
Evaluating and Optimizing Analytic Signals 

Shashvat Prakash1, and Antoni Brzoska2 

1,2Collins Aerospace, Windsor Locks, Connecticut, 06096, United States 
Shashvat.Prakash@collins.com 

Antoni.Brzoska@collins.com 

 
ABSTRACT 

Condition-based maintenance is becoming a viable option for 
mitigating the high cost of unscheduled repairs. However, as 
data-driven approaches gain favor, there is a need to preserve 
the underlying physical degradation models in order to 
reasonably justify preventative maintenance. One solution is 
a class of models which augment physics with data-driven 
heuristics. The nature of the underlying degradation is 
explained with physics while detectability and decision 
nuances can be overcome with statistics and signal 
processing. 

This paper describes a process for evaluating analytical 
models and using this evaluation for improving overall 
detection. The method involves optimizing a tunable filter to 
process signals such that the precursor signature preceding 
failure events approximates a known degradation behavior. 

1. INTRODUCTION 

Component failures in complex systems are often expensive. 
The loss of operation time is compounded by the costs of 
emergency repairs, excess labor, and compensation to 
aggrieved customers.  Prognostic health management 
presents a viable mitigation when the failure onset is 
observable and the mitigation plan actionable.  This means 
that the maintenance plan is clear and executable for a given, 
detectable failure mode. 

Analytics for prognostic applications are, generally, 
degradation models.  The model may estimate a remaining 
useful life (RUL) or, more generally, generate an alert for 
failure proximity.  As more data have become available and 
as cloud computing capabilities grow, so does the potential 
for large scale model deployment. Regulatory bodies are 
considering prognostic monitoring regimes (Air Transport 
Assoc. of America, 2018) such as condition-based 
maintenance credits (Le, Ghoshal & Cuevas, 2011) as valid 
substitutes for certain routine maintenance inspections.  

There is therefore a need to formalize methods which best 
evaluate the performance of prognostic models. 

A representative prognostic for condition-based maintenance 
is shown in Figure 1. A suite of signals is continually 
providing information about the component health. It falls on 
the system to decipher the data and develop a decision 
architecture that drives a discrete maintenance. 

Traditional maintenance schedules are based on a knowledge 
system using usage history and failure distributions (e.g. 
Weibull).  More information on failure modes and usage 
profiles can drive a more efficient maintenance paradigm.  
Recent advances in sensors, electronics, and data have 

enabled this improvement, but they have also enabled more 
data-intensive approaches.   

This paper will first review model types and evaluation 
constructs, then present an alternative evaluation method 
which can be used to optimize a discrete time filter. This 
method will amplify the known degradation elements of the 
signal while suppressing the attendant noise. An illustrative 
numerical example will conclude the paper.  

2. MODEL TYPES 

Model based and expert systems use, respectively, a model 
and a set of rules to infer when the degradation level requires 
attention (Zhang, Li & Yu, 2006).  Models may be trained on 
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Figure 1. Prognostic Analytic Diagram 
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a set of failure modes each with its own signature and 
associated probabilities in a Hidden Markov Model (HMM). 
Kwan, Zhang, Xu and Haynes (2003) and Zhang, Xu, Kwan, 
Liang, Xie, and Haynes (2005) developed and implemented 
an approach where principal components of the input signals 
were mapped to HMM degradation states. Capturing 
degradation modes in this manner may not always be scalable 
across multiple components of a complex system. Further, 
identifying and training against perceived discrete 
degradation states might not be needed if a simple signature 
can be processed out from the available data. The anomaly 
detection methods like HMM and multivariate Gaussian 
methods work best when there is some level of cleaned data. 
In other words we need to first separate, as best as possible, 
the signal from the noise in order to produce the best 
detection outcomes. 

Further on the physical-data model spectrum are the purely 
data-driven approaches, where the outcome is driven by 
statistical inference (Luo, Namburu, Pattipati, Liu, 
Kawamoto & Chigusa, 2003, and Fornlof, Galar, Syberfeldt, 
& Almgren, 2016). While this allows for decisions outside 
the realm of human expertise, they are more difficult to 
productionize since the outcomes are less explainable.  

Combining a physics model with a data-driven one was 
termed as a ‘physics – data hybrid’ by Sprong, Jiang, & 
Polinder (2019). Considering the expense involved in 
preventative maintenance, it makes sense to maintain the 
failure mode models grounded in physics but in a way that is 
enhanced by additional data. 

One hybrid approach is shown schematically in Figure 2. The 
factors affecting system degradation are rarely known to a 
complete extent. Rather, only the observables inputs are 
captured at some time interval and even those signals are 
accompanied with noise. Similarly, reports on wear and 
failures are not real-time, but sampled versions are available. 
The available sensor signals and condition reports can inform 

a physics model, with some data-based augmentation to 
compensate for the modeling and sensing deficiencies. The 
goal is to reduce estimation error while maintaining the 
intuition. The resulting approach captures the governing 
physical equations while relying on hyperparameters to 
compensate for incomplete or corrupted inputs. 

3. BINARY CLASSIFIER CONSTRUCT 

Common assessments of prognostic models have considered 
the overall goal of maximizing reliability (Zhang et.al., 2006) 
or the trade-off between part availability versus operational 
efficiency (Pipe, 2008). Such considerations are relevant 
when the model is already operational and logistic questions 
remain. This work will consider whether a given model can 
be tuned to optimize its key performance metrics, and what 
those metrics should be. 

Standard assessments of prognostic model performance have 
often fallen under a broader category of binary classifiers 
(Fawcett, 2006). The capability to detect is quantified with 
‘recall’ and the reliability of prediction is similarly quantified 
with ‘precision’. Recall and precision are based on a 

 
 

Figure 2. Model Structure with Physics and Data-Based Heuristic Components  
 

 
 

Figure 3. Confusion Matrix of Binary Classifier 
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confusion matrix, where one axis is detection and the other 
reality (Figure 3).  If both reality and detection are in 
agreement, the model has scored a ‘true positive’ and if the 
model alerts without the event it is a ‘false positive’ while a 
‘false negative’ means the model failed to adequately detect. 

Recall is then the probability of alerting given the event will 
occur, while precision is the probability of the event 
occurring given an alert has been annunciated. 

Recall = P (Prognostic Alert | Impending Failure Event) = 
True Positive / (True Positive + False Negative) (1) 

Precision = P (Impeding Failure Event | Prognostic Alert) = 
True Positive / (True Positive + False Positive) (2) 

The ideal precision or recall values for a given problem can 
be evaluated by using derived values such as F1 score or 
receiver operating characteristic (ROC) (Fawcett, 2006). 
While the former attempts to balance recall and precision, the 
latter evaluates the tradeoff between the two quantities.  

The above set of parameters present a common metric to 
evaluate binary classifiers, particularly in medical 
applications, (Mallett, Royston, Waters, Dutton & Altman, 
2010) however, key elements are lacking for evaluating a 
prognostic health model.  First, the model output and reality 
are both discretized to, respectively, positive/negative and 
true/false. Details of the underlying correlation are obscured.  

This becomes important if we wish to know margin to alert. 
Second, the time horizon is neglected. The time widow to 
take action on an alert is limited; alerts without sufficient lead 
time cannot be acted upon and alerts too early will mean loss 
of useful life.  Third, the full ROC analysis as presented by 
Fawcett (2006) has wide applicability in binary classifiers, 
but it becomes meaningless for prognostic signals where ‘true 
negative’ has no well-defined meaning. Once again, having 
no time basis means there is no widely applicable period 
where lack of both alerts and events qualifies as a successful 
prediction of a non-event. 

One approach gaining favor is a simple precision-centric 
evaluation. The main idea is that induced downtime and 
removal of a functioning component must have a strong 
historical justification. Inherent in this logic is that the trust 
in the prognostic is tentative; only a record of minimal false 
positives can justify preventative measures. The as-yet 
unseen advantages of reducing unscheduled interruptions are 
not factored. Once again, without a time component, there is 
no clear demarcation between a timely true positive or a too-
early positive that may be considered a nuisance false 
positive. Clearly, such a distinction exists but the rules 
governing it have not yet been considered. 

4. SENSOR SIGNAL COMPONENTS 

In a prognostic application, sensor signals intended to detect 
wear will also contain some amount of noise. In this case, 
noise is anything that is not the wear-out mode. It 
encompasses everything from random variations of the 
signal, to situations where the detection is intermittent or 
inconsistent. Hence, processing the raw sensor signal to 
maximize the wear-out precursors and minimize noise will 
provide an overall benefit to the detection before thresholds 
are applied. 

The detectable portion of the degradation must be distilled 
from the noise, yet not all of it will be explainable, as shown 
in figure 4. Indeed, the explainable portion will be crucial in 
justifying the high-cost and high-risk actions. Explainability 
is enhanced with better physics models and physics-based 
intuition. It is not sufficient to have an explainable data model 
if the recommendations cannot be justified with known 
failure mechanisms. Finally, sample rate plays a critical role. 
Any dynamic elements with frequencies above half the 
sample rate are effectively inobservable, or, if not properly 
conditioned, aliased as noise (Ogata, 1995). 

Developing the resulting signal into a degradation estimate 
requires then consideration of how well the signal correlates 
to historical failures, whether the captured events can be 
linked to explainable failure modes, and the value proposition 
of alerting on these failure modes in a manner that makes 
operational sense. It is important to first consider the resulting 
signals and features holistically, without thresholds applied. 
While the threshold represents a decision point, the 

 

 
Figure 4. Composition of sensor signals 

 
Figure 5. Noisy and Filtered Feature Trace with Event 
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underlying signal is intended to capture degradation, and its 
ability to do so will determine the overall performance of the 
analytic. 

5. FEATURE SENSITIVITY 

A prognostic model is only as effective as its ability to detect 
a set of given failure modes.  This is a correlation problem.  
Evaluating a model only on the discrete outcomes (like true 
positives or false positives) misses the nuance of whether the 
underlying degradation is even well observed. 

There is an entire discipline devoted to signal filtering, but 
very often the application is data in the >.01 Hz range, with 
focus on higher processing throughput with advancing 
capability (Estrada & Starr, 2005).  Nonetheless, all intuitions 
apply here.  The general approach to filter design can be 
applied to data collected on a per flight cycle basis. 

As depicted in Figure 2, the first problem in estimation is that 
the available data might not be complete. There are 
observable as well as unobservable system inputs that 
contribute to the degradation state. Second, even when the 
degradation is perfectly observable, the derived features will 
detect not only the degradation, but other confounding noise. 
Usually, there are a number of noise sources, each of which 
operate in a unique frequency spectrum.   

In the case of aircraft components, often there is a strong 
seasonality effect, driven by ambient temperature variation.  
Second, the idiosyncrasies of flight schedules, flight patterns, 
and daily weather also result in high variability.  The goal is 
then to find the appropriate filter that can best track the real 
degradation (Figure 5). 

5.1 Filter Design  

A base feature can be derived many ways, usually reflecting 
some amount of physical modeling. While a feature is 
sometimes a directly measured attribute like petal length, in 
PHM applications a feature can itself be an estimated quantity 
like an effective age or crack length. However, given 
limitations on sensing and observation, the computed feature 
will propagate these inaccuracies. Therefore, a signal 
processing step is required to improve the overall estimation. 

A dynamic filter modifies the feature in a manner that 
amplifies certain spectral content and suppresses others. 
Filters are commonly applied for noise rejection, modeling, 
estimation, and data fusion. The generic discretized filter that 
produces filtered output Y from input U has the form: 

 

The filtered output at time instance k is Yk and the output at 
preceding time samples is Yk-1, Yk-2, … Yk-M. Similarly, the 
input at the current kth instance is Uk and the preceding 
values are Uk-1, Uk-2, … Uk-N. The filter output at the current 
time instance is therefore a weighted summation of current 
and previous inputs, and in some cases, previous outputs. The 
latter are termed infinite impulse response (IIR) due to their 
recursive nature, while filters which do not use previous 
output values are termed finite impulse response (FIR). The 
filter coefficients ai and bj are chosen to achieve a spectral 
objective: suppression and amplification of a specified 
frequency range within a phase shift tolerance. In this case, 
we can choose coefficients which best detect known events 
while suppressing noise. 

5.2 Lead Time Aggregation 

Designing the appropriate filter requires an evaluation 
construct. Since the main objective is detection, the ideal 
filter will produce a signal that deviates most from its 
standard values during time intervals preceding known 
events and will return to its standard values once events have 

transpired.  

Capturing the filter behavior across all known events requires 
isolating the filter output for a set lead time interval before 
each event (Figure 6).  Each lead interval data point is 
averaged on a time or cycle basis with all other lead time 
traces at the same relative distance from the event. 

a0Yk=� b𝑖𝑖* Uk−ij

𝑁𝑁

i=0
+ � -aj* Yk−j

𝑀𝑀

j=1
 (3) 

 
 

Figure 6. Aggregating the Lead Intervals into an 
Averaged Trace 
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The lead interval value (X) at the ith sample before the event 
is the average of all trace values (F) across N events, at the ith 
value before each j event.  The resulting signal represents 
typical behavior for the signal ahead of an event.  

These aggregated averages X are then standardized using z-
score normalization. 

 

The normalized value Z is the aggregated signal value X 
subtracted by the original signal mean E[F] divided by the 
original signal standard deviation σF.  The z-score 
normalization has the advantage of allowing comparisons 
across all signals with different base units. Further, 
normalization produces a signal in terms of its standard 
deviation value so that the larger values, either positive or 
negative, are more anomalous. 

In some cases, there may be events which produce no 
detectable precursor, as may happen with a false negative. In 
that case, all filtered outputs X will be penalized equally, and 
the event will not play a role in filter selection. Conversely, 
there may be maxima in a signal that are not associated with 
an event. These false positives will raise the mean value E(F) 
and result in a lower normalized Z value. 

The aggregated and normalized pre-event trace Z of each 
filter can be considered at some fixed interval before the 
event for comparison (Figure 6).  In the figure, the 
normalized and averaged traces of two candidate features are 
plotted, and the time axis has time of event (tE), and minimum 
lead time to act before the event (t0). Filter 1 in Figure 6 
exhibits maxima both well ahead of t0 as well as in the t0 to tE 
interval. The filter value between t0 and tE is irrelevant since 
there isn’t enough lead time to mitigate the event. However, 
too much lead time reduces useful life. Filter 1’s behavior is 
less desirable compared to Filter 2, which has a maximum 
just before t0, providing ample lead time ahead of the 
anticipated event without sacrificing much useful life. 

5.3 Evaluation Methods 

The Z value at the critical lead interval, Z(t0), can be a useful 
gauge of the relative performance of a given filter compared 
to others.  This does not require any arbitrary rules or limits, 
only the process-defined, requisite minimum lead time.  

 

In certain cases, the lead trace Z values can be better 
evaluated with a weighting function V (Figure 6) which rises 

monotonically from 0 at some ti< t0 up to 1 at t0, then 
returning to 0 for the t0 to tE interval. For a given filter, each 
Z value can be combined with its weight V in a weighted sum:   

 

The above equation ascribes a score S to the lead time 
averaged trace by weighting the i Z values with the weights 
Vi. High Z values near the event but before the critical 
actionable time (t0) will have high V weights and increase the 
score while the other Z values will have less bearing on the 
score. 

The V function can be customized to suit the filter objectives. 
Any monotonically increasing function over ti and t0 will 
favor signals which show greatest anomaly immediately 
before the critical actionable time (t0). A linearly increasing 
V value, either over cycles or flight hours, best captures the 
consumption of useful life on a cost basis. A sigmoid or step 
would acknowledge that any signal anomaly in the interval 
has comparable value, and loss of useful life is less important. 

The score S (Equation 6) presents an objective function 
which not only quantifies the suitability of the filter, but it 
can also allow for the combination of multiple independent 
measurement signals. In the latter case, the score can be the 
weight of each independent signal in a weighted summation. 
The resulting aggregation will produce a signal with a higher 
score than any of its constituent parts. 

 

Equation 7 describes a way to construct a new signal Fcomb 
from n independent signals Fn by weighting these signals by 
their respective scores Sn raised to an arbitrary constant b, 
with b≥1. 

6. FRAMEWORK FOR ESTIMATING DEGRADATION 

The traditional precision, recall, and receiver operating 
characteristic apply to discrete classifiers, while in this case 
we have a continuous signal which can be correlated and 
optimally filtered. Therefore, the evaluation methods in 

Xi=� Fij/N
N

j=1
    (4) 

Z = (X – Ε[F]) / σF   (5) 

S = Σi(ZiVi)/Σi(Vi) (6) 
 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  ∑ 𝑆𝑆𝑛𝑛𝑐𝑐 ∗  𝐹𝐹𝑛𝑛𝑛𝑛    (7) 

Table 1. Signal Evaluation Methods 

Method Formula Description 

Critical Z  𝑍𝑍(𝑡𝑡0) = 𝑋𝑋(𝑡𝑡0)−𝐸𝐸[𝐹𝐹]
𝜎𝜎𝐹𝐹

  Aggregated 
normalized value at 
min lead time t0 

Score S S = Σi(ZiVi)/Σi(Vi) Correlation to value 
function V 
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Table 1 are both a measure of signal correlation to a discrete 
event and the mechanism for obtaining the optimal signal.  

For instance, if V is chosen to reflect the value of remaining 
useful life, the score reflects monetary benefit of the detector. 
Alternatively, V can represent any physical process that 
evolves over time, like crack growth or fatigue. Depending 
on the application elements of both operation and physics can 
inform the nature of the value function V. 

Conceptually, the filter tuning method is a way to model 
unmodeled elements in a catch-all filter, with the ultimate 
objective of producing a feature anomaly near failure events 
with sufficient lead time which in some way conform to 
known physical degradation signatures and/or reflect 
operational value.  

This idea is shown in the model structure in Figure 7, which 
is a variation of the one in Figure 2. True degradation is 
driven by both known and unknown sources.  Detection of 
the degradation is not perfect because confounding factors 
and sensing limitations respectively introduce noise and limit 
observability.  The resulting signals are arranged into features 
using the known degradation mechanisms so that the features 
are physically explainable.  The filter step at the end 
acknowledges the imperfections in the feature and attempts 
to compensate for them in order to estimate the degradation 
level.  

7. NUMERICAL EXAMPLE 

An example case has been constructed to demonstrate the 
method on synthesized data. First, we consider a component 
which has a lifespan distributed normally with mean 1250 
cycles and standard deviation 250 cycles. Over the course of 
10000 cycles, there are 7 failure events. 

A degradation signature is modeled as a linearly increasing 
signal in the 500 cycles leading up to the event, and zero at 
all other points. This represents a form of physical process 

where the degradation is evident only in the final stage of life 
and progresses at a constant rate until failure. In many 
practical scenarios, the degradation signal may not always be 
present before failure. To simulate this case, the degradation 
element has been removed for failure number 4. This is a 
false negative example. 

A noisy indicator will contain traces of the component 
degradation and noise from various sources. For this 
example, the noise is a set of 8 sinusoidal signals with random 
amplitudes up to .65 and frequencies spanning .01 to .03 Hz. 
Then, uniform random noise is added with zero mean and 
amplitude 2.5. The resulting noisy degradation signal is 
shown in Figure 8. This represents a raw sensor signal. 

This raw signal now contains weak signatures prior to each 
event but one. Where the signatures exist, they are almost 
indistinguishable against the noise. A plot of lead time traces 
prior to each of the seven events is shown, mean-normalized, 
in Figure 9. The individual profiles are the signal value 
subtracted by the mean and then divided by the standard 
deviation, in the 500 cycles immediately before each event. 
Even though Profile 4 has no degradation component, it is 

 

 
 

Figure 8. Synthetic data incorporating signal and noise 
– degradation is omitted for the fourth event 

 
 

 
Figure 9. Baseline normalized traces 

 

 
 

Figure 7. Filter Tuning based on physics and value 
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similar to all the other profiles which do contain the linear 
degradation. 

Next, an optimal filter was developed in the form of equation 
3. The coefficients ai and bi were chosen to maximize the 
objective function, which was simply S from Table 1.  
Running multivariate optimization yielded a0=0.8060, a1=-
0.7890, b1=1.000, b2=-0.9295, b3=0.0011. 

 
The normalized filtered signal traces leading up to each event 
are shown in Figure 10, with the resulting time series shown 
in Figure 11. Now there is a clear separation between the 
profiles containing the degradation and profile 4, the one 
without degradation. This indicates that the filter is 
amplifying the modeled degradation and suppressing the 
attendant noise. 

Note that even with the filter, some residual noise remains. 
This left over noise is in some part related to the omission of 
event 4’s degradation, in effect pushing the filter to retain 
some noise in attempt to find the signal. 

Table 2 summarizes the performance of the filter across each 
event and for each of the two evaluation metrics from Table 

1. Although the filter was optimized for the score metric, it 
also improves on the critical Z metric for the cases where 
degradation was present. Event 4 did not have a degradation 
signal so the metrics decrease after the filter suppresses noise. 

 

 

8. CONCLUSIONS 

The framework presented here is an evaluation method for a 
prognostic analytic.  While the analytic may be based on a 
fundamental understanding of physical degradation, 
unknown effects, confounding factors, and signal limitations 
will present estimation challenges. An appropriate filter can 
lead to a better estimation of true degradation. 

The discrete classifier evaluation methods (Fawcett, 2009) 
require arbitrary boundaries between true positives and false 
positives, and a threshold value.  The receiver operator 
characteristic (ROC) curve attempts to disambiguate the 
threshold, but the classification of positives and negatives 
remains unclear when alerts occur over time, eventually 
leading to a discrete event.  All alerts preceding a particular 
failure, going back to infinite time, could be interpreted as a 
singular true positive. Conversely, all those alerts could be 
false positives until the very recent alert even if the 
degradation was evident for some time.  

The presented framework resolves this ambiguity by 
assigning an objective value to a signal at a specific lead time 
or time intervals. Signal processing and heuristics can then be 
tuned to maximize this value. When the value is tied to actual 
costs, like remaining useful life, then the benefit becomes 
more justifiable.  

Replacing the binary classifier means replacing the 
discretized true/false reality and positive/negative prediction 
with meaningful metrics that capture the quality of estimation 
at the key actionable intervals. Indeed, the single normalized 
trace will capture when the signal is anomalous, so missed or 
false detection instances (i.e. false negatives and false 
positives) will penalize the evaluation appropriately. 

 
Figure 10. Filtered signal traces 

 
 

Figure 11. Resulting filtered signal 
 
 

Table 2. Evaluation Results from Example 

   Score S Critical Z 
Event Life Degraded Base Filter Base2 Filter2 

1 1858 Yes 0.634 1.18 1.17 2.38 

2 1656 Yes 0.692 1.30 1.60 2.79 

3 1242 Yes 0.596 1.18 0.422 1.52 

4 1187 No -0.207 -0.490 0.988 0.402 

5 1045 Yes 0.581 1.19 1.08 1.70 

6 1634 Yes 0.577 1.08 0.332 1.68 

7 848 Yes 0.633 1.25 0.846 1.86 

AVG 1353  0.501 0.956 0.919 1.76 
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The approaches presented here address the shortcoming of 
using discrete classifier methods on prognostic health 
models.  A discrete decision is the result of a set of continuous 
features which track an observable degradation, and the 
performance is therefore a function of correlation, with 
continuous signal anomaly preceding a discrete failure event. 
The nature of communication around prognostics should 
adopt this continuous-discrete mindset and evaluation 
criteria.  
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