the accuracy and metrics are poorer for the MX-fusion 

approach. 

 

In general, the overall accuracy of the classification results is 

mainly driven by the sensor data. Additional MX event data 

does not significantly influence the results. If there is an 

influence, most of the time, it is deteriorating compared to the 

benchmark approach. In a few cases, the results with MX-

Fusion are getting better: small increases in F1-Score and 

Precision can be seen. However, these are cases where the 

benchmark performance is generally very poor and the 

algorithm is severely underfitted. The event data can increase 

robustness in those cases, enabling a minimal amount of 

classification capability. Especially when taking all available 

training data points for the algorithm fitting process into 

account (no undersampling of the healthy class through 

inspection selection), all datapoints are classified as healthy 

(false negative) in the validation phase.  

A sensitivity analysis of the most obvious influencing 

parameters of the damage onset probability, the sensor noise 

and the inspection interval is shown in figure XY. In total, six 

plots are showing the Accuracy and F1-score of three 

different parameter variations. In these graphics we focus 

only on damage Y, blue stars marks the benchmark approach, 

orange squares the  MX-fusion approach. For the reason of 

clarity, no Precision or Recall metrics are shown in these 

plots. The default setup (while the other parameter is varied) 

is the damage onset probability 0.0009, sensor noise set to 1 

and the maintenance interval set to 400. We can see, that the 

overall accuracy decreases with increasing damage onset 

probability and rising sensor noise and has a maximum at 

maintenance intervals between 300 and 800 time steps, while 

decreasing at shorter and longer intervals. Concerning the F1-

score we see that there is a slightly increasing trend with 

increasing damage onset probability (mainly due to 

increasing Recall values), a clear decreasing trend with 

increasing sensor noise and a inversed trend for the 

maintenance interval compared to the accuracy. 

 

Figure 9: Sensitivity analysis of damage onset probability, 

sensor noise and maintenance interval 

The reasons for the results are manifold: The first source of 

error and uncertainty lies in the preprocessing step. The 

preprocessing of the event data is rather rudimentary and 

more sophisticated methods are being developed. 

Furthermore, the influence of the window length on the 

methodology needs to be further analyzed. Additionally, 

there is a variety of sources of uncertainties in the simulation 

framework: The noise of the sensor data, the complexity of 

the system setup, the interaction of several damages, the onset 

probability of damages and the inspection intervals. Only a 

few parameters were varied in small scale already: the noise 

of the sensor signals, the amount of damages and the 

interactions between components and multiple sensors.  

5. CONCLUSIONS AND OUTLOOK 

This work presented the first approach to an overall view on 

the interactions of maintenance data and sensor information 

for diagnostic frameworks. A first attempt of improving the 

condition monitoring diagnostic accuracy and a damage 

classification framework through the fusion of maintenance 

data was presented. The results do not show a significant 

increase in accuracy or confidence compared to a benchmark 

approach based only on sensor data. 

The classification results comply with the general problem of 

applying classification algorithms onto real world problems: 

Due to the high class imbalance, which is in the nature of a 

failure monitoring problem, the general accuracy and quality 

of the results can be poor. One point for further research is 

therefore the formulation as a regression problem.  

Table 2: Diagnostic results in comparison 

Method Accuracy Precision Recall F1-score 

𝐷𝑀𝐺  benchmark 0.89 0.93 0.06 0.11 

𝐷𝑀𝐺  MX-fusion 0.89 0.91 0.04 0.08 

𝐷𝑀𝐺  benchmark 0.87 0.96 0.05 0.09 

𝐷𝑀𝐺  MX-fusion 0.88 0.97 0.05 0.10 
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Two major topics are part of ongoing research and results will 

be presented in 2022: On one side, more sophisticated 

preprocessing approaches for the MX data are in 

development, and on the other side, the influence of 

maintenance data quality (also including credibility and label 

confidence) will be further analyzed. Furthermore, 

probabilistic approaches, such as (Dynamic) Bayesian 

Networks and Hidden Markov Models for the classification 

problem will be investigated.   

Further research is also needed to understand the influences 

of the numerous variation parameters of the simulation 

framework: the noise and uncertainty of sensor data in 

combination with corresponding maintenance events, the 

complexity of the system setup, the interaction of several 

damages, the onset probability of damages and many more. 

The field of analysis and further research in this context is 

wide. 

Furthermore, a Bayesian approach seems interesting in this 

context, allowing a quantification of the class probability and 

general confidence of the classification. Furthermore, 

additional features could be added rather easily in a Bayesian 

Network analyzing setup. This kind of classification setup is 

in development. 

Finally, the assessment through the simulation framework 

allows to derive requirements to the data quality for MRO 

internal diagnostic algorithms: For example, the necessary 

label confidence of automatic maintenance report 

classification. To investigate this topic, the setup needs to be 

extended by the uncertainty of technical logbooks and routine 

and non-routine maintenance problems. 
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