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ABSTRACT 

One failure mechanism of gear wheels is pitting. If the gear 

wheel is case hardened, pitting degradation dominates 

normally at one tooth only. All the other teeth are still intact 

at the standardized end of life criterion of 4 % pitting area 

based on the total tooth area.  

Using an adaptive operational strategy that was developed at 

the Institute of Machine Components, the service life of gear 

wheels can be extended by a local stress reduction at the 

weakest tooth. This is accomplished by applying an adapted 

torque at the transmission input that shifts a minimum torque 

in the area of the pre-damaged, and thus, weakest tooth. 

Consequently, all remaining teeth with higher load bearing 

capacity are subjected to higher torque. Prerequisite for the 

described theoretical operational strategy is knowledge on 

pitting-size and -position. The detection of these properties in 

operation is not state of the art yet.  

In this work, only the gearbox vibration signal is known 

without explicit knowledge about the inside pitting. The 

challenge is to determine the health for each individual tooth 

and to choose an optimal adapted torque based on this. This 

is especially difficult due to differing growth rates of pittings 

on one individual gear wheel. Hence, different pittings 

dominate over the service life, which results in the need of a 

continuous optimization of the torque control. 

Algorithms of Reinforcement Learning (RL) are particularly 

suitable for this challenge. In this branch of Machine 

Learning (ML), an agent interacts inside an environment and 

learns by getting rewards for taking actions at given states. In 

this study, the environment is a gearbox-simulation-model, 

the state is the current vibration signal, and the action is the 

chosen adapted torque. Thus, it is possible to let the algorithm 

learn the whole operational strategy, from online failure 

detection to an adapted torque at the transmission input. 

The results of this study show the theoretical feasibility of the 

operational strategy using Double Deep Q Networks as the 

RL Algorithm. The algorithm is able to learn a suitable 

reaction to pittings that increase linearly or progressively at 

an early stage and therefore delays their growth within the 

defined limits. Thus, the lifetime of the gearbox is extended 

while maintaining the same total power of the gearbox. As an 

outlook, the results will be examined for their sensitivity on 

several influencing factors in a further study. The wider view 

is to use this simulation on a test rig and validate the results. 

1. INTRODUCTION 

Is it possible to increase the remaining useful life (RUL) of 

gear wheels? In fact, pitting degradation at gear wheels 

normally occurs at one tooth only. So, all the other intact teeth 

carry unused potential for the service life of gear wheels. To 

be precise, pitting is one of the most common and critical 

failure mode of gear wheels besides tooth root breakage. 

Pitting failure normally occurs below the pitch circle and 

describes spallings of the flank due to cracks underneath the 

case-hardened surface (Naunheimer, Bertsche, Ryborz, and 

Novak, 2011). 

According to the 2006 International Organization for 

Standardization [ISO] report the failure criteria is a 4 % 

pitting area at one working tooth flank and therefore this 

single tooth is responsible for the failure of the gear wheel. 

With regard to this failure criteria, all the other teeth are still 

intact at the time of failure. Although some teeth may have 

smaller pittings. So, the pitting damage at the circumference 

is uneven and the question arises, if a more even distribution 

of the pitting damage is possible with an uneven distribution 

of the load. 
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Previous studies, based on real data and statistical analysis, 

have shown, that the potential of a local stress reduction at 

the weakest tooth is huge. Under certain conditions, a service 

life extension between 10 and 45 % is possible although this 

study used a conservative assumption (Gretzinger, Lucan, 

Stoll, and Bertsche, 2020). 

The detection of pitting failure in gearboxes is state of the art, 

but not the localization of the pitting on the gear wheel. The 

main objective of this work is to extend the service life of 

gear wheels by applying an optimal adapted load. Therefore, 

each failure has to be detected, the corresponding tooth 

position has to be localized and the pitting size has to be 

evaluated. Moreover, this evaluation has to be done within 

operating conditions. Based on this information, the optimal 

adapted load over all teeth states has to be evaluated. Finally, 

the weakest tooth can get a stress reduction.   

The tooth health information is built upon a vibration signal, 

measured at the housing continuously within operation. In 

order to tackle the complexity of detection, localization, 

evaluation and optimal load adaption, a Reinforcement 

Learning (RL) is used in this paper, which is particularly 

suitable for this challenge. Hereby, the greatest possible 

flexibility of the task can be attained. The aim is to perform 

an automated, self-learning RL Algorithm to adapt the load 

by using the vibration signals of the gearbox. 

In a first step, the application of a RL Algorithm shall be 

carried out by means of a gearbox simulation model which is 

particularly build for this purpose. This digital twin of a real 

test bench is used to test and evaluate Algorithms in prior to 

build them in the real world, as a state-of-the-art procedure in 

RL. This gives the possibility to simulate and evaluate 

different scenarios and in addition, the effect in case of errors 

is manageable in contrast to a real application. In future work 

the RL Algorithm can be applied to a test bench setup.  

Motivation and Goal 

It is assumed that a positive effect on the service lifetime of 

gear wheels can be achieved with a RL Algorithm. This 

publication thus makes a valuable contribution to 

sustainability and conservation of resources, as the service 

life of gears can be extended or, with the same service life, 

oversizing can be minimized and thus the tooth width 

reduced. 

The novelty lies in the theoretical applicability of 

reinforcement learning to extend gearbox life without losing 

the overall power of the gearbox and the need for design 

changes. Especially, the ability to detect the exact location of 

weakest tooth of a gear wheel is an advantage over the current 

state of art.  

This paper addresses developing an RL Algorithm … 

• that is able to learn from vibration data only, 

• that is able to detect the weakest tooth of a gear wheel 

automatically using only vibration data, 

• that controls the input torque in a manner that increases 

the service life of the gear wheel, 

• that can identify weakest tooth reliably and output the 

service life extension using an adapted torque. 

2. FUNDAMENTALS 

In this chapter, we introduce the core concepts that are needed 

to fully understand the contents of this paper. These core 

concepts form the basis for the gearbox toolbox, the stress-

strength interference for lifecycle determination of the gear 

wheel, the needed vibration data, and the RL agent. 

2.1. Health Detection, Localization and Evaluation 

In current applications of gear wheels, different methods for 

the detection measurement are possible, e.g. visual inspection 

of the machine during maintenance, analysis of particles in 

the oil and the measurement of structure-borne 

noise/vibrations of the housing. As the vibration 

measurement is the only permanent and continuous one, this 

method is established as method for damage detection 

(Nguyen, 2002; Bartelmus, 2011; Randall, 2010). Each gear 

component emits structure-borne noise during operation. 

Depending on the transmitting structure between emitter and 

sensor, signal patterns can be assigned to individual 

components. The investigation of structure-borne noise for 

early detection and diagnosis of damage is an established 

procedure, see also VDI guideline (VDI 3832, 2013). 

2.2 Vibration Modeling 

For the main components within the gearboxes, e.g. gear 

wheels, bearings and shafts, some equations for the occurring 

vibrations are available. According to (Heider, 2012) the 

decisive variable for influencing the tooth mesh frequency is 

the number of teeth. The following equation describes the 

tooth mesh frequency. 

 𝑓𝐺 = 𝑓𝑛 ∙ 𝑛𝐺 (1) 

Here, 𝑓𝑛 represents the rotational frequency of the shaft and 

𝑛𝐺 the number of teeth. For the bearings different frequencies 

are relevant as they consist of an inner and outer ring and the 

rolling elements in between. For the estimation of the 

frequencies without geometric dimensions of the individual 

bearing components (VDI 3832, 2013) gives the following 

equations:  

 𝑓𝐾 = (0.4 . . . 0.45) 𝑓𝑛 (2) 
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 𝑓𝐼 = (𝑓𝑛 − 𝑓𝐾) 𝑍 (3) 

 𝑓𝐴 = 𝑍 ∙  𝑓𝐾  (4) 

The frequency of the rolling elements 𝑓𝐾 is contained in the 

frequencies of the inner ring 𝑓𝐼 and outer ring 𝑓𝐴. In addition, 

the number of rolling elements 𝑍 is relevant. 

In the spectrum of the frequencies, the harmonics must also 

be considered as well as different factors that influences the 

vibration signal. These factors can be divided into primary 

and secondary. For the primary factor design parameter, such 

as geometry of the component and the material, and the 

production technology are relevant. The secondary factor 

includes the current operation and the change of the operating 

conditions. (Bartelmus, 2011).  

Various evaluation methods are used for gear diagnosis. The 

Fourier Transformation is for example a very easy technique 

(McFadden, 1986; Brigham, 1988). Furthermore, the 

Wigner-Ville distribution (Choy, 1996), Wavelet 

transformation (Wang, 1995; Bader, 2006) and the cepstrum 

analysis (Randall, 1980; Badaoui, 2001). 

2.2. Woehler Curve 

The calculation of fatigue strength is often done by using a 

Woehler curve. Here, the applied stress amplitude and the 

tolerable load cycles are correlated. Therefore, the Woehler 

curve is also called SN-Curve (Bertsche & Bullinger, 2007). 

The characteristics of the double logarithmic curve are shown 

in the following figure 1 (Bertsche & Bullinger, 2007). 

 

Figure 1. Woehler curve. 

Three zones are visible, the horizontal line of the static 

strength up to 10,000 load cycles, the fatigue strength with 

the sloped line and the endurance strength with the horizontal 

curve from approximately 106 load cycles. The fatigue 

strength can be described with the following equation 

(Bertsche & Bullinger, 2007). 

 𝑁𝑖 = 𝑁𝐷 (
𝜎𝑖

𝜎𝐷

)
−𝑘

 (5) 

In the development of transmissions is a second 

representation of the Woehler curve established. In contrast 

to the tolerable stress, the input torque of the transmission is 

applied over the load cycles to failure. The fatigue strength 

can be described equivalently. 

 𝑁𝑖 = 𝑁𝐷 (
𝑇𝑖

𝑇𝐷

)
−𝑘𝑇

 (6) 

For gear wheel pitting, the stress depends on the torque via 

root function resulting in the following relationship 

(Naunheimer et al., 2019): 

 𝑘 = 2 ∙ 𝑘𝑇 (7) 

2.3. Reinforcement Learning 

Reinforcement Learning (RL) can be seen as a subdomain of 

Machine Learning, like Supervised Learning. While in 

supervised learning the ground truth output is known, this is 

not the case for RL. RL is concerned with sequential decision 

making and control tasks, where the correct output is often 

unknown (e.g. in learning a robot to walk, where the optimal 

actions are unknown). Instead, a reward is provided to the 

algorithm giving feedback about a good or bad decision. That 

way, a specific problem is addressed by automatic learning 

of optimal decisions over time (Lapan, 2018). In this paper, 

we use this characteristic of RL algorithms to achieve the 

goals declared in chapter 1. 

Figure 2 shows the communications between the entities of 

the RL algorithm. In short, the algorithm consists of two 

entities (agent and environment), who communicate through 

three interfaces (reward, state, and actions).  

 

Figure 2. Reinforcement Learning configuration. 

The agent interacts with the environment through actions. In 

this case, the agent is learning how to adapt the input torque 

on our test bench (or the digital twin: gearbox toolbox) in 

order to maximize the reward, and hence, the service life of 
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the gear wheel. A detailed introduction to our test bench and 

its digital twin is given in chapter 3. The environment 

communicates with the agent through states and rewards. The 

state is the vibration signal coming from the test bench. It is 

being used to identify the weakest gear wheel tooth and to 

determine when to adapt the torque in order to reduce the 

load. The reward communicates how well the agent’s actions 

contributed to the extension of the service life of the gear 

wheel. As can be seen from this configuration, the agent and 

environment interact in a loop, where the agent takes an 

action, and the environment responds with a reward. The goal 

is to maximize the accumulated reward until the End-of-Life 

(EoL) of the gear wheel is reached (Lapan, 2018). 

Double Deep Q Networks (Double DQN) and Signal 

Energy 

Choosing the action with highest Q-value does not always 

result in an optimal decision. In order to avoid unrealistically 

high action values, and therefore prevent the agent from 

always choosing the action with the highest so-called Q-value 

in any state, Double Deep Q Networks are highly 

recommended by leading experts (Hasselt, Guez, and Silver, 

2015). This algorithm uses a Neural Network architecture and 

deals with the overestimation problem mentioned above. For 

more details regarding the Double DQN, see Hasselt et al. 

(2015). 

The success of an RL Algorithm strongly depends on how 

well the reward signal frames the goal. It is possible that the 

agent learns how to reach high reward in a way that is 

dangerous or malfunctional to the environment. While a 

positive reward encourages the agent to keep on going to 

accumulate as much positive rewards as possible and avoid 

terminal states, a negative reward encourages to end an 

episode as fast as possible. 

There are multiple ways to shape the reward in respect to real 

work applicability. On the one hand, reward shaping can be 

based on high end diagnostic models detecting, locating, and 

assessing the real teeth degradation. Building and transferring 

these models to other gearbox designs is often quite 

challenging. On the other hand, the reward signal can be 

shaped based on the gearbox lifetime. The lifetime is 

relatively easy to access without a high-end measuring 

system. Additionally, the lifetime is a direct measure of the 

learning goal “service life extension. In this case the learning 

ability of the RL Algorithm is being used to detect, locate, 

and access. 

In detail, the reward corresponds to the achieved difference 

in lifetime ∆𝑡  between the current and the previous 

measurement point (step of the learning algorithm) 

calculated. This is scaled by a factor of 10−6, so that 1 ∙ 106 

cycles correspond to a reward of 1. The reward function is 

given by equation 8. In addition to the direct measurement of 

the target variable, this reward signal offers a simple 

interpretability.: 

 𝑅𝑡 = ∆𝑡 ∙ 10−6 (8) 

3. STRATEGY FOR LIFETIME EXTENSION OF GEAR 

WHEELS 

This chapter introduces the adaptive operational strategy that 

was developed using data from testing gear wheels on a 

custom test bench (see chapter 3.1). Also, the data from the 

test bench was used to program and validate the gearbox 

toolbox.  

In practice, a constant torque is currently applied to a 

gearbox. It can change due to a load spectrum, but it remains 

nearly constant concerning one revolution. The gearbox is 

operating in this specific load spectrum until a system failure 

occurs that is detected by a condition monitoring system. This 

case is shown in figure 3 on the left side. One flank of the 

gear wheel degrades until the End-of-Life criterion of 4% 

pitting area is reached. 

Preceding studies for extension of service life of gear wheels 

use online damage accumulation to estimate the health of the 

gearing on the basis of torque and speed. If a certain pre-

defined accumulated damage is reached, the input torque of 

the transmission is reduced in order to increase the remaining 

useful life (Foulard, 2015). But the transmission power for all 

teeth is reduced. Hence, all teeth undergo a reduced stress 

although only one tooth (the weakest) leads to a failure of the 

gear wheel. The scattering in the load capacity of the 

individual teeth is therefore not considered. 

In contrast to the state of research, the scattering in the load 

capacity is considered in the present work. The strategy for 

lifetime extension of gear wheels is shown in figure 3 on the 

right side.   

Here, the information about a progressing pitting is used to 

start a PHM (Prognostics and Health Management)-Control 

Loop. The existence and localization of a pitting influences 

the control of the input torque and a local stress reduction at 

the pre-damaged tooth is carried out. Due to this local stress 

reduction the growth of the pitting is slowing down and an 

increase in lifetime is possible. All the other more loadable 

and therefore intact teeth undergo a higher stress in the form 

of a higher input torque so that the power concerning one 

revolution can stay the same. This is a great advantage over 

the state of research.  

The adapted input torque can have different shapes. The 

sinusoidal oscillation is a very simple possibility of local 

stress reduction. Only the amplitude of the oscillation must 

be specified. The frequency results directly from the speed of 

the gear wheel and the phase from the position of the weakest 

tooth. With this signal a constant average power is 

guaranteed. Furthermore, there are two options for a 
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rectangular function as adapted input signal. First, the area of 

the weakest tooth can get a reduced stress and all the other 

teeth receive an unchanged torque. 

 

Figure 3. Lifetime extension of gear wheels. 

 

However, the disadvantage is that the overall power output of 

the gearbox is reduced. For this reason, a second rectangular 

function was developed. The area around the weakest tooth 

is the same as the first rectangular variant but here, the other 

more loadable teeth receive a higher torque so that there is no 

loss in overall power concerning one revolution. The 

advantage over the sinusoidal oscillation is that the maximum 

torque, and therefore the maximum stress, is lower as all the 

intact teeth compensate for the reduced stress at the weakest 

tooth. Within the sinusoidal oscillation the tooth at the 

opposite of the weakest gets a very high stress. If this tooth is 

the second weakest, the increase of lifetime is clearly weaker. 

The optimum adapted torque could be achieved, if the health 

of each tooth is known. Each tooth can then get his own stress 

and the damage around the circumference could be very 

smooth. In this case the failure of the system is not dependent 

on the weakest tooth only and the second failure criteria for 

the ISO 6336 applies. The gear wheel fails, if 0.5 % of the 

total working flank area is damaged by pitting.  

3.1. Test Bench  

At the Institute of Machine Components an electrical stress 

test bench is used to investigate the degradation of gear wheel 

pitting. This test bench is shown in figure 4 (Gretzinger, 

2020). 

 

Figure 4. Real world test bench. 

Two electrical machines can be seen in the picture, the left 

one is the drive unit and the right one the brake unit. In the 

middle, a single stage test transmission with a serial gearing 

is mounted. The number of teeth is 21 for the pinion at the 

input and 41 for the gear wheel at the output. Accordingly, 

the ratio of this helical gearing is 1.952. 

With this test setup degradation tests are run with the aim of 

getting the Woehler Curve of this gearing at different pitting 

sizes. Two constant stress levels were tested, 175 Nm and 

200 Nm at a constant output speed of 1300 rpm and oil 

temperature of 90 °C.   

The investigation focused on the degradation measurement of 

the pinion, which is why the test was interrupted each 0.25 

million load cycles and a negative imprint of the biggest 

pittings were made. The size of this pittings were then 

analyzed in 3D with a Keyence laser microscope with 20x 

magnification. The result of this measurement is shown in 

figure 5.  

 

Figure 5. Gear pittings: Close up. 

The test was terminated, if the working flank of one single 

tooth achieved the standardized end of life criterion of 4% 

pitting area. Furthermore, the vibrations of the gearbox 

housing were measured continuously.  
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3.2 Life Data Analysis of the Degradation Tests 

The results of the above-mentioned tests were analyzed in 

different ways. First of all, the degradation path of the pittings 

were investigated. This is necessary to model the growth of 

the pittings and also to fit distribution functions of the load 

cycles at different pitting sizes. Following generic 

mathematical model can be used for all pittings as validated 

in Gretzinger (2020): 

 𝑓(𝑥) = 𝑎 ⋅ 𝑒𝑏𝑥 + 𝑐 (9) 

As an example, a degradation path for one gear pitting is 

shown in figure 7. The data points in the diagram represent 

the measurement points and the grey line the regression of 

the degradation path. 

 

Figure 6. Degradation path for a gear pitting. 

The test was stopped at 11 million load cycles because 

another pitting at this pinion reached the 4 % criteria. But 

with this regression model, all pittings at the circumference 

could be extrapolated to the end of life and the data could be 

used to generate a distribution function. This distribution 

function therefore represents all the pittings at the pinion and 

not only the failure of the whole system as it is done in the 

state of the art (Beslic, Mueller, Yan, and Bertsche, 2017). 

The investigated distribution functions for different pitting 

sizes were published in (Gretzinger, 2020).  

3.2. Gearbox Toolbox 

As the real gearbox, the simulation toolbox consists of four 

bearings, two gears, and the shafts as shown in figure 9. For 

all components, the vibration behavior is modeled. The 

degradation behavior is only modeled for the gears as 

observed in the experimental study. 

 

Figure 7. Gearbox design. 

 

There are various ways to model system vibration or system 

degradation. For example, finite element methods (FEM) can 

be used in both cases. While the results might be quite 

accurate the computational cost is high. To simulate hundreds 

of episodes it would take a couple of weeks, which is not 

feasible. Other methods to model vibrations are mechanical 

systems modeling based on mass, stiffness, damping and 

various other parameters. These parameters are unknown for 

the given test bench and their determination is time and cost 

intensive. In this case neither the computational cost nor the 

detailed analyses on stiffness and damping are feasible. 

Therefore, the simulation model is based on the statistical 

analysis of the real test bench along with the general 

assumptions for vibration modeling. All factors are modeled 

in a holistic approach, utilizing a wide spectrum on flexibility 

for adaption and sensitivity studies. For a detailed 

explanation on how the toolbox was developed and validated, 

see (Henss, 2020). 

4. APPLYING THE RL ALGORITHM 

In order to tune the hyperparameters of the RL algorithm, we 

explore thousands of model architectures and select the 

hyperparameter set that maximizes the accumulated rewards 

until the EoL of the gear wheel. Figure 8 shows several high 

performing hyperparameter sets that extend the service life of 

the gear wheel in comparison to the initial gear wheel lifetime 

without any adaptive operational strategy.  

 

Figure 8. Benchmarking Double DQN. 
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It is evident that a tuned and trained RL algorithm has 

significantly higher rewards than the non-adaptive 

operational strategy. The RL algorithm enables to 

automatically detect the weakest tooth and applying the 

adaptive strategy explained in chapter 3. The accumulated 

reward can only be maximized, if the true weakest tooth was 

chosen by the RL algorithm. If the false tooth is chosen, the 

weakest tooth has an increased load, which would result in a 

shorter service life of the gear wheel. But in this paper, we 

solely model the weakest tooth and not the other teeth on the 

gear wheel. Therefore, choosing the wrong tooth does not 

result in a shorter lifetime in our simulation setup and the 

reward represents the initial lifetime in 106 cycles. 

Table 1 compares the RL algorithm to the ideal operational 

strategy introduced in chapter 3. Both approaches 

significantly extend the lifetime of gear wheels.  

 

5. CONCLUSION AND OUTLOOK 

This paper is the first to prove the theoretical applicability of 

reinforcement learning to extend gearbox life. Specifically, 

the service life is extended by 8.24 %, which saves costs and 

resources. The service life extension is achieved without any 

change in design or utilization, but solely based on an 

intelligent operating strategy. The operating strategy is 

learned independently by a reinforcement learning algorithm, 

based on a reward that rewards long gearbox service life.  

The basis of the training is a gearbox simulation environment 

to enable the high demand of training episodes. The 

simulation environment is a replica of a real test bench to 

make the conditions as realistic as possible.  

There are two limitations in this paper. The first one is that 

the simulation code currently can only consider the lifetime 

of the weakest tooth. All other teeth’s lifetime is not 

considered, yet. Also, choosing the wrong tooth as the 

weakest tooth does not result in a penalty. An update to 

address both limitations is currently in the works. 

A next step is the further optimization of the RL algorithm 

based on fast test series in the simulation environment. 

Another step is the transfer of the pre-trained algorithm to the 

real test bench.   

The use of an RL algorithm shown in this work to extend 

service life by optimizing the operating strategy, can 

theoretically be transferred to a variety of other 

systems/products or processes. 

NOMENCLATURE 

𝑎, 𝑏, 𝑐 Parameters of the exponential function 

𝑘, 𝑘𝑇 Slope of the Woehler Curve 

𝑁𝑖, 𝑁𝐷 Number of load cycles  

x Random variable 

𝜎𝑖, 𝜎𝐷 Stress 
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