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ABSTRACT

The vehicle suspension system, including springs, dampers
and stabilizer bars are critical to vehicle riding and handling
experience. Automatic fault detection, isolation and failure
prognosis of the suspension system will greatly improve
vehicle perceived quality, serviceability and customer
experience. In our previous work, a static diagnostic
approach using a ramp with the known slope is proposed.
Even though the method can effectively isolate the
suspension system faults to each vehicle corner, it requires
additional setups at dealerships. In this work, a passive
approach using the vehicle pitch and roll models is presented,
which can accurately isolate broken springs, leaking
dampers, and broken stabilizer bars. Some enabling
conditions are proposed to improve the overall algorithm
robustness. The proposed solution is verified using the data
collected from a test vehicle.

1. INTRODUCTION

Suspension systems, including springs, dampers and
stabilizer bars, are critical to the vehicle ride and handling
experience. For most passenger vehicles, the main type of
springs is the coil spring. The coil spring is a compression
spring, which transfers the kinetic energy to the potential
energy. The stabilizer bar, also called sway bar or anti-roll
bar, is a type of torsion springs, which reduces the vehicle roll
angle during cornering. The vehicle damper, also named
shock absorber, is a hydraulic device to absorb external shock
impulses. Common vehicle damper contains check valves
and orifices that control the internal oil flow with an internal
piston. Due to the oil viscosity and the piston resistance,
when the damper is compressed, the kinetic energy is
transferred to heat, which is used to reduce the shock.

The suspension components degrade overtime. Most
suspension components are diagnosed by the technicians’
inspection during the maintenance, which associates with
labor costs and maintenance time. A real-time and accurate
diagnostic solution to detect and isolate the spring, damper
and stabilizer bar faults, allows early detection before failures
occur. As a result, it can greatly enhance customer
satisfaction and perceived quality, vehicle serviceability and
availability, which in turn can reduce the warranty/repair cost
and fleet maintenance cost. The common failure mode for
vehicle springs is the broken spring. It may be due to
corrosion, fatigue or overloading. Several diagnostic
approaches for the faulty springs are proposed in (Yin &
Huang, 2015), (Pravin & Sivakumar, 2019) (Muhammad &
Douglas, 2005) (Zhao & Wang, 2004), (Nozaki & Inagaki,
1998), (Börner, Straky, Weispfenning, & Isermann, 2000),
and (Luo, Pattipati, Qiao, & Chigusa, 2008). The main
methodologies include the data driven based vehicle
vibration frequency analysis and physics-model based fault
characterization. The readers are referred to our previous
paper for more details of spring fault diagnostics (Du, Mai, &
Sadjadi, Fault Diagnostics and Prognostics for Vehicle
Springs and Stablizer Bar, 2020).

The most common fault of the vehicle damper is the oil
leakage, due to the accidents or the material fatigue. When it
occurs, the functionality of dampers is affected, which results
in a bouncier driving experience, and the driver may feel
vibration of the steering wheel. There exist some papers on
vehicle damper diagnostics. One common method is the
vibration-based frequency analysis. A diagnostic solution,
which employs the Fast Fourier Transform (FFT) and the
cross-spectrum graphs, is described in (BIAŁKOWSKI &
KRĘŻEL, 2017). Accelerometers are mounted on the
vehicle, and the vibration response is analyzed. The vibration
amplitudes of each test are calculated using the spectrum
analysis. The coefficient is then calculated using the
maximum amplitude of each test divided by the band power.
For the faulty damper, the coefficient is significantly higher
than the one generated from the healthy damper, which
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indicates that it is a good fault signature to detect the damper
faults. Another method by monitoring the magnitude of the
system vibration frequency is introduced in (Alcantara,
Brooks, Lopez , Menendez, & Mendoza, 2013). The semi-
active suspension scheme is built using the magneto-
rheological damper. The damper faults can be identified from
the information of specific frequency ranges and a road
profile amplitude compensation. As a baseline, the road
profile amplitude in frequency domain can be established
using acceleration data with healthy dampers. The faulty
damper causes the magnitude of the suspension system
resonance peaks to increase, which can also be identified
from the bode diagram. In another word, the suspension
system with faulty dampers shows the higher magnitude of
steady state frequency response when passing the same road
profile, which is used for damper faults detection. Recently,
machine learning techniques are also applied in damper
diagnostics. One typical approach using the Convolutional
Neural Networks is shown in ( Zehelein, Pottmann, &
Lienkamp, 2020). The vehicle driving data, such as
longitudinal acceleration and wheel speeds, and the vehicle
damper health states are collected and processed after trend
removal. FFT is applied for the vibration frequency analysis.
Frequency features, such as peak spectrum amplitudes and
corresponding frequencies, of every unique vehicle
configuration with different damper effects are classified.
The actual classification is performed in the fully connected
layer using the averaged frequency analysis data points. The
experiment results show a high accuracy for damper fault
detection. Another solution proposed in (Koláček & Dostál,
2013) employs the tire force information for damper
diagnostics. The test vehicle is placed on the vibration
platform with the known vibration frequency. The contact
forces on the tire are measured to characterize the efficiency
of external shock compensation by dampers. The
experiments with the faulty damper show longer tire force
oscillation time and higher frequency of the tire force
variation. However, this solution requires a specific test
platform and technicians to perform the measurement and
analysis, which may be costly for a large fleet of vehicles.

For the stabilizer bar fault diagnostics, to the best of our
knowledge, there is no paper published.

In summary, there is no established method that is both fast
and accurate. To bridge the gap, we proposed a static ramp
test scheme (Du, Mai, & Sadjadi, Fault Diagnostics and
Prognostics for Vehicle Springs and Stablizer Bar, 2020) in
2020 to quickly detect and isolate spring and stabilizer bar
faults. Even though the diagnostic results are accurate (97.6%
accuracy and 0% false positive rate on 82 test data sets
collected from a test vehicle), this solution requires a ramp
setup at each service location. In this work, we propose a
passive monitoring solution to detect and isolate suspension
faults on the go. The solution is based on the vehicle pitch
and roll models on selected acceleration maneuvers or lane
change/cornering maneuvers. For the rest of this paper, the

details of the proposed solution are presented in Section 2,
and the validation with real vehicle data are presented in
Section 3. Section 4 concludes the paper.

2. SUSPENSION PASSIVE DIAGNOSTICS
ALGORITHM

In this section, the suspension passive diagnostics algorithm
is introduced, including the theoretical analysis using the
pitch model and roll models, fault signature extraction, and
the isolation algorithm.

The vehicle pitch model (Turco, Borodani, & Klaarenbeek ,
1997) (Jin, Yin, & Chen, 2019) is used to represent the
chassis dynamic behavior, when the vehicle is under an
acceleration maneuver. In this scenario, the pitch angle is
increasing. Shown in Figure 1, ீܥ,ܯ and ℎ  are the total
vehicle mass, the central gravity (CG) and the height of CG
of the vehicle, respectively. ଵ andܨ ଶ are the traction forceܨ
for the rear tires and the front tires, respectively. ܽ௫  is the
longitudinal acceleration. .is the pitch angle of the vehicle ݌
௣ܭ  and ௣ܥ  are the pitch stiffness constant and the pitch
damping constant, respectively.

According to the Newton’s second law for rotation, the
dynamic equation of vehicle chassis during acceleration
maneuver can be represented as follow:

݌௬ܫ +̈ ݌௣ܥ ݌௣ܭ̇+ = ℎܽ௫ܯ (1)

where, ,݌ ݌  ̇and ݌  ̈are the pitch angle, pitch rate and pitch
acceleration, respectively. ௬ܫ is the moment of inertia around
the CG (lateral direction). ௣ andܭ ௣ are the pitch stiffnessܥ
constant and the pitch damping constant of the vehicle,
respectively. As shown in the above equation, ,௬ܫ ܯ and ℎ
are the intrinsic properties of vehicle. The value of ̇,݌ ݌ änd
ܽ௫ can be measured by the inertial measurement unit (IMU).
The is calculated from the integration of ݌ ݌ i̇n a given time
period after bias removal. During the steady state, where the
value of ݌ ȧnd ݌ äre very small, the values of and̈ ݌௬ܫ ̇݌௣ܥ
are small and can be neglected. Then the pitch model Eq. (1)
can be simplified as follows:

Figure 1. Simplified schematics for a vehicle during
acceleration (side view)
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݌௣ܭ = ℎܽ௫ܯ (2)

With Eq. (2), ௣ can be estimated from the estimatedܭ and ݌
measurement ܽ௫ . When the vehicle spring is faulty, the
stiffness of the suspesion system will change. The stiffness of
the spring, ݇ , is calculated from the following equation
(Probert & Hendry, 1986),

݇ = ீௗర

଼ே஽య
(3)

where, and ܩ ݀ are the modulous and the wire diameter of
the spring steel, respectively. is the mean coil diameter. N ܦ
is the number of active coils. If the spring is broken, the
length of coil will decrease, followed by the decrease of the
number of active coils, ܰ . Based on the equation, if ܰ  is
decreased while the other paremeters remain the same, the
value of spring stiffness ݇ will increase, and the suspension
becomes stiffer. In another word, the broken spring will
increase the pitch stiffness. Therefore ௣ܭ  is a good fault
signature for spring faults detection.

After the ௣ is calculated, the damping coefficientܭ ௣can beܥ
estimated using the Eq. (1) and the polynomial curve fitting
method. To perform the curve fitting, the Eq. (1) is converted
to the format shown in Eq. (4), which can be further
simplified as Eq. (5), where the ܺ  is the ݌  ̇and the ܻ
corresponds to the terms on the left side of Eq. (3). The only
unknown parameter is the ௣, which can be estimated by theܥ
polynomial curve fitting method. This part will be described
in the following paragraphs.

ℎܽ௫ܯ ݌௣ܭ− − ݌௬ܫ =̈ ̇݌௣ܥ (4)
ܻ = ௣ܺܥ (5)

When oil leakages of vehicle dampers occur, the defective
piston rod seal leads to oil loss, which in turn reduces the
damping force. If the damping force is decreased, the pitch
damping constant will decrease as well.

Similarly, the vehicle roll model is used to represent the
chassis dynamic behavior, when the vehicle is under the
cornering or lane change maneuvers. The theoretical analysis
of the vehicle roll model is shown in Figure 2.

Figure 2. Simplified schematics for a vehicle during corning
(rear view)

For the roll model (Turco, Borodani, & Klaarenbeek , 1997)
(Jin, Yin, & Chen, 2019), ௦ܯ is the sprung mass of the
vehicle, which is the vehicle mass portion supported by the
suspension components and the tires. ℎ௦ is the distance of CG
height above the roll axis of the vehicle. ܽ௬ is the lateral
acceleration. .is the roll angle of the vehicle ݎ ௥ andܭ ௥ areܥ
the roll stiffness constant and the roll damping constant of
vehicle, respectively. According to the Newton’ second law
for rotation, the dynamic equation during the cornering
maneuver can be represented as follows:

௫ܫ) ݎ௦ℎ௦)ଶܯ+ +̈ ݎ௥ܥ ௥ܭ̇+ ݎ = ௦ℎ௦ܽ௬  (6)ܯ
where, ݎ , ݎ  ̇and ݎ  ̈are the roll angle, roll rate and roll
acceleration, respectively. ௫ is the moment of inertia aroundܫ
the CG (longitudinal direction). ௥ܭ and ௥ܥ are the roll
stiffness constant and roll damping constant of vehicle,
respectively. ௫ܫ , ௦ܯ  and ℎ௦ are the intrinsic properties of
vehicle. The value of ݎ ,̇ ݎ  ̈and ܽ௬  can be measured by the
IMU. And is calculated from the integration of ݎ after biaṡ ݎ
removal. During the steady state of the lane change or
cornering maneuvers, when the value of ݎ  ̇and ݎ äre very
small,  the values of ௫ܫ) + and̈ ݎ௦ℎ௦)ଶܯ ̇ݎ௥ܥ are small and
can be neglected. Then the roll model can be simplified as
follows,

ݎ௥ܭ = ௦ℎ௦ܽ௬ܯ (7)
Faulty stabilizer bars normally refer to the loose or the
disconnection of the end link from the joint. When the
stabilizer bar is disconnected, the stabilizer bar cannot
provide necessary torsion force to balance the momentum,
when vehicle is under the cornering maneuver. It will cause
a bigger roll angle and may even lead to a vehicle rollover. In
another word, the roll stiffness decreases, i.e. .௥ is smallerܭ
Therefore ௥ܭ is a good fault signature for stabilizer bar fault
detection.

To achieve the real-time signal processing and generate the
suspension diagnostics results, a diagnostic and isolation
algorithm is developed, which includes two main parts, the
data processing and fault diagnostics.

When the vehicle starts, the data processing is running
continuously, which includes the data buffering, bias
removal, maneuver detection and parameters calculation, as
shown in Figure 3. The buffer is firstly reset, and the vehicle
signals are continuously processed, including the ܽ௫, ܽ௬, ,̇ ݌
݌ ,̈ ݎ ,̇ ݎ  ̈and yaw rate (߰ )̇. The frequency of the data
acquisition in this work is 100 Hz. The above signals are then
automatically saved in a moving buffer that can store the
latest 13 seconds of data. The pitch model and the roll model,
discussed in the previous section, are then employed to
analyze the data.

The data during the acceleration maneuver are recorded for
the pitch model. The vehicle signals used in the pitch model
are ܽ௫ and ݌ .̇ The enabling condition to determine an
acceleration maneuver is shown as follows:
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Figure 3. Flowchart of the suspension passive diagnostics algorithm (step 1: vehicle data processing)

ܽ௫ > ଵܶ (8)

Where ଵܶ is a threshold to determine whether an acceleration
maneuver occurs. All thresholds in the following paragraphs
are presented using symbol ܶ. Due to measurement bias, the
vehicle signals should be centered each time. The signal
centering (bias removal) is performed, using vehicle’s steady
state values before the identified acceleration maneuver. The
data point in the first 2 seconds, where 2 is a calibration
parameter, are processed with the following enabling
condition,

(̇|݌|)ݔܽ݉ < ଶܶ   (9)

(|௫ܽ|)ݔܽ݉ < ଷܶ (10)

݉݁ܽ݊(|ܽ௫|) < ସܶ (11)

If the above enabling conditions are satisfied, the mean value
of each signal is considered to be the signal bias. In the steady
state, the bias should be small, i.e.

|௕̇௜௔௦݌| < ହܶ (12)

หܽ௫,௕௜௔௦ห < ଺ܶ (13)

If the calculated bias is larger than the above thresholds, the
calculated bias may not be accurate. Therefore, the diagnostic
algorithm will not be activated. If the above criteria are
satisfied, all the data in the buffer are subtracted by the
corresponding bias.

After all signals are centered, the ܽ௫ and signals from thė ݌
3rd second will be loaded to the pitch model. All centered ܽ௫
and .signals are processed using a low-pass filteṙ ݌

To calculate the derivative of ̈,݌ is calculated with the timė ݌
interval (݀ݐ) of 0.1 second. To calculate ,݌ is integrateḋ ݌
with .of 0.1 second, using Eq. (14) ݐ݀

(ݐ̈)݌ = ௣(̇௧)ି௣(̇௧ିଵ)
ௗ௧

(14)

(ݐ)݌ = ∫ ݌ ∙̇ ௧ݐ݀
଴ (15)

For the lane change or cornering maneuvers, the enabling
condition for the bias removal is defined as follows,

(̇|ݎ|) ݔܽ݉ < ଻ܶ (16)

max (หܽ௬ห) < ଼ܶ (17)

After the bias of is calculated, all̇ ݎ ௕̇௜௔௦ݎ data are subtracted
by the r _̇bias for the further roll stiffness estimation.

During the acceleration maneuver, the pitch stiffness constant
is firstly estimated. As stated in the previous paragraphs, the
estimation is achieved during the steady state, where the
values of ݌  ̇and ݌  ̈are significantly small and can be
neglected. A moving window is set to monitor the signals and
determine the steady state. In this work, the size of the
moving window is set to be 80, which is 0.8 seconds. In order
to determine the steady state, the enabling conditions are set
as below:

|̇(݌)݊ܽ݁݉| < ଽܶ (18)

|̈(݌)݊ܽ݁݉| < ଵܶ଴ (19)

ቚ௠௔௫(௣)ି௠௜௡(௣)
௣̅

ቚ < ଵܶଵ (20)
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ቚ௠௔௫(௔ೣ)ି௠௜௡(௔ೣ)
௠௘௔௡(௔ೣ)

ቚ < ଵܶଶ (21)

|݉݁ܽ݊(ܽ௫)| < ଵܶଷ (22)

If the enabling conditions above are satisfied, the PitchIndex
is used to label the first data point. However, the steady state
does not ensure to lead to the good estimation of the pitch
stiffness constant. There exist some corner cases causing the
inaccurate estimation of the pitch stiffness constant.

Figure 4 shows one corner case – spring hysteresis. The
maximum ܽ௫  value appears at around 2 seconds, but the
steady state is detected at around 4 seconds. There is a
significant decrease of ܽ௫  before the steady state. If ܽ௫
decreases, it reflects the fact that the spring may change from
the compression condition to the extension condition, which
leads to the spring hysteresis.

In this scenario, the pitch stiffness estimation may vary a lot.
The following constraint is added to avoid the pitch stiffness
estimation. When the maximum value of ܽ௫ signal is in front
of the PitchIndex, where the steady state locates, the
difference between the maximum ܽ௫ value and the ܽ௫ value
at the PitchIndex point, ܽ௫,ௗ௜௙௙ , should satisfy:

Constraint 1: ܽ௫,ௗ௜௙௙ < ଵܶସ (23)

Similarly, there also exist corner cases that the pitch angle
decreases before the steady state, which may also lead to the
inaccurate estimation of the pitch stiffness constant. Another
constraint is added to avoid such a phenomenon. If the
maximum value of ݌  is in front of the PitchIndex, the
difference between the maximum value and the ݌ value at ݌
the PitchIndex point, :ௗ௜௙௙ should satisfy݌

Constraint 2: ௗ௜௙௙݌ < ଵܶହ (24)

Figure 4. Acceleration maneuver for the corner case 1
(Decrease of ܽ௫)

Based on the pitch model, ܽ௫  should be directly proportional
to during the acceleration. However, the opposite trend is ݌
found in some datasets, which is shown as Figure 5.

In Figure 5, ܽ௫ଵ and ܽ௫ଶ are the maximum ܽ௫  value and the
ܽ௫  value where the PitchIndex locates, respectively. ଵ is the݌
݌  value corresponding to the ܽ௫ଵ  value, which is not
necessarily referred to maximum .value ݌ ଶ is the݌ ,value ݌
where the PitchIndex locates. The ܽ௫,ௗ௜௙௙ଵ is positive, while
the ௗ௜௙௙ଵ݌  is negative, which indicates that ܽ௫  increases
while decreases. In this situation, the final estimation of the ݌
pitch stiffness constant is significantly small. To address this
issue, we define Abs_sum1 as:

1݉ݑݏ_ݏܾܣ = หܽ௫,ௗ௜௙௙ଵห+ ห݌ௗ௜௙௙ଵห (25)

If the is small, it indicates that variations of 1݉ݑݏ_ݏܾܣ ܽ௫
and are small and acceptable. Otherwise, the change trend ݌
of the acceleration and the pitch angle should be the same.
The overall constraint is shown as below:

Constraint 3:

ܽ௫,ௗ௜௙௙ଵ × ௗ௜௙௙ଵ݌ > ଵܶ଺   or 1݉ݑݏ_ݏܾܣ < ଵܶ଻      (26)

Constraint 3 is based on the maximum ܽ௫ value. Similarly,
another constraint should be in place based on the maximum
.value ݌ ଷ is the maximum݌ .value before the steady state ݌
ܽ௫ଷ  is the ܽ௫  value corresponding to the ଷ݌  value. ܽ௫,ௗ௜௙௙ଶ
and :ௗ௜௙௙ଶ are calculated using following equations݌

ܽ௫,ௗ௜௙௙ଶ = ܽ௫ଷ − ܽ௫ଶ (27)

ௗ௜௙௙ଶ݌ = ଷ݌ − ଶ݌ (28)

where ܽ௫ଶ and ଶ are the corresponding values at݌ PitchIndex
point. We also define :as follows 2݉ݑݏ_ݏܾܣ

Figure 5. Acceleration maneuver for the corner case 3
(Opposite trend of ܽ௫ and (݌
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= 2݉ݑݏ_ݏܾܣ หܽ௫,ௗ௜௙௙ଶห+ ห݌ௗ௜௙௙ଶห (29)

And the constraint 4 is shown as follows:

Constraint 4:

ܽ௫,ௗ௜௙௙ଵ × ௗ௜௙௙ଵ݌ > ଵ଼ܶ   or 2݉ݑݏ_ݏܾܣ < ଵܶଽ      (30)

In some corner cases, ܽ௫ and show large variation before ݌
the steady state, which causes challenges for us to determine
the actual steady state. One example of such a corner case is
shown in Figure 6. In the figure, index1 refers to the location
where ݌  value is 90% of the maximum ݌  value. The
corresponding ܽ௫ value is labeled as ܽ௫ (index1). In this
situation, ܽ௫ changes significantly before the steady state,
while slightly changes. The variation of ݌ ܽ௫  is larger than
the variation of Therefore, the pitch stiffness estimation .݌
will change significantly. In order to avoid such corner cases,
the ratio 1 is defined as follows,

1 ݋݅ݐܽݎ =
௠௔௫ ൫௔ೣ (௜௡ௗ௘௫ଵ:௉௜௧௖௛ூ௡ௗ௘௫)൯ି௠௜௡ (௔ೣ (௜௡ௗ௘௫ଵ:௉௜௧௖௛ூ௡ௗ௘௫))
௠௔௫൫௣ (௜௡ௗ௘௫ଵ:௉௜௧௖௛ூ௡ௗ௘௫)൯ି௠௜௡(௣ (௜௡ௗ௘௫ଵ:௉௜௧௖௛ூ௡ௗ௘௫))

 (31)

The constraint 5 based on the ratio 1 is shown as below:

Constraint 5: ଶܶ଴< > 1 ݋݅ݐܽݎ ଶܶଵ (32)

Please note that the thresholds of above 5 constraints are
determined after the data analysis from the large number of
test vehicle data. If an acceleration maneuver satisfies these
constraints, the pitch model will be activated to estimate the
pitch stiffness constant ௣. Otherwise, the pitch model willܭ
not be activated, and no estimation will be performed. To
estimate the value of ௣ܭ , the averages of ܽ௫  and ݌  during
steady state (0.8 seconds) are calculated. Then the value of
.௣ is estimated using the following equation based on Eqܭ
(2).

௣ܭ = ெ௛௔ೣ
௣

(33)

Figure 6. Acceleration maneuver for the corner case 5 (ܽ௫
large variation)

After the pitch stiffness constant ௣ is estimated, the processܭ
of the pitch damping constant .௣ estimation will be triggeredܥ
In this work, the estimation of ௣ܥ  is performed using the
linear regression. To perform the regression, the Eq. (4) and
(5) are employed, where X is and thė ݌ Y is the terms on the
left side of Eq. (4). The only unknown parameter is the ௣. Inܥ
this work, the data selected for the curve fitting are before the
steady state during an acceleration maneuver. This is also
called the ramp-up state. An example curve fitting interval is
shown in Figure 7. In the previous step, the steady state is
determined, and the average of ௔௩௚݌  in the steady state is
calculated. The start point of the ramp-up state is the location
where the value of p is around 10% of ௔௩௚݌ . Similarly, the
end point of the ramp-up state is the location where ݌  is
around 80% of ௔௩௚݌ . Then all signals, including ,݌ anḋ ݌ ̈݌
between these two points, are selected for further analysis.

For the linear regression in this work, the length of the data
is 80, which is 0.8 seconds data. After the ramp-up state is
determined, another moving window is used to select the
qualified data for curve fitting. The criteria are shown as
following:

̇(݌)݊݅݉ > ଶܶଶ (34)

ܽ௫(݁݊݀) > ଶܶଷ (35)
௔ೣ (௘௡ௗ)ି௔ೣ(௙௜௥௦௧)

ୈ୐ୈ
× 100 > ଶܶସ (36)

where DLD is data length. In a moving window for the
qualified data, the value of last ܽ௫ data point in the window
should be larger than 2 m/sଶ, while the minimum is largeṙ ݌
than 0.01 deg/s. And the calculated coefficient should be
larger than 1.5 m/sଶ. If the above criteria are satisfied, all
signals in this window are selected for curve fitting. The
result is the estimated value of .௣ܥ

Figure 7. Polyfit interval during an acceleration maneuver



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

7

Different from the pitch model analysis, the roll model is
activated, when the vehicle is running with certain speeds and
under lane change or cornering maneuvers. An example of
the lane change maneuver is shown in Figure 8. To detect the
lane change or cornering maneuver, the yaw rate signal ߰ ̇ is
used as an enabling condition. If ߰ ̇at any timestamp is larger
than 1 deg/s, it indicates that vehicle steering wheel is turned,
and the lane change maneuver may occur. The vehicle signals
within the first 2 seconds are loaded for bias removal, while
the signals corresponding to the following 11 seconds are
loaded for the roll model analysis.

As stated in the Eq. (7), the estimation of the roll stiffness
constant is based on the simplified vehicle roll model, which
can be applied during the steady state of a lane change or
cornering maneuver. In order to determine the steady state,
the ܽ௬ , ݎ  ̇and ݎ  ̈signals are loaded and processed using the
low pass filters. The data are obtained from the previous ݎ
step. In the steady state, the variations of above signals are
comparatively small, and the Eq. (7) can be used to calculate
the roll stiffness constant. A moving window with the size of
20 is used to look for the steady state. If, within a moving
window, the selected vehicle data are all satisfied with the
following criteria, this interval is considered as the steady
state.

|̇(ݎ)݊ܽ݁݉| < ଶܶହ (37)

|(ݎ)݊ܽ݁݉| < ଶܶ଺ (38)

ቚ௠௔௫(௥)ି௠௜௡(௥)
௠௘௔௡(௥)

ቚ  < ଶܶ଻ (39)

ฬ௠௔௫൫௔೤൯ି௠௜௡(௔೤)

௠௘௔௡(௔೤)
ฬ  < ଶ଼ܶ (40)

ห݉݁ܽ݊(ܽ௬)ห  > ଶܶଽ (41)

Figure 8. The example of vehicle lane change maneuver

After the steady state is determined, the ܽ௬ and signals in ݎ
this interval can be used to calculate the roll stiffness constant
.௥, using the following equationܭ

௥ܭ = ெೞ௛ೞ௔೤
௥

(42)

The calculated ௥ܭ  will be then saved in the buffer. The
estimated the health indicators ,௣ܭ ௣ andܥ ௥, are then savedܭ
in the buffer. Each calculated parameter is considered as one
available result. In another word, there are 3 buffers to
separately save the ௣ܭ , ௣ܥ  and ௥ܭ  results. The diagnostics
algorithm continuously monitors the results in each buffer. If
any buffer has at least 6 available results, the diagnostics
algorithm will be activated, and the corresponding
parameters will be loaded.

Please note that only the buffer with at least 6 available
results is processed. If a buffer with less than 6 available
results, the data in that buffer will not be processed with the
diagnostics algorithm. After the results are loaded, the
average of these results is calculated, which are labeled as
,௣,௔ܭ ௣,௔ andܥ .௥,௔, respectivelyܭ

If the ௣,௔ is smaller than the thresholdܭ ௄ܶ௣, it indicates that
the vehicle spring is healthy. Otherwise, it indicates that the
spring is faulty, and the diagnostics result will be reported. If
the ௥,௔ is available, which is generated from the previous 6ܭ
,௥ resultsܭ ௥,௔ is compared with the thresholdܭ ௄ܶ௥. If ௥,௔ isܭ
larger than ௄ܶ௥ , it indicates that the stabilizer bar is healthy.

If ௣,௔ܥ  is larger than the threshold ஼ܶ௣ , it indicates that the
vehicle damper is healthy. Otherwise, the vehicle damper is
considered as faulty and the diagnostics results will be
reported. All these thresholds should be calibrated for
different suspensions systems.

3. ALGORITHM VALIDATION

To verify the proposed diagnostics algorithm, the test data
during 1,721 acceleration or lane change maneuvers are
collected from a test vehicle with springs, dampers and
stabilizer bars in different health conditions. Among these
test data, 210 are under the condition of one faulty spring, 248
are under the condition of the disconnected stabilizer bar, 222
are under the condition of one leaking damper, and 558 are
under the healthy vehicle condition. In this paper, only the
single point failure is considered. Here the leaking damper
means 50% or 75% loss of damper oil, and the faulty spring
means the bottom coil of the spring is removed (front
springs), or two/three coils of springs are clamped together
(rear springs). For each acceleration maneuver, the
longitudinal acceleration is between 0.2g and 0.4g. For each
lane change maneuver, the lateral acceleration is between
0.1g and 0.3g.

With regard to spring diagnostics, 411 test data with healthy
components, 80 test data from disconnected stabilizer bar and
222 test data from leaking damper are labeled as healthy
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spring data. 210 test data from faulty springs are labeled as
faulty spring data. Our diagnostic results for the spring
diagnostics are shown in Figure 9. In these three figures, the
“ground truth” is the actual test vehicle condition, and the
“prediction” is the diagnostic result from the algorithm.

With regard to stabilizer bar diagnostics, 558 test data with
healthy components, 214 test data from faulty springs and
226 test data from leaking damper are labeled as healthy
stabilizer bar data. 82 test data from disconnected stabilizer
bar are labeled as faulty stabilizer bar data. Our diagnostic
results for the stabilizer bar are shown in Figure 10.

With regard to damper diagnostics, 411 test data with healthy
components, 210 test data from faulty springs and 248 data
from disconnected stabilizer are labeled as healthy damper
data. 222 test data from leaking damper bar are labeled as
faulty damper data. Our diagnostic results are shown in
Figure 11.

Figure 9. Algorithm confusion matrix for the spring
diagnostics

Figure 10. Algorithm confusion matrix for the stabilizer bar
diagnostics

Figure 11. Algorithm confusion matrix for the damper
diagnostics

Due to the enabling conditions and constraints for the
maneuvers, some test results are not qualified, and no
diagnostic result is generated. For example, 83 test data are
filtered out due to the large calculated bias before the
acceleration maneuver, which fails to satisfy the enabling
condition. All qualified results are processed using the
moving average. Please note that each diagnostic decision is
based on 6 qualified results. The algorithm generates 77
decisions for spring diagnostics, 25 decisions for damper
diagnostics and 112 decisions for stabilizer bar diagnostics.

The overall accuracy of the algorithm is calculated as the total
number of correct diagnostic results (the same as the ground
truth) divided by the total number of vehicle tests. The
accuracy is 84.4% for spring diagnostics, 92% for damper
diagnostics and 100% for stabilizer bar diagnostics. The false
positive rate (FPR) reflects the percentage of actual healthy
cases that are incorrectly identified as faulty cases. The FPR
is 30.43% for spring diagnostics, 10% for damper diagnostics
and 0% for stabilizer bar diagnostics. The false negative rate
(FNR) indicates the percentage of actual faulty cases that are
incorrectly diagnosed as healthy cases. The FNR is 7.58% for
spring diagnostics, 5.88% for damper diagnostics and 0% for
stabilizer bar diagnostics.

To further explore the noise factors that may affect the
performance of the proposed algorithm, some robustness
tests are conducted. Main noise factors include acceleration
on the ramp, low tire pressure, driving on the rough road and
different vehicle weights.

In the previous tests, the acceleration maneuvers normally
occur on the flat ground. However, if the acceleration
maneuver occurs on uphill or downhill, the vehicle pitch
angle changes according, which may affect the estimation of
௣ andܭ ௣. To validate algorithm robustness, 15 accelerationܥ



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

9

tests are performed on a 7.2% grade ramp. No false positive
alert is found.

Tire pressure is another main factor that may affect the
algorithm performance. Normally, the tire pressure of test
vehicle is 35 psi. Low tire pressure may change the vehicle
corner height and further affect the pitch angle. The first tests
are performed using the healthy vehicle with the FL low tire
pressure (22 psi). No false positive alert is found. The second
tests are performed using the healthy vehicle with four ties
low pressure (22 psi). No false positive alert is found. In
summary, the low tire pressures (22 psi) do not affect the
accuracy of the algorithm.

A rough road with uneven road surfaces is selected to
perform the road tests, including acceleration and lane change
maneuvers. No false positive alert is found. The last
robustness test is to increase the vehicle weight. The normal
weight of the test vehicle with a driver and a passenger is
1600 kg. In the robustness test, 320 lbs. (145 kg) sandbags
are loaded to the rear seats of the vehicle, to simulate the
situation of two more passengers on the vehicle. The total
vehicle weight is now 1745 kg. Several road tests are
performed, and no false positive alert is found.

4. CONCLUSION

A real-time and passive approach is developed in this work
to detect and isolate broken springs, leaking dampers and
disconnected stabilizer bars. We demonstrate that the spring
faults can be characterized by the fault signature, vehicle
pitch stiffness constant, which is estimated from the
longitudinal acceleration and the pitch rate during the steady
state of longitudinal acceleration. The damper faults can be
characterized by the fault signature, vehicle damping
constant, which is estimated from the longitudinal
acceleration and the pitch rate during the dynamic state of
longitudinal acceleration. The stabilizer bar faults can be
characterized by the fault signature, vehicle roll stiffness
constant, which is estimated from the lateral acceleration and
the roll rate in the steady state of lateral acceleration. A set
of unique enabling conditions is employed to improve
algorithm robustness, which includes the stationary driving
maneuver detection for sensor bias removal, stationary
acceleration detection for stiffness calculation, dynamic
acceleration detection for damping constant calculation and
hysteresis scenario detection to improve robustness. A novel
fault isolation process is proposed to generate accurate
results. Compared with state-of-art approaches, our method
is fast and accurate and is capable of isolating three different
suspension failures.

Based on 214 diagnostics results generated from 1,721 test
cases collected from a test vehicle, the accuracy of the
suspension passive diagnostics algorithm is 84.4% for spring
diagnostics, 92% for damper diagnostics and 100% for
stabilizer bar diagnostics. The false positive rate is 30.43%
for spring diagnostics, 10% for damper diagnostics and 0%

for stabilizer bar diagnostics.  In the future, more robustness
tests will be performed. We will further study the algorithm
performance variations among different vehicles and
different programs. The final algorithm will be developed and
integrated with other chassis diagnostics, e.g. the rotor
diagnostics (Du, Mai, Kazemi, & Sadjadi, 2020) and the
wheel bearing diagnostics (Feng, Du, & Salman, 2019).
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