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ABSTRACT 

Premature failures caused by excessive wear are responsible 

for a large fraction of the maintenance costs of wind turbines. 

Therefore, it is crucial to be able to identify the formation of 

these failures as early as possible. To this end, a novel 

condition monitoring method is proposed that uses univariate 

and multivariate statistical data analysis techniques to 

construct an anomaly detection framework based on 

temperature SCADA data from wind turbines. The purpose 

of this framework is twofold.  On the one hand it should give 

early warnings for failures, and on the other hand it should be 

able to extract healthy training data from unverified data for 

more advanced machine learning models. A large limitation 

of the latter models is that they require at least one year of 

training data. This is necessary to avoid seasonal dependence 

in the sensitivity of the models. The framework developed in 

this research contains multiple steps. First, there is a 

preprocessing step in which feature engineering and data 

transformation happens. The second step entails anomaly 

detection on the temperature time series data. This method 

uses fleet information to filter out common factors like wind 

speed and environmental temperature. Multiple models are 

combined to get more stable and robust anomaly detections. 

By combining them the weaknesses of the individual models 

are alleviated resulting in a better overall performance. To 

validate the model, temperature and failure data of a real 

operational wind farm is used. Although the methodology is 

general in its scope, the validation case focusses specifically 

on generator bearing failures. 

1. INTRODUCTION 

Under the impulse of a global shift towards renewable energy 

production, there are currently large investments happening 

in the wind turbine industry. According to the Global Wind 

Report 2021 of the Global Wind Energy Council, more than 

90 GW of new wind power installations were installed. This 

brings the total installed energy production capacity of wind 

turbines to 743 GW, which is a growth of 14 % compared to 

the year before (GWEC, 2021). However, to keep the 

investments flowing into the sector, their profitability needs 

to be guaranteed. One of the main factors that influence the 

profitability are the costs, of which maintenance costs are an 

important part. Recent studies have shown that the operation 

and maintenance of wind turbines accounts for 25-40% of the 

levelized cost of energy (Pfaffel, Faulstich & Rohrig, 2017). 

These costs are driven in part by premature failures caused 

by excessive wear on components. These are, among other 

things, the result of high loads caused by environmental 

conditions and aggressive control actions (Verstraeten, 

Nowé, Keller, Guo, Sheng & Helsen, 2019), (Tazi, Châtelet 

& Bouzidi, 2017), (Greco, Sheng, Keller & Erdemir, 2013). 

Being able to predict the failure of a component plays an 

important part in reducing the operational costs of wind 

turbines, since it can avoid unnecessary downtimes. This in 

turn can give a boost to the profitability of the industry.  

This research is a contribution towards the early 

identification of bearing failures. The value of this lies in the 

fact that it should allow the wind farm operators to optimize 

their maintenance schedule and better steer the control of the 

turbines towards an optimal balance between production and 

durability. Next to that this research also focusses on the 

extraction of “healthy” or nominal training data from 
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unverified data. Advanced anomaly detection algorithms 

require such a dataset to learn the normal relation between 

predictors and target. Distortions in the training data, due to 

anomalies of any kind, can lead to errors in the modelling of 

the normal behavior, which in turn lead to poor anomaly 

detection capabilities. The use of simple algorithms that are 

computationally inexpensive alleviates the need for large 

clean datasets. 

In this research we present a framework that is based on more 

traditional statistical techniques like Autoregressive 

Integrated Moving Average (ARIMA), Ordinary Least 

Squares (OLS), cumulative sum control (CUSUM) charts, 

etc… These are well-studied methods that have proven their 

worth in the past. The novelty of this research lies in the 

combination of these relative simple techniques with fleet 

information. This makes anomaly detection on a complex 

system possible with relative simple models. As a validation 

step the framework will be applied on 82 generator bearing 

failure cases coming from a real operational wind farm. The 

general idea is to identify as early as possible bearing 

replacements by attaching an “anomaly” flag to the 

observations. This flag warns the operator that something is 

going wrong. It is also indicative for unhealthy behavior. This 

is important when a training dataset is constructed for more 

advanced machine learning models. All observations labelled 

with the anomaly flag should be excluded from the training.  

The data used to validate the methodology is Supervisory 

Control and Data Acquisition (SCADA) data with a 

resolution of 10 minutes. The observations stretch over a 

period of more than 9 years, during which 82 replacements 

happened that are useful for the validation of the models. The 

results show that the statistical anomaly detector is able to 

predict most replacements months before they actually 

happen. 

2. RELATED WORK 

Much research is done on detecting anomalies in wind turbine 

signals. This has been driven by the fact that more and more 

sensors are being installed on them. More data is a blessing 

for engineers and scientists who depend on it for the 

performance analysis of certain components or the wind 

turbine as a whole. However, too much data can also be a 

curse. It resulted in a drive to automate the analysis of sensor 

data. Many different methods have been and are being 

developed to detect the anomalies. According to Helbing and 

Ritter (2018) a distinction can be made between model-based, 

signal processing and data-driven methods. The data-driven 

models train a normal behavior model (NBM) that predicts 

state values given that the wind turbine is in a normal 

operational state (a normal state is one in which the wind 

turbine has no defects of any kind). This implies that the 

NBM is used for the prediction of the normal behavior. In the 

next step the difference between the observed and predicted 

state values are analyzed. If the difference or deviation 

surpasses a certain threshold it is considered as evidence for 

an anomaly. In practice it means that linear regression, 

machine learning or deep learning models are used to predict 

the normal wind turbine state and that anomaly detection 

methods coming from statistical process control (SPC) like 

for example the exponentially weighted moving average 

(EWMA) chart or another type of statistic are used to assess 

the size of the deviation between the prediction and the actual 

value. The data-driven method is the method that is used in 

this research. In what follows a short overview will be given 

of papers that also use the data-driven method to detect 

anomalies.  

Zhao, Liu, Hu and Yan (2018) use deep autoencoders (DAE) 

for anomaly detection and failure analysis on wind turbines. 

They train a DAE on healthy data, and test it on the remaining 

data. The reconstruction error is used as a measure to identify 

anomalies. To decide whether or not an observation is an 

anomaly, they designed an adaptive threshold based on 

Extreme Value Theory. They apply their methodology on 

several cases like a.o. the identification of anomalies in 

generator rear bearing temperatures. Kusiak and Vera (2012) 

predict bearing faults using SCADA data with a resolution of 

10 seconds. For this they use neural networks to model the 

normal behavior. The predictors for these models were 

selected using a combination of domain knowledge and 

feature selection techniques. A moving average on the 

difference between the observed values and the predictions is 

then used to predict abnormal high temperatures. They 

succeed in predicting errors 1.5 hours before they effectively 

appear.  

Bangalore and Tjernberg (2015) focus on gearbox bearings. 

The authors use an artificial neural network as the basis for a 

condition monitoring system. For the analysis they make use 

of SCADA data. The neural network is used to estimate the 

average 10-minute temperature. This estimation is compared 

to the observed temperature. They use the Mahalanobis 

distance to determine whether the bearings show anomalous 

behavior or not. Kusiak and Li (2010) use SCADA data with 

a 5 minute resolution together with status and fault data. Their 

methodology contains three levels: 1) the identification of the 

existence of a status/fault, 2) predicting the severity of the 

failure, and 3) predicting a specific error. In most cases they 

could predict the error with reasonable accuracy. Papatheou,  

Dervilis and Maguire (2014) also make use of SCADA data. 

The authors use neural networks and Gaussian processes to 

create reference power curves for each turbine in the farm. In 

the next step they investigate how well each power curve fits 

to the other turbines in the fleet. They use a confusion matrix 

of the mean squared errors (MSE) of the predictions for each 

reference power curve on each wind turbine. These MSE 

values are then used to identify anomalies. 

Saputra and Marhadi (2020) develop a condition monitoring 

system (CMS) called Automatic Diagnosis that is based on 

vibration analysis. This system has four steps: angular 
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resampling, identification of peaks, priority labeling and 

frequency tracking. They obtain good results with this 

methodology: a sensitivity equal to 97.62% and a specificity 

of 99.21%. In Meyer and Brodbeck (2020) a machine-

learning based anomaly detection method is developed for 

the detection and quantification of power generation 

anomalies. They do this by combining the predictions of 

several machine learning algorithms, and comparing the 

expected turbine output with the true output. Zgraggen, 

Ulmer, Jarlskog, Pizza and Huber (2021) use a combination 

of convolutional neural networks and linear regression for 

fault detection on wind turbines. As input they use SCADA 

data with a 10-minute resolution. They show that transfer 

learning by transferring a model trained on one turbine to 

other turbines and even fleets is possible. This has great 

advantages when the amount of healthy data is limited. 

Beretta, Cárdenas, Koch and Cusidó (2020) detect generator 

faults using a combination of an autoencoder and alarm log 

data of several fleets of wind turbines. They find that 

combining the two methods increases the performance 

drastically. Hendrickx, Meert, Cornelis, Gryllias and Davis 

(2020) develop a technique that identifies faulty turbines by 

looking at the whole fleet. The anomalies are identified by 

searching for turbines with signatures that deviate from the 

signature of the fleet. Hierarchical clustering and a pairwise 

similarity-based anomaly score are used. 

The detection of anomalies in process data is by no means 

new. At least since the 30s techniques have been developed 

to detect anomalies in processes. For example, the Shewhart 

chart method was published in (Shewhart, 1931). Over two 

decades later the CUSUM chart method was developed in 

(Page, 1955). Specific to this method is that the cumulative 

sum of the process is used to detect changes in the mean of 

the underlying population. This makes this chart much more 

sensitive to small process changes than the Shewhart chart. A 

couple of years later the EWMA chart was described in 

(Roberts, 1959). These methods have however some data 

assumptions that need to be fulfilled. One of those 

assumptions is that the observations are independent of each 

other (no autocorrelation). This is an important assumption 

since it can have a profound impact on the accuracy of the 

control chart if it is ignored. It will also play an important role 

in this research. Bagshaw and Johnson (1974) show that 

CUSUM is not robust for deviations of the independence 

assumption and that it has a large impact on the Average Run 

Length (ARL). Lu and Reynolds (2001) pointed out that tight 

control limits and the presence of autocorrelation can result 

in a much higher false alarm rate.  Unfortunately, many data 

signals in the industry are time series that are sampled at a 

high frequency. This increases the probability of having 

autocorrelation in the data. This is also the case for the data 

used in this research. Several solutions have been suggested 

to cope with autocorrelation.  

On the one hand there are model-based (not to be confused 

with the definition of model-based methods in Helbing and 

Ritter (2018)) solutions that focus on modelling the 

autocorrelation by using ARIMA models. The SPC 

techniques are subsequently used on the residuals or the out-

of-sample predictions. This is a method that is used in for 

example (Alwan & Roberts, 1988), (Kawod & Abbasi, 2016). 

They fit first a Box-Jenkins ARIMA model on the process. 

Next they use SPC techniques on the out-of-sample 

predictions. However, the model-based solutions also have 

their challenges. Kovarik, Sarga and Klimek (2015) point out 

that they require an in-control dataset which is not a 

straightforward requirement in many industrial contexts. On 

the other hand there are model-free solutions that do not 

depend on time series models. Apley and Tsung (2002) 

developed an autoregressive T² chart that can be used on 

autocorrelated data. This technique uses a rolling window on 

top of which a Hoteling’s T² chart is modelled. In contrast to 

(Alwan & Alwan, 1994) no delays are used between the 

samples to break the statistical dependence. Another 

important assumption is that the process is identically 

distributed over time. 

For the interested reader, Helbing and Ritter (2018) provides 

an overview on deep learning-based anomaly detection for 

wind turbines, while Montgomery (2009) provides an 

extensive overview of the statistical process control domain.  

3. METHODOLOGY 

The case that is studied in this paper focusses on generator 

bearings. For this, SCADA data with a 10-minute resolution 

is used. The data contains multiple temperature signals 

related to generator bearings. The study focusses on the 

generator rotor side bearing temperature ( 𝑇𝑟𝑜𝑡𝑜𝑟 ), the 

generator rear bearing temperature ( 𝑇𝑟𝑒𝑎𝑟  )  and the generator 

cooling water temperature ( 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟  ). These are used 

as the targets for the NBMs. Trends in the temperatures are 

considered useful information for the detection of wear, 

which means they are interesting to monitor.  

To detect abnormal behavior, an NBM needs to be designed. 

As discussed in the related work section, NBMs are in general 

created using advanced machine learning and deep learning 

models. The strength of these models is that they are capable 

of modelling complex relations. A disadvantage however is 

that they in general require a large dataset. Since the goal of 

this research is to develop a detector that has low 

computational requirements and can be used for the 

extraction of healthy data that can serve as input for the 

training of advanced machine learning models, an alternative 

type of models is needed. An alternative methodology is used 

that combines fleet information with more traditional 

statistical techniques. The anomaly detector uses a fleet 

aggregated signal temperature to normalize the signal 

temperatures of the individual wind turbines. Also, because 

this research is about bearing wear patterns that form over 

many months, the data is aggregated to a resolution of 1 day. 
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This reduces the amount of noise in the data, which should 

improve the anomaly detection accuracy. 

𝑦𝑖,𝑡 = 𝑓𝑡 + 𝜖𝑖,𝑡                                                (1)                                                    

• i = the wind turbine index 

• t = time step 

• 𝑓𝑡 = common component 

• 𝜖𝑖,𝑡 = idiosyncratic component 

• 𝑦𝑖,𝑡 = raw temperature signal 

The bearing temperature of a specific wind turbine can be 

decomposed in a common and an idiosyncratic part (Eq. 1).  

The common part is composed of factors that affect the whole 

fleet, such as environmental conditions at the site (e.g., 

ambient temperature and wind speed). This common part can 

be modelled by normalizing the wind turbine specific 

temperatures using the fleet behavior. It is a statistical 

calculation, based on the data of the whole fleet, of the most 

likely temperature value. It is important however that the fleet 

is sufficiently large to get a reliable aggregated fleet 

temperature. If the fleet is too small, it is more likely that a 

large percentage of the fleet is in a non-standard state like for 

example a cool-down due to a scheduled maintenance. 

Fortunately, the SCADA data available for this research 

comes from a sufficiently large wind farm. 

Figures 1-3 (plots at the top) show the temperatures for the 

three signals for all the wind turbines of the wind farm. Non-

standard states, such as cool-downs, are also clearly visible 

in the plots. These are the low temperatures that are 

sporadically visible. What is also apparent is that some 

turbines tend to have higher bearing temperatures than most 

other turbines during certain periods. This observation on its 

own is insufficient to conclude that these turbines are 

experiencing an anomaly.  

 

Figure 1: The plot gives an overview of the common and 

idiosyncratic component of the normalized 𝑻𝒓𝒐𝒕𝒐𝒓  signal 

for all wind turbines during a period of two years. The 

first plot (top) shows the normalized temperature signal, 

the second plot (middle) shows the normalized common 

component and the third plot (bottom) shows the 

normalized idiosyncratic component. 

 

 
Figure 2: The plot gives an overview of the common and 

idiosyncratic component of the 𝑻𝒓𝒆𝒂𝒓 signal for all wind 

turbines during a period of two years. The first plot (top) 

shows the normalized temperature signal, the second plot 

(middle) shows the normalized common component and 

the third plot (bottom) shows the normalized 

idiosyncratic component. 

 

 
Figure 3: The plot gives an overview of the common and 

idiosyncratic component of the 𝑻𝒄𝒐𝒐𝒍𝒊𝒏𝒈_𝒘𝒂𝒕𝒆𝒓  signal for 

all wind turbines during a period of two years. The first 

plot (top) shows the normalized temperature signal, the 

second plot (middle) shows the normalized common 

component and the third plot (bottom) shows the 

normalized idiosyncratic component. 

 

The middle plots of figures 1-3 show the fleet bearing 

temperatures for 𝑇𝑟𝑜𝑡𝑜𝑟 , 𝑇𝑟𝑒𝑎𝑟  and 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟 . The 

extremely low and high temperatures that are visible in figure 

1 are now not visible anymore. This indicates that the fleet 

aggregated temperature is an appropriate measure to model 

the common component. Temperature evolutions that can be 

attributed to specific wind turbine conditions are filtered out. 

For example around the end of year 7 and the start of year 8, 

there are multiple turbines that show large dips in the 

temperatures. This evolution is not visible in the fleet 

aggregated temperature.  

The bottom plots of figures 1-3 show the idiosyncratic 

component for each wind turbine. This component contains 

turbine-specific factors of the bearing temperature. The 

idiosyncratic component is calculated by subtracting the fleet 

aggregated temperature from the wind turbine bearing 

temperature. The plots show again clearly the extremely low 
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temperatures that can be associated with cool-downs. Also 

the very high temperatures of certain turbines are again 

visible. If there are wind turbines that have temperature 

anomalies then they can be found in the idiosyncratic 

component, not in the common component. This means that 

the statistical process control algorithms that are used to find 

anomalies need to be used on the time series shown in the 

bottom plots of figures 1-3. 

For the detection of anomalies in the idiosyncratic component 

multiple SPC techniques were tried. The most performant 

univariate technique for this research was the CUSUM. This 

method is simple. Nonetheless it is able to detect even small 

drifts and changes in the data. CUSUM is traditionally used 

to check whether a process is in-control (nominal), or not. 

Examples of application are chemical and industrial 

production processes. However, the technique has also been 

applied to detect anomalies in wind turbines like for example 

in (Xu, Shixiang, Zhongping & Cuixia, 2020) and (Dao, 

2021).  

∈𝑖,�̂�=  𝛽0 + ∑ 𝜑𝑗,𝑖𝑋𝑡−𝑗,𝑖
𝑝
𝑗=1 + ∑ 𝜃𝑗,𝑖𝜀𝑡−𝑗,𝑖

𝑞
𝑗=1                   (2)                                 

𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐼𝑀𝐴,𝑖,𝑡+1 =  𝜖𝑖,𝑡+1 − ∈𝑖,𝑡+1̂                       (3)                                                  

𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐼𝑀𝐴,𝑖,𝑡+1̂ =  𝛽0,𝑖 + 𝛽1,𝑖∆𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟,𝑖,𝑡+1 + 𝛽2,𝑖∆𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑,𝑖,𝑡+1 +

                                       𝛽3,𝑖∆𝑛𝑎𝑐𝑒𝑙𝑙𝑒 𝑡𝑒𝑚𝑝,𝑖,𝑡+1                                  (4)                          

𝑒𝑟𝑟𝑜𝑟𝑂𝐿𝑆,𝑖,𝑡+1 =  𝑒𝑟𝑟𝑜𝑟𝑂𝐿𝑆,𝑖,𝑡+1 − 𝑒𝑟𝑟𝑜𝑟𝑂𝐿𝑆,𝑖,𝑡+1̂              (5)                                     

 

• i = wind turbine index 

• t = time step 

• ∈ = raw time series – fleet aggregate 

• ∈𝑖,𝑡+1̂ = one-step ahead ARIMA prediction 

• 𝛽0, 𝜑𝑗,𝑖 , 𝜃𝑗,𝑖 = parameters of ARIMA model 

• X = lagged terms time series 

• 𝜀 = lagged error terms 

• 𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐼𝑀𝐴= the error made by the ARIMA model. 

• 𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐼𝑀𝐴,̂  = estimate of ARIMA error by OLS 

• 𝑒𝑟𝑟𝑜𝑟𝑂𝐿𝑆 = the error made by the OLS model. 

•  ∆𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟= ‘wind turbine active power’ – ‘fleet 

aggregated active power’ 

• ∆𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 = ‘wind turbine rotor speed’ – ‘fleet 

aggregated rotor speed’ 

• ∆𝑛𝑎𝑐𝑒𝑙𝑙𝑒 𝑡𝑒𝑚𝑝 = ‘wind turbine nacelle temperature’ – 

‘fleet aggregated nacelle temperature’ 

 

 

Figure 4: The plots show the relation between the 

idiosyncratic time series and the predictors before and 

after the OLS is applied for turbine 2. The top plot shows 

the situation before the OLS, the bottom plot after. On 

the x-axis stands the normalized delta active power, the 

normalized delta rotor speed and the normalized delta 

nacelle temperature. The top plot has on the y-axis the 

normalized 𝑻𝒓𝒐𝒕𝒐𝒓 out-of-sample prediction (Norm. 

GBFT OSPE), the normalized 𝑻𝒓𝒆𝒂𝒓 out-of-sample 

prediction error (Norm. GBRT OSPE), and the 

normalized 𝑻𝒄𝒐𝒐𝒍𝒊𝒏𝒈_𝒘𝒂𝒕𝒆𝒓  out-of-sample prediction error 

(Norm. GCWT OSPE). The bottom plot has on the y-axis 

the normalized 𝑻𝒓𝒐𝒕𝒐𝒓  OLS error (Norm. GBFT OLSE), 

the normalized 𝑻𝒓𝒆𝒂𝒓  OLS error (Norm. GBRT OLSE) 

and the normalized 𝑻𝒄𝒐𝒐𝒍𝒊𝒏𝒈_𝒘𝒂𝒕𝒆𝒓 OLS error (Norm. 

GCWT OLSE).  

 

An important assumption of CUSUM is that the data samples 

must be independent and normally distributed (Cheng & 

Thaga, 2005). This is unfortunately not the case for the 

idiosyncratic time series, which is characterized by a strong 

autocorrelation between multiple lags. This property cannot 

be ignored when applying CUSUM since it results in 

unreliable anomaly detections. Several methods have been 

devised to handle autocorrelation in the data: 1) modified 

CUSUM techniques that are able to cope with the 

autocorrelation, 2) batching of the data and leaving gaps 

between the successive observations, and 3) fitting an 

ARIMA model to the data that models out the 

autocorrelation. In this research the last solution is 
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implemented. An ARIMA model is fit on the idiosyncratic 

time series (Eq. 2). Once a suitable model is found, the one-

step ahead out-of-sample predictions are calculated. The 

difference between the predictions and the observations is 

now the time series of interest (Eq. 3). A check of the 

autocorrelation showed that the issue was resolved. There 

were however some deviations from the normal distribution. 

Still, in general they were relatively small.  

A further examination showed that the one-step ahead 

forecast errors exhibit some (weak) correlation with the 

variables ∆𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 , ∆𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑  and ∆𝑛𝑎𝑐𝑒𝑙𝑙𝑒 𝑡𝑒𝑚𝑝 . This 

can be expected, as for example, the active power of a wind 

turbine fluctuates in general around the fleet aggregate, which 

has an influence on the bearing temperatures. If the ARIMA 

one-step ahead prediction error shows a positive or negative 

value that can be explained by certain variables, then that 

error should not be considered an anomaly. If it cannot be 

explained it should be flagged as an anomaly. To cope with 

this a least squares (OLS) model was fit on the one-step ahead 

prediction errors with ∆𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 , ∆𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑  and the 

∆𝑛𝑎𝑐𝑒𝑙𝑙𝑒 𝑡𝑒𝑚𝑝 as predictors (Eq. 4). By using the OLS errors 

the relation with the predictors is removed (Eq. 5). Figure 4 

shows the end result for turbine 2. The clear positive relation 

that is visible in the top plot is gone after applying the OLS. 

The CUSUM method that is used in this research is called the 

‘Tabular CUSUM’. It requires only a small number of 

parameters to be set: K and H. K is usually called the 

reference value, the allowance or the slack value 

(Montgomery, 2009). A general guideline to set K is to equal 

it to half the absolute deviation of the in-control mean and the 

out-of-control mean. H is called the decision interval. If Ci
+ 

(see Eq. (6)) or Ci
- (see Eq. (7)) exceed H then the process is 

considered out-of-control. A common value for H is around 

five times the process standard deviation σ. For each target 

signal, a separate univariate CUSUM was calculated.  

𝐶𝑖
+ = max [0, 𝑥𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ]                           (6) 

𝐶𝑖
− = max [0, (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1

− ]                           (7)     

With 𝐶0
+ =  𝐶0

− = 0 

𝐾 =  
| 𝜇1− 𝜇0 |

2
                                               (8)                                                                           

To smooth out the anomaly detections, a moving average 

filter is applied to the anomaly detections. If the 

concentration of detected anomalies surpasses a certain 

threshold, an anomaly flag is assigned to the observation. If 

this is not the case a no-anomaly or normal flag is assigned to 

it. The threshold used in this research is 0.06. A last step in 

the anomaly detection process is combining the results for the 

three signals. If at least one signal flags an anomaly, meaning 

the anomaly concentration surpasses the threshold for that 

specific signal, then a general anomaly is raised. The general 

anomaly flag gives the operator a first idea whether or not 

something went wrong.  

To validate the methodology, the accuracy is determined by 

calculating the ratio of the number of replacements that are 

immediately preceded by an anomaly flag versus the total 

number of replacements. Furthermore we also calculated how 

much time there on average is between the raising of the flag 

and the replacement. This measure is different from the more 

standard Average Run Length (ARL) metric that is often used 

in statistical process control. The reason for this is that we do 

not exactly know when the problem first appears. This makes 

it impossible to calculate the ARL. The models also flag 

observations as anomalies that are not connected to a 

replacement. These flags are not necessarily false positives, 

as they may be caused by other issues or failures of which we 

have no knowledge. This means that a false positive rate 

cannot be calculated. The best that can be done in this 

situation is assuming that a turbine cannot be all the time in 

an anomalous state, and that anomalies should be clustered in 

time.  

The use of fleet information is not new, e.g. Beretta et al., 

(2020), Hendrickx et al. (2020). The latter is most similar to 

our work. They assume that most wind turbines are healthy. 

Furthermore they assume that the healthy wind turbines are 

grouped in a single cluster, and that this cluster is the largest 

in size. The faulty wind turbines are clustered in smaller 

separate clusters. The anomaly score is then calculated as the 

ratio of the median of the similarities between a specific wind 

turbine and all other wind turbines in the fleet vs. the median 

of the similarities of the wind turbines in the largest cluster. 

In our research no clustering techniques are used. Instead a 

fleet aggregated temperature is calculated based on the 

information in the fleet. This metric is robust for anomalies, 

but it also assumes that the majority of the wind turbines are 

healthy. The anomaly scores are not based on pairwise 

distances like in  Hendrickx et al. (2020), instead they are 

based on the cumulative difference between the fleet 

aggregate temperature and the wind turbine temperature. This 

has several advantages. 1) Calculating pairwise distances 

becomes prohibitively expensive when the fleet is very large. 

This is not the case with our methodology. 2) By using 

CUSUM advantage is taken from the fact that the data are 

time series. This is not the case with the methodology in  

Hendrickx et al. (2020). 3) The methodology presented here 

does not depend on a guess of the number of wind turbine 

clusters. 

4. RESULTS 

For this research SCADA data was available from a large 

operational wind farm. The data stretches over a period of 

more than nine years. The resolution of the data is 10 minutes.  
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Figure 5: Detected anomalies on delta target signals (i.e. 

difference between wind turbine and fleet aggregated 

target signals) for two randomly selected wind turbines. 

The orange points are the identified anomalies. The red 

vertical bars indicate the moment a bearing was replaced. 

“Norm. temp. diff.” stands for “Normalized temperature 

difference” or the normalized difference between the 

wind turbine temperature and the fleet aggregated 

temperature. 

 

Figure 5 shows the CUSUM anomaly detection results (that 

is before the moving average filter has been used) for two 

representative examples. It shows that the model is able to 

identify problems well before the actual replacement. The 

anomalies are also clustered in time which indicates that the 

detections are not just random. Moreover, they are generated 

more frequently toward the replacement, signifying wear 

progression. Each time series is divided into several runs. A 

run is defined as the observations between two replacements. 

The first run is the time series between the first observation 

in the dataset and the first replacement, while the last run 

contains the observations between the last replacement and 

the last observation in the data. This means that turbine 8 has 

three runs and turbine 9 four. Because a replacement changes 

something structurally to the data the model is reset at the 

beginning of each run. This implies that a new ARIMA model 

is learned based on 6 months of information, a new OLS is fit 

and the CUSUM is reset to 0.  

 

Figure 6: Frequency of anomalies in a rolling window 

with a length of 6 months. The plots on the first and third 

row show the anomaly frequency. The orange horizontal 

line is the threshold. The red vertical bars are the 

replacements. The plots on the second and fourth row 

show us the regions that got an “anomaly” flag (height not 

equal to 0). The height of the line gives the cumulative flag 

count. 

 

Although the anomalies are clustered in time, which suggests 

that the methodology is quite stable in nature, there are still 

observations in those clusters that are not signaled as 

anomalies. This is not surprising since the CUSUM gives for 

each single day an indication of whether the temperature 

values seen that day are anomalous or not. This phenomenon 

can be attributed to variability in the data and to a limited 

extent to variability in the methodology. The former is quite 

substantial. The average coefficient of variance for 

𝑇𝑟𝑜𝑡𝑜𝑟 ,  𝑇𝑟𝑒𝑎𝑟  and  𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟  is respectively 3.06%, 

3.46% and 0.85%.   The values for 𝑇𝑟𝑜𝑡𝑜𝑟   and   𝑇𝑟𝑒𝑎𝑟  are 

quite high. The variability in the methodology follows from 

the fact that multiple preprocessing steps are taken: ARIMA 

and OLS model fitting, and then the CUSUM. However, 

these techniques have relative few parameters and as such 

have also a relative limited inherent instability compared to 

more complex models such as neural networks. Nevertheless, 

the instability in the results might be confusing for the user 

or operator. The goal of this research is to present the user 

with an unmistakable clear assessment of the health. To this 

end the CUSUM results will be smoothed, and “anomaly 

flags” will be assigned to the smoothed regions.  These flags 
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are based on the concentration of anomalies in a certain time 

window. To accomplish this the moving average over a 

period of 6 months (rolling window) was taken. If the number 

of anomalies in that period surpassed the threshold, then the 

observation that is associated with the rolling window is 

flagged as an anomaly. 

Figure 6 shows the results of taking the moving average. It is 

apparent that larger homogenous blocks are formed, which is 

more representative for slow and continuous wear 

progression. The threshold to consider a concentration as 

significant is set on 0.06 for all the turbines. This threshold 

balances out the detection accuracy versus the number of 

flagged regions that are not associated with a replacement. A 

lower threshold implies more correctly predicted 

replacements, but also implies more observations that are 

identified as anomalies but are not related to a replacement. 

 

Figure 7: Anomaly flags and replacements for subset of 

25 turbines of the windfarm. Orange are the observations 

identified with an anomaly flag. Blue are the observations 

identified with a no-anomaly flag. The red vertical bars 

are the replacements. White spaces indicate missing 

values.  

 

Figure 7 gives an overview of the replacements and the 

anomaly flags for all the turbines in the windfarm. The 

threshold is here set to 0.01, which is a low (aggressive) 

setting. It is clear from this plot that the large majority of the 

replacements are predicted well before the replacement 

(>92%). A replacement is correctly predicted if it is 

immediately preceded by an anomaly flag (orange bars). In 

some cases there was data missing just before the 

replacement. If there is no data, it is obviously not possible to 

detect anomalies. So these cases were discarded in the 

accuracy calculation. In some cases the replacement came 

very early in the observation period (e.g. the first replacement 

for turbines 3, 16, 20). Also for these replacements it isn’t 

possible to identify anomalies. So they were also discarded. 

 

Figure 8: Anomaly flags and replacements for a subset of 

the turbines of the windfarm. Orange are the 

observations identified with an anomaly flag. Blue are the 

observations identified with a no-anomaly flag. The red 

vertical bars are the replacements. White spaces indicate 

missing values. 

 

Figure 7 also shows that many observations that cannot be 

associated with a replacement are identified as anomalies. It 

is possible that these anomalies are justified, and caused by 

unknown factors. Therefore, they cannot be dismissed as 

false positives. Still, further analysis of these anomalies is 

required to classify them. Moreover, a trade-off exists 

between the number of correctly predicted replacements and 

the overall number of anomalies found. In figure 7 the 

moving average anomaly concentration threshold was set to 

0.01. If the threshold is increased to 0.06 (see figure 8), then 
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we see that the overall number of anomalies decreases 

drastically. The percentage of correct replacement 

predictions unfortunately also decreases (>85%).  

Table 1: Replacement prediction accuracy and the ratio 

of flagged anomalies vs. the no-anomalies. The threshold 

is the moving average anomaly concentration threshold. 

 

Threshold (# 

anomalies / 180 

day window) 

Accuracy (%) Ratio anomalies 

vs. no-anomalies 

0.01 92.68 4.01 

0.02 90.24 3.17 

0.03 87.80 2.63 

0.04 86.85 2.24 

0.05 85.37 1.94 

0.06 85.37 1.80 

0.07 82.93 1.57 

0.08 81.71 1.39 

0.09 79.27 1.25 

0.10 76.83 1.14 

0.11 76.83 1.09 

0.12 76.83 1.01 

0.13 75.61 0.93 

0.14 75.61 0.86 

0.15 74.39 0.82 

0.16 73.17 0.80 

0.17 70.73 0.75 

0.18 68.29 0.70 

0.19 67.07 0.66 

0.20 65.85 0.62 

 

Table 1 gives an overview of how the accuracy and the ratio 

of anomalies / no-anomalies (= the ratio of the number of 

observations that are assigned to the “anomaly” category vs. 

the number of observations that are assigned to the “not an 

anomaly” category)  evolves if the threshold is changed. If 

the threshold is set to 0.01 an accuracy of 92.68% is reached. 

The anomalies / no-anomalies ratio (i.e., = 4.01) is however 

also high. An increase of the threshold quickly reduces this 

ratio, while the accuracy decrease more slowly. This is an 

interesting observation since it allows us to optimize the 

threshold a bit. Depending on the relative importance of the 

accuracy and the ratio of the anomalies vs. no-anomalies, the 

threshold can be decreased or increased. This of course 

depends on the use case and the preferences of the user. 

However, the fact that for accuracies between  75% and 85%, 

the ratio of anomalies / no-anomalies evolves from 0.86 to 

1.94, makes that the user has quite some options to optimize 

the results to his or her needs. It is however fair to say that 

setting the threshold to 0.01 (which results in an anomalies / 

no-anomalies ratio of 4) has relatively little economic value. 

   

Table 2: Mean duration of an anomaly for different 

threshold values. The threshold is the moving average 

anomaly concentration threshold. 

 

Threshold (# anomalies / 

180 days window) 

TTR  (days) 

0.01 828 

0.02 662 

0.03 581 

0.04 513 

0.05 463 

0.06 434 

0.07 368 

0.08 337 

0.09 320 

0.10 314 

0.11 312 

0.12 298 

0.13 291 

0.14 284 

0.15 275 

0.16 271 

0.17 268 

0.18 261 

0.19 250 

0.20 243 

 

Another element of interest is how fast a replacement is 

detected. Since we have no information on the true moment 

of damage initiation, we can only calculate how long in 

advance the anomaly detector signals that something is going 

wrong. We will call this measure Time Till Replacement 

(TTR). TTR depends also on the threshold. A lower threshold 

results in a higher TTR, and vice versa. Table 2 shows the 

evolution of the mean TTR. For a threshold equal to 0.01 the 

mean TTR is 828 days. At a threshold value of 0.06 the TTR 

has already nearly halved. The mean TTR hides however a 

large variance. 
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Table 3: Overview of the number of replacements that are 

detected by the anomaly detector 6 months, 3 months and 

1 month before the replacement itself. The values have 

been given for different threshold values. 

 

Threshold (# 

anomalies / 180 day 

window) 

6 months 

(%) 

3 months 

(%) 

1 month 

(%) 

0.01 74.87 85.35 95.83 

0.02 74.21 82.28 95.61 

0.03 71.93 80.53 96.49 

0.04 71.93 80.96 96.49 

0.05 72.37 81.40 94.21 

0.06 69.74 78.77 92.89 

0.07 59.86 74.82 89.32 

0.08 61.53 75.97 91.81 

0.09 56.29 73.14 90.86 

0.10 57.94 74.71 93.28 

0.11 56.23 74.71 91.81 

0.12 54.75 72.50 88.87 

0.13 50.83 69.56 84.46 

0.14 47.89 68.97 84.46 

0.15 47.89 68.97 85.93 

0.16 45.44 70.44 87.40 

0.17 45.30 69.55 85.51 

0.18 44.64 68.59 85.05 

0.19 45.16 69.11 85.83 

0.20 43.39 69.73 84.30 

 

Table 3 gives us an overview of how often a replacement is 

detected 6 months, 3 months and 1 month in advance given 

different threshold values. As expected the low threshold 

values give more often a long early warning then the high 

thresholds. When the threshold is set to 0.01, 74.87 % of the 

correctly predicted replacements are found at least 6 months 

in advance. For the more conservative threshold of 0.06, this 

percentage is still 69.74%. More than 92% is found at least 

one month in advance. It’s up for debate whether detecting 

the replacement 6 months before the actual replacement is 

valuable since the bearing is still usable for 6 months. 

However, the purpose of this early warning system is to 

indicate to the operator that substantial wear is forming on 

the bearing and that in the near future actions will have to be 

taken. To get more precise predictions of when the bearing 

will fail, the methodology presented here can be used in 

conjunction with other models that allow for more precise 

end-of-life predictions. The advantage is that the areas where 

those other models need to look are fewer since a preliminary 

selection has already happened. Furthermore, the findings are 

also interesting if the methodology presented here is used as 

a preprocessing step (the selection of healthy data) for more 

complex machine learning and deep learning algorithms. By 

flagging the wear on the bearings early on, the healthy data, 

which serves as the basis for training the more complex 

models, is cleaned more properly. This should improve their 

accuracy.   

5. CONCLUSION 

The purpose of this research was to develop an ensemble of 

advanced statistical anomaly detection methods that can 

detect bearing failures months before they actually happen. 

To that end SCADA data with a resolution of 10 minutes was 

used of a large operational wind farm, for which we had over 

9 years of data. The method is based on traditional statistical 

methods because those require less data and are less 

computationally intensive. The disadvantage is however that 

they require more preprocessing and are potentially not as 

performant as machine learning and deep learning 

techniques. The end goal was to develop a method that can 

be used to extract healthy data, which can then be used as 

input to the more advanced models.  

The methodology assumes that the bearing temperature time 

series can be decomposed in a common and an idiosyncratic 

component. The common component is modelled using an 

aggregate of the temperatures of all the wind turbines in the 

fleet. This fleet aggregate can be seen as a model for the 

normal temperatures that are caused by general, meaning not 

wind turbine specific, factors. The fleet aggregate is here used 

instead of an advanced machine learning or deep learning 

model. The reason for this decision is that it isn’t entirely 

clear which factors all have an impact on the bearing 

temperatures of real wind turbines. We also don’t have data 

on all the relevant factors. So using the fleet aggregate 

circumvents this problem. By normalizing the wind turbine 

signal temperatures (by subtracting the fleet aggregate from 

them), we find the wind turbine specific deviations from the 

fleet normal (the idiosyncratic component). Part of it is 

caused by normal turbine characteristics that make the 

turbine deviate slightly from its peers. This can be due to e.g. 

higher active power, a higher rotor speed. These turbine 

characteristics were modelled out using OLS. The rest of the 

idiosyncratic component can be attributed to noise and 

abnormal deviations. To distinguish abnormal deviations or 

anomalies from noise the CUSUM method is used which is 

able to detect even small shifts in the mean temperatures.  

The end result is an anomaly detector that is able to detect 

most replacements long before they actually happen. 

However, depending on certain parameters, more or less 
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anomalies are detected that are not related to a replacement. 

There is a trade-off between the accuracy of the model in 

predicting replacements and the number of anomalies that are 

found that are unrelated to replacements. The latter anomalies 

can’t just be called false positives since they might very well 

correspond to real issues of which we don’t have information.  
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7. NOMENCLATURE 

ARIMA  Autoregressive Integrated Moving 

  Average 

OLS  Ordinary Least Squares 

CUSUM  cumulative sum control 

SCADA  Supervisory Control and Data Acquisition 

NBM  normal behavior model 

SPC  statistical process control 

EWMA  exponentially weighted moving average 

DAE  deep autoencoders 

MSE  mean squared errors 

CMS  condition monitoring system 

𝑇𝑟𝑜𝑡𝑜𝑟   generator rotor side bearing temperature 

𝑇𝑟𝑒𝑎𝑟   generator rear bearing temperature 

𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟  generator cooling water temperature 

GBFT OSPE 𝑇𝑟𝑜𝑡𝑜𝑟  out-of-sample prediction error 

(ARIMA) 

GBRT OSPE 𝑇𝑟𝑒𝑎𝑟  out-of-sample prediction error 

(ARIMA) 

GCWT OSPE 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟  out-of-sample prediction 

error (ARIMA) 

GBFT OLSE 𝑇𝑟𝑜𝑡𝑜𝑟  ordinary least squares error 

GBRT OLSE 𝑇𝑟𝑒𝑎𝑟  ordinary least squares error 

GCWT OLSE 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑤𝑎𝑡𝑒𝑟  ordinary least squares error 

𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐼𝑀𝐴  The error made by the ARIMA model. 

𝑒𝑟𝑟𝑜𝑟𝑂𝐿𝑆  The error made by the OLS model. 

∆𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟  wind turbine active power - fleet 

aggregated active power 

∆𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 wind turbine rotor speed – fleet aggregated 

rotor speed 

∆𝑛𝑎𝑐𝑒𝑙𝑙𝑒 𝑡𝑒𝑚𝑝 wind turbine nacelle temperature – fleet 

aggregated nacelle temperature 

OLS Ordinary Least Squares 

K reference value CUSUM 

H allowance or slack value CUSUM 

ARL Average Run Length 

TTR Time Till Replacement 
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