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ABSTRACT

Electro-Hydraulic Servo Actuators (EHSA) is thengipal
technology used for primary flight control in newcaafts
and legacy platforms. The development of Progncetid
Health Management technologies and their applinatm
EHSA systems is of great interest in both the g=os
industry and the air fleet operators.

This paper presents the results of an ongoing relsea

activity focused on the development of a PHM sysfem
fly-by-wire primary flight EHSA. One of the key faaes of
the research is the implementation of a PHM systéhmout
the addition of new sensors, taking advantage riding and
information already available. This choice allowseading
the PHM capability to the EHSAs of legacy platforarsd
not only to new aircrafts. The enabling technolegierrow
from the area of Bayesian estimation theory andifpally
particle filtering and the information acquiredrin EHSA
during pre-flight check
algorithms in order to obtain relevant featurestedt the
degradation and estimate the Remaining Useful (RldL).
The results are evaluated through appropriate osein
order to assess the performance and effectiveneskseo
implemented PHM system.

1. INTRODUCTION

Flight control systems and their associated flighhtrol
servoactuators are one of the critical aircrafttesys and
belong to the top operational disruption contribsito
Developing effective PHM algorithms for primary dgiit
control actuators that can be integrated
monitoring system for the entire aircraft flight ntol

Andrea Mornacchi et al. This is an op&eeess article distributed un
the terms of the Creative Commons Attributi@r0 United State
License, which permits unrestricted use, distrinutiand reproductic
in any medium, provided the original author andrseuware credited.

is processed by appropriate o

in a healt

system will lead to a valuable technological adeanent.

The benefits achievable from developing an efficieealth
monitoring system able to anticipate the failurdstloe
aircraft flight control system fall in two areas:

. Improvement of the aircraft operational reliabiland
dispatchability by avoiding:
Aircraft on ground immobilization

o
0  Takeoff delays and cancellations
0 Re-routing
o0 In-flight turn back

. Reduction of direct maintenance costs by:

o Performing maintenance operations of anticipated
failures at an airline main base

0 Improving troubleshooting of failures

rescheduling some recurring maintenance tasks

Costs related to unscheduled maintenance operatidrto
flight disruptions resulting from unexpected fadar may
vary in a relatively large range, depending on type of
aircraft and of its flight control system, on thpeoational
environment, on the maintenance policies and omitteeaft
usage. Though not easily quantifiable, these castsat
present a large fraction of the life cycle cost.

Assuming an average cost related to unexpected

failures equal to 30% of the system total life eycl
cost, which is a conservative underestimate,

aircraft flight controls able to reduce to half tltst
would provide a tremendous benefit to the aircraft
operation.

. It is also generally accepted that the averagefoosin
aircraft downtime is equal to about US$ 10000 per

Reducing scheduled maintenance operations and

the
development of a health management system for the
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hour (Pohl, 2013)therefore, also a minor reduction
the aveage aircraft downtime for an aircraft fle
entails very large savings.

IATA projection for global spending in 2020 |
maintenance, repair and overhaul is US$ 65 bil(IATA,

2011) Although the spending for flight control actuat
will be only a fration of that total figure, it is evident th
the contribution gained from the introduction ofeffective
health monitoring system for aircraft flight cortextuators
will still contribute to a large cost saving for im&enance
operations. Another lge cost saving is obtained from f
reduction of flight disruptions and delays. A netstudy
on integrated disruption management and flight muilag
shows that suitable planning can mitigate the tSfeaf
flight disruptions and lead to about 6% ccaving for the
airline (Marla, Vaaben, Barnhart, 201T)hough this stud
did not specifically refer to health monitoring sms, it
provides an indication of the order of magnitudetaf cos
savings that can be attained by reducing flightugisons
and delays.

It is therefore easy to understand htve Prognostic and
Health Management (PHM) systerhas foun' an intense
interest inthe aerospace area over the past y¢ Primary
flight control systems are an engineering area &M

has found so favery limited interest, although they are ¢
of the critical aircraft systems. Some work hasent
reported on PHM for electromechanical flight conti
actuators, but almostvery little or nothing fo

electrohydraulic servo-actuators (EHS#r primary fight

controls. However, although electromechanical actua
(EMA) for primary flight control systems arlong-term
objectives sensitivity to certain single point of failurdsat

can lead to mechanical jams, resutts reluctance to ado

EMAs for flight safety critical applicatio. EMAs for

primary flight controls have so far been limited WAVs

(Jacazio, 2008). It should be pointed that primary flight
control actuators for fly-by-wirecommercial aircraft in

service and for aircraft under development are ati
invariably electrohydraulic servactuators; the onl

exception are some electhydrostatic actuators (EH/
used as a backup to conventional EHSAs in the tf
control systems of Airbus A380A350 &énd Gulfstream
G650. "Electrohydraulic servovalves (EHSVSs) are a criti

component of EHSAS, they are made up by a largebeu
of parts and can thus fals a result of several causThe

research work prestad in this paper was therefcfocused
on developig a PHM system able tcidentify the
progressive degradations of EHSVs aralert of a
developing failure.The research activity will then contin

addressing the faults of the hydraulic linear atci

Research and development BHM systems for jimary
flight controls focused mostly on EMARue tothe growing
interest in Unmannederial Vehicle (UAV); moreover, the
EMAs have a greater probability afitical failure than

EHSAs. Byington, Watson and Edwards (2004) prese
one of the few researchapers focused on the hydrat
actuators for aviation. The authors exar the possibility
of developinga PHM system for the F-18 stabilizer
Electro-Hydraulic Servdfalves (EHSVs).The data-drive
approach developed useseural network err«tracking
techniques, along withufzy logic classifiers, Kalman filr
state predictors, and featutesion straegies. An interesting
work was presented by NAS/Ames Research Center
(Narasmhan, Roychoudhury, Balaban Saxena, 2010).
The paper proposed a combinewde-based and feature-
driven diagnosis methodology that allc the detection of
the common EMAs fault mode8rown et al. (2009a and
2009b) have showthe possibility of exploitin the particle
filter for the diagnostics angrognostic of EHAs.

The major objective of this contribution is to develap
innovative fault diagnosis and failure prognosesiework
for critical aircraft components that integrateseetively
and mathematically rigorous and validated sig
processing, feature extractionjagnostic and prognost
algorithms with novel uncertainty representationd
management tools in a platform that is computatigr
efficient and ready to be transitionec-board an aircraft.

2. EHSA CONFIGURATION

The EHSA used in thieesearch is a typil electrohydraulic
primary flight control actuator. It is composed of the
hydraulic and the control part3he firs' consists of one
electrohydraulic servo-valve ardlinear hydraulic actuat.
The servo-valve is of the flappapzzle typ and it is made
up of two stages withthe first stagereceiving the current
command as the input and usihgtorque motor in order to
move the flapper thus creatiagpressure drc at the ends of
the second stage spool, whicontrols the flow to th
hydraulic actuator.The control structure us a position
linear sensor as the feedbawnsa for closed loop position
control. The reference system for the EHSA is show
Figure 1. In order toresure redundancy of the drives a
consequently greater safety, two actuators acting on
same flight control surfacare employed withthe two
EHSAs operating in an actiastive, or activ-standby
mode.

Figure 1.EHSA reference syste
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2.1. EHSA signals spool lands due to wear between these two moving

The typical structure of an EHSA for legacy airtrafows

parts.

for the acquisition of three kinds of information: In the absence of consolidated degradation models,

progression of a degradation provisionally assuioebe a
‘ d by the fliaht ol ; Munction of either usage time, or amplitude / freqey of
request processed by he Tlight controf COMPUer. ., mands, or both. In the study of the occlusiotheffirst

Real position: information acquired by means Ofga e filter it is considered to be a function hé square of
the LVDT and used to close the control pos't'onflight hours.

loop.

Sgrvq-valve current: generated by the f:ontrollers_ PROGNOSTICS AND HEALTH M ANAGEMENT

coincident with the compensated error. It is used t

control the valve. We introduce an integrated framework for fault diegjis
and failure prognosis that relies on systems emging

Position command: corresponding to the positio

2.2. Servo-valve degradation principles and takes advantage of physics of failaodels,

Bayesian estimation methods and measurements adquir

The types of faults that most commonly occur inBE#SAS  through seeded fault testing and/or on-board therat.
are well known, although no consolidated modelssiach ¢ proposed Bayesian estimation framework for rhags

failure modes exist which can be taken as a bawmis f
predicting their fault progression. Although thefailt
growth models are not yet fully validated, theirypical components and their
based approach ensures that the fault growth paiser monitoring
described correctly allowing for a virtual testimj the
efficacy of health monitoring algorithms.

and prognosis for nonlinear, non-Gaussian systeaginb
with a systems engineering process to identifyioetit
failure models, sensing and
requirements and processing algorithms.
Fundamental to this approach is the development of
physics-based failure or fatigue models and themaph

Possible degradation modes include: selection and extraction of features or Conditindidators

(CI's) from raw data that form the characteristignsitures
Reduction of the torque of the first stage torqueof specific fault modes. The latter are selectestHaon such
motor. This can be the result of a shorting ofcriteria as sensitivity to particular fault modesdatheir
adjacent coils of the torque motor due to thecorrelation to ground truth data. The proposechéaork
presence of metallic debris, or to a degradation okmploys a nonlinear state-space model of the plaat,
the magnetic properties of the materials. Acritical aircraft component, with unknown time-vamy
progressively slower response of the servo-valve iparameters and a Bayesian estimation algorithmedall
obtained. particle filtering to estimate the probability dépgfunction
Contamination of the first stage filter and nozzles (PDF) of the state in real time (Orchard & Vachtssus,
As dirt and debris accumulate in the first stage2009). The state PDF is used to predict the ewmiliti time
filter or in the nozzles, their hydraulic resistanc of the fault indicator, obtaining as a result tHeFPof the
increases which, in the end, leads to a sloweRUL for the faulty component/system. A critical kais
response of the servo-valve. detected and identified by calling on the partidter-based
Stiffness variation of internal feedback spring, module that expresses the fault growth dynamicsgmysis
which is generally caused by yield in strength duehas been called the Achilles’ heel of CBM due tojana
to excessive loads or to normal aging of thechallenges arising from the inherent uncertainty in
component; involves hysteresis phenomena ang@rediction. Prognosis may be understood as thétrefthe
instability. procedure where long-term (multi-step) predictions
Increase of the backlash at the mechanical interfacdescribing the evolution in time of a fault indicat- are
between the internal feedback spring and spoolgenerated with the purpose of estimating the RULaof
This is the result of a wear due to the relativefailing component. The same particle filteringnfrework
movement between these two parts giving rise t@and nonlinear state model suggested above willdeel @o
an increasing hysteresis in the servo-valveestimate the RUL (Roemer, Byington, Kacprszynski,
response, which leads to an instability. Vachtsevanos & Goebel, 2011)
Variation of the friction force between spool and
sleeve. This is due to a silting effect associate
either with debris entrained by the hydraulic fluid
or to the decay of the hydraulic fluid additives

(garticle filtering has a direct application in #uena of fault

etection and identification (FDI) as well as potidn of

the time to failure of a critical component. Indeedce the

which tend to polymerize when the fluid is current state of the system is known,_it is natuial
implement FDI procedures by comparing the process

subjected fo large shear stresses. behavior with patterns regarding normal or faulpeting

Increase of the radial clearance between spool angonditions (Vachtsevanos, Lewis, Romer, Hess & Wu
sleeve and change of the shape of the cornergof th ' ’ ' ’ '
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2006; Arulampalam, Maskell, Gordon & Clapp, 2002).Dalla Vedova, Maggiore, Sorli (2010), Mornacchigwolo

Similarly, particle filtering allows for the accuea
prediction of the remaining useful life accountirabustly
for uncertainty issues.

A fault diagnosis procedure involves the tasks afiltf
detection and identification (assessment of theersigvof
the fault). In this sense, the proposed partidterfbased
diagnosis framework aims to accomplish these tashkder
general assumptions of non-Gaussian noise struciame
nonlinearities in process dynamic models, usingduced
particle population to represent the state pdf (@rd,
Kacprzynski, Goebel, Saha & Vachtsevanos, 2008).
compromise between model-based
techniques is accomplished by the use of a parfiltée-
based module built upon the nonlinear dynamic staddel:

xg(t + 1) = fip(xa(0),n(t))
xc(t+1) = fr(xqa(@), x(8), w(t)).
fo(©) = he(xa (), x:(0), v(t))

where f,, f; and h, are non-linear mappings¢(t) is a
collection of Boolean states associated with thesg@nce of
a particular operating condition in the system (malr
operation, fault conditionj(t) is a set of continuous-valued
states that describe the evolution of the systarargthose
operating conditionsfy(t) is a feature measuremento(t)
andv(t) are non-Gaussian distributions that charactdhiee
process and feature noise signals

1)

uniform white noise. At any given instant of timehis
framework provides an estimate of the probabilitgsses
associated with each fault mode, as well as a piiinate
for meaningful physical variables in the systemc@®this
information is available within the FDI module, is
conveniently processed to generate proper faultralaand
to inform about the statistical confidence of thetedtion
routine. Furthermore, pdf estimates for
continuous-valued states (computed at the momefdof
detection) may be used as initial conditions inlufa
prognostic routines, giving an excellent insighbatbthe
inherent uncertainty in the prediction problem.aAesult, a
swift transition between the two modules (FDI
prognosis) may be performed, and reliable progncesisbe
achieved within a few cycles of operation after thalt is
declared. This characteristic is, in fact, one loé tmain
advantages of the proposed particle-filter-basexraisis
framework.

4. PHM STRATEGY

One of the main difficulties for developing a progtic
system for EHSAs is the lack of knowledge regardimg

loads acting on the wing surface and correspondin

commands. An interesting solution, proposed fragaiio,

respectively. F
simplicity, n(t) may be assumed to be zero-mean i.i.d

the system

(2014) and Jacazio, Mornacchi, Sorli (2015) , isxploit
the pre-flight time to carry out the prognostic lsses
integrating this new procedure with the pre-flighecks.

This solution has two interesting advantages: ifs¢ i the
possibility of stimulating the EHSA with any kindf o
command, offering the possibility of developing coands
that maximize the effect of degradation on the aeted
features while the second is related to the loatisgon the
wing surface. With the aircraft on the ground, the
aerodynamic force depends only on atmospheric wind;
Aherefore, it is small and does not affect the oesp of the

and data-driveservo actuator.

The strategy implemented in this work provides the
stimulus, during the preflight operations, of thdFA with

a ramp command with 33 mm/s ratio and a max aogsit
equal to 50% of half-stroke of the actuator.

4.1. Operational Scenario

The behavior of an actuator is strongly dependemt o
external conditions and the temperature of the duyilr
fluid. In order to simulate the EHSA in conditioas close
as possible to those encountered in flight, a ptssi
operating scenario has been suggested. This irclade
series of flights within the European network afud,every
situation of pre-flight conditions identified, stiag from
real data, the oil temperature and the averageitglof the
0artmospheric wind are accounted. The data are sliowre
graph of Figure 2.

Oil Temp. [°C]

Wind speed [m/s]

1200
Flight hours

Figure 2. Example of oil temperature and wind speed

and

5. FEATURE EXTRACTION

Feature or Condition Indicator (Cis) selection amtraction
constitute the cornerstone for accurate and reidhllt
diagnosis. The classical image recognition and atign
processing paradigm of datanformation—~knowledge
becomes most relevant and takes central stageeitfiathit
diagnosis case, particularly since such operatioost be
performed on-line in a real-time environment.

Fault diagnosis depends mainly on extracting a afet
%atures from sensor data that can distinguish dxtvwault
classes of interest, detect and isolate a partidaldt at its
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early initiation stages. The remainder of this iesct

evaluates a feature derived from the Hilbert trammsfto

The data analysis has led to the definition of fdifferent
features that can be extracted by combining theuissd,

identify asymmetries because of turn-to-turn wigdin information. The features identified were then aaédd by

insulation faults.

A significant step in the development of robust asdurate

PHM algorithms involves the extraction and selectiof
appropriate features or condition indicators froamw rdata.
In our case, features are extracted using onlyatiteator
position data and the servo-valve current. Thdyarsaof
the data obtained from the simulations has idemutifihe
first stage filter occlusion as a key indicatoreatfng two
observable quantities.

Occlusion of the filter of the first stage of thengo valve
leads to a lower response of the servo-commandrzpas
increase of the time required for the actuatoetch the
commanded position, as shown in
Figure 3, with a consequent growth of the erronken the
command and the real position. The increase oétrer
leads to enhancement of the servo-valve currerdrgésd
by the controller (Figure 4). Until the currentsgrvo-valve
is below its saturation level, the controller campensate
for the growth of degradation thus limiting itsexfts on the
system. After reaching the saturation thresholel gitowth
of the position error no longer results in an iase of the
control current and, therefore, the system is ngéo able
to compensate for the growth of degradation.
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Figure 3. Influence of degradation on EHSA position
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Figure 4. Influence of degradation on current

appropriate metrics and one was selected and usddei
prognostic algorithms. The features extracted ftbendata
include:

* Mean error between real position and command;
this is evaluated in the time range [0.15 0.35h s i
order not to consider the initial and the end jporti
of the response. The feature is calculated as shown
in following equation, where, is the command
andyx; is the real position
MeanError = mean(|x.(t) — x,.(t)])

« Mean speed, defined as the average speed of the
actuator in the time range [0.15 0.35].

e The correlation coefficient between the position
error and the current. In nominal conditions, there
is a linear correlation between the current
generated by the controller and the position error;
this is due to the structure of the control logic,
which provides a proportional part prevailing over
the integral part. The presence of a degradatien du
to the saturation of the current and, consequently,
to an increase of the error.

e Current fall time, defined as the time required for
the current to return to a value less than 5% of it
maximum value.

The values of the features functions of the ocolusif
the servo-valve’'s first stage filter, as shown igufe 5.
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Figure 5. Features function of degradation

5.1. Feature performance

The features were evaluated by means of appropriate
metrics, which lead to the definition and utility those
features that more accurately represent the sthttheo
system. The metrics are:

e Accuracy measure: defined as the linear correlation
between the occlusion of the first stage filter and
the feature.
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» Precision measure: the percent mean deviatic
the feature with respect to the interpolation
usel to describe the feature as function of
degradation:

Do) 21 nxa/xll*100
Where: x is the real value, X is the interpolated
value and n is the sample number.

e Moving correlation: defined as the line
correlation between the degradation ¢he feature
inside a moving window. The window size is 1
points with 99 points of overlap.

5.2. Feature selection

The choice of which feature shoule used in prognost
algorithms was based on two maaonsideratior: the
metrics and previous (historicaknowledge The metrics
shown in Table 1 and Figure, &xhibit an acceptab
average errorral are chosen for further process
At an operational level, the average erpooves to be the
best feature, since mearror is strictly related to the natt
of the EHSASs. An increase of the average error betwbe
actual position and the commanded oneasily linkedto a
degradation of the systemdther features like thcurrent
file time and mean rod speed are gidysically linked to
the behavior of the actuatdwut were not included in tt
targeted set.

Table 1: Features metrics

Feature Corrélation PMD [%]
Mean error 0.979 1.356
Mean speed -0.972 1.573
Corr. error/current -0.945 1.759
Current fall time 0.949 1.245
1
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Figure 6.Moving correlation coefficiel

6. ACTUATOR MATHEMATICAL M ODEL

The mathematical model, implemented in Me-Simulink,
is based on physical principles, and it structured in
different blocks followingthe composition ¢ the EHSA,
allowing for rapid reconfiguration of the modewhen
components have changed.

Wind speed Aerodynamic
force

Flight hours _

Qil temperature Oil properties
l ¥y .
Position command | Rod position
Ly EHSA SV cument Data
| _ |acquisition

L

Figure 7.Scheme of mathematical mo

The functional diagranof the mode is shown in Figure 7,
where inputs and outputef the simulatio model are
highlighted with the lattercoincicing with the signals
available on the EHSAThe EHSA degradation that can
addressed by the virtual hardware incli

» EHSV feedback spring degradation (par
yielding, backlash increas

* Increase of radial clearance between EHSV s
and sleeve

« EHSYV spooffriction increas

e Torgque motor degradation

e Progressive clogging of an EHSV no:

* Contamination of the EHSV inlet filt

« Increase of the friction of the actuator spher
bearing

e Actuator seals damage

» Change of sensitivity of position sen

The servo-valvdorque motor is modelled using the Ur
(2007a) magneticircuit shown inFigure 8. Applying the
proposed equationss possible to expre the torque
generateds a function of the magnetic flux density of e
air-gap.

L,A
Tziiiﬁi

4pq
whereB is the flux density in the ¢«gap,L, is the distance

between the left and right polgy is the cros-sectional area
of air-gapu, is the permeability of ail

(i =1,2,3,4) @)

The model also takes intccount theinfluence of unequal
air-gap thickness in servo valve torque motcthis is
achievedby expressing the reluctance of the-gap as
function of air-gap thickness

Lyt HEW £ G+ x4,
HaAg

(i =1,2,34) A3)

i
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Figure 8 Magnetic torque motor circi

In Eq. 3l is the nominal thickness amg,, is the armature
position and H,W,G are the coefficie that allow to
expresshe misalignment of the armature, si depend on
the air-gap considered, for a more detsdls Urata (2007t

The torque obtained from Eq. 2 combingith the dynamic
equations of the flappethe position of th flapper causes a
variation of the flow from the twmozzle: of hydraulic
amplifier, and a consequenhange in th pressure of the
chambers placed at the ends of gpeol. In themodel the
relationship betweenthe position of th flapper and
pressures at the ends of the spoaoh&leling diversit with
the following equations

{PA = Gpy * (xf - GQAxs)
Pg = Gpp * (Xf — GopXs)

whereP, andPg are thepressures in the chambeGep, and
Gpg are pressure gains ariéh, and Ggg are flow gains.
Varying the value of the gains possible to simula

contamination of the first stage filter occlusion of one c
the two nozzles.

(4)

The pressures determined by dwiation (4 are used in the
dynamic equation of the spodh order to estimate tt
opening of the flow ports. Thequations that descri the

kinematic system take into accoutfte influence of th
feedback spring force, coulomb and viscous frictemd

structural stiffness and damping. Furthermore, ¢
parameter can be modified in order to simulate

degradation of the components.

The resulting servealve control flows, for each port, fro
the difference of the contributiorieom the supply and th
return, the mathematical modehlculate the individual
contribution by exploitingthe electrical similitude. Eac
port is represented as a circoitmposed of tw variable
resistances placed in serigsthe laminar resistance aR,
the turbulence resistance.

_ 12:“0il(Ol - xs)

€T 5 wihz forol < x;
R.=0 for ol > x; (5)
i 2
kRA — pOllQ
2Cd?A?

whereq is the overlaphg is the spool radial gap arws is
width of servo valve portA is the area of thservo valve
port. psi and uy are density ar absolute viscosity,
respectivelyQ is the flowpassing throuc the port andCd
is the discharge coefficient function Reynold number and
of the ratio between corner radius and port ope

Using the valueof the resistance, t model estimates the
flow from each port withihe equation ()

RC_\[R(%_LI'RA*AP
2R,
where4P is the pressure drdgetween the port.

(6)

Q=— * sgn(AP)

A 3-DOF model describeshe hydraulic linear actual
(Figure 9) the first two describe theod, the surface
position, and the last represents the deformation of
attachment point between the actuator and the
structure. The actuator coulomb friction is a fumetof the
dynamic condition of the rod and of the geometriantl
physical data of the seal as well ihe pressures in the
actuator chambers (Martini, L. J. 19¢
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Figure 9.Actuator mathematical moc

The mathematical model allowsmulatin¢ the aerodynamic
load acting on theving surface, compriseof the sum of
four components:

* Airplane velocity

e Atmospheric wind, obtained by a
distributed random numk

e Arandom number generator determines wind ¢
whose amplitude and durat. Gusts occur in a
random pattern.

e Turbulence, implemented using the Dryden m
(Yeager, 2008).

Oil properties, sut density, viscosity and bulk moduliare
computed using a set efjuations that a functions of oil
temperature.

norma

A merit of the virtual hardwar is a detailed physical
representationf each EHSA compone enabling the rapid
change of parameters andhe evaluation of the
corresponding changes dhe EHS/ performance, thus
allowing the assessment of the eff of single and multiple
degradations.
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6.1. Validation

The model validation was carried out using datauaed

The algorithm itself will indicate when the confium level,
define asl00-Type |l error [%)], has increased to the desired
level.

through experimental testing and includes frequency

responses of the EHSA and system responses toediffe
stimuli. As shown by the example of Figure 10, thgponse
of the mathematical model to a 2 Hz sinusoidal camap
output of the model is very close to the actualavér,

concerning both the servo-valve and the actuatdre T

validation was carried out only for the hydrauliens-
system in nominal conditions.

2
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Figure 10. EHSA mathematical model validation

7. DEGRADATION DETECTION

In the paper two different methodologies to detdwt

degradation; the first is a data-driven approactetian the
data and the features extracted from the data whie
second uses the particle filter in order to estnthé state of
the system and identify the presence of degradaltioboth

approaches, the presence of the degradation istdétby

comparing the curve of the feature in nominal cbods

(baseline) with that obtained at the observatioreti

7.1. Diagnostic perfor mance requirement

Customer specifications are translated into actépta
margins for thetype | error and typell errors in the
detection routine:

7.2. Data driven approach

The data-driven approach takes advantage of tlze dat
acquired during each stage of pre-flight. The Iyt of
the feature distribution that approximates theqdfre is

realized by using a moving window of 50 acquisiiomith
an overlap of 49. The baseline is achieved with 50
acquisitions made on the actuator in nominal coorakt

Figure 11 shows an example of degradation detection
occurring after 698 flight hours and in the present an
occlusion of 19% with an accuracy of 97%.

Attime 698: Type I=5% Confidence = 97.1% (Estimate degradation = 19%)
I ] ] I I I I I I

Feature
—— — Threshold

Mean Error [mm]

Confidence
Confidence threshold

Confidence

| | | '
) |, Threshold | | Actual
0.3} — Baselne  _— _ _ _ _ - T T T T T T |~ distributon -~ 7

Mean error [mm]

Figure 11. Detection data-driven

7.3. Particlefilter approach

This approach exploits the particle filter framelworo
estimate the probability distribution of the extext feature
at each time instant for degradation detection psep.

Applying the particle filter the system equatiorsluce to
the form of Equation 7 allowing to estimate thelosion of
the first stage filter (coincident with continuovalued

«  False alarm rate: defined as the probability of a5tat€S«) and the pdf curve of the feature mean error.

false alarm. It coincides wittype | error and equal
to 5%
« Confidence: coincides with100-Type Il error

[%]and it expresses the level of confidence with
which a degradation is detected. This work is@et t

95%.
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The function that represents, expresses the feature as a
Xq1(t+1) Xq 1(t) . . .
i@ | T B xyo0 +n(t) function of the occlusion of the filter:
a2 d.2 x(t) = e+ fxxZ(t) +g*x2(t) 9)
Xe (t+1) = X (8) + Xg o0t (fo (t+h) = f () /h+ w(t) @)

Feature (1) = hy (x (1) + (1) Wheree,f,g are time-invariant coefficient.

The results of symbolic regression are reporteBigure 3
and in Table 3 where the parameters related tac¢haracy
In equation 7f,, f. andh; are non-linear mappinggy;and  of the fitting are shown.
X2 are Boolean states that indicate normal and faulty

conditions, respectively(t) is a set of continuous-valued Table 3: Feature model accuracy

states that describe the evolution of the degraenétiose R2 - — 0.99834
operating conditiongit is the interval betweehandt+1, h Correlation coefficient 0.99928
is delta for numerical derivative and(t) is noise describe Mean squared error 0.0022
like a normal distribution with zero meam(t) v(t) is a Mean absolute error 0.0319
normal distribution noise with mean equal to zend aigma
equal to the accuracy of the acquisition systetimesed as 6 : : : : : ;
the sum of the position transducer error, positiansducer . oa| | | | |
demodulator error and A/D converter error. Theiahit Sp~ =T - - koo -]
conditions of the equation system (Eq. 7) &re0 , X4:=1 : ! ! ! ! /(
andxdz(O):O. YN
’ A
The non-linear mappings Bmdh, are functions that express § | S N 4\4{7 o
the occlusion of the filter of the servo valve aiaction of g ; ; ; //'/; ; ;
flight hours and the feature as a function of degtian, I I R > oA B AR S
respectively. The equations are obtained usingnabelic ; /;/’ : ! ! !
regression tool, which starts with a set of datalémtify the s N N A N B
best fitting approximation. The selected functidos both 1""“? ! ! ! ! |
cases offer the best compromise between accurafiyirg ! ! ! ! ! !

@
=}

and simplicity of the model, reducing the calcudattime of 0 10 20 30 2 50 70

. . Occll %,
the implemented algorithms. ecuston 041

The functionf, obtained using the symbolic regression is: Figure 13. Feature model

xt)=a+bxt*+cxt>+dxt* (8) The algorithm begins the detection process by itefithe
baseline, which is obtained by an estimate of ttifeop the
features in the absence of degradation using thetieg
(7). The algorithm starts then from the initial ddgion of
the filter estimate for each time instant and tkevrieature
pdf curve is computed and compared with the basélin
order to identify the presence of degradation.

Where a,b,c,d are time-invariant coefficient andis the
flight hours. Figure 12 shows the comparison behwte
data and fitting curve, Table 2 shows the pararseatated
to the accuracy of the fitting.

80

An example of identification of the degradationpwin in
Figure 14, occurs after 680 flight hours and in phesence
of an occlusion of 17% with an accuracy of 95.2%.

Occlusion [%]
B (2]
o o

N
o

7.4. Results

|
i The detection algorithms were tested using ten Isitad
; ; responses of the EHSA. The simulations were caoigdy
0 100 200 300 400 500 600 700 800 900 1000 1100 injecting diverse operational scenarios and differeeavel

Flight hour patterns within the European network; the EHSA bata
Figure 12. Occlusion model has been simulated with different environmentalditions
Table 2: Occlusion model accuracy and temperature profiles of the hydraulic fluidightes.
R2 0.99993
Correlation coefficient 0.99996
Mean squared error 0.0436
Mean absolute error 0.1725
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Attime 680: Type I= 5% Confidence = 95.2% (Estimate degradation = 17%)
4 T T T T T T

Feature
—— — Threshold

Mean Error [mm]

— Confidence
——+—  Confidence threshold

Confidence

Actual
— distribution

1.2
Mean error [mm]

14 1.6

Figure 64. Detection particle filter

The average time to detection is 428 flight howrkjch
corresponds to an average occlusion equal to 19%.

The algorithm based on the particle filter exhititeetter
performance; it was able to identify the degradafio all
conditions. Even the average time to detection
significantly lower; it is approximately 400 flightours,
coincident with about 16% of filter occlusion.

8. PROGNOSTICS

Prognosis is understood as the generation of lermg-t
predictions describing the evolution in time of articular
signal of interest or fault indicator. In the waskesented in
this paper, predictions are based on an estimat¢hef
evolution of the features’ mean error. Its evolntiis
predicted using the particle filter presented pyasly, in
particular the system of equations (7). The apgroac
employs the previous state estimate to generate fori
state pdf estimate for the next time instant.

We define bty the instant at which fault detection occurs,
the particle filter then uses the pdf estimatestligr system
continuous-valued stateg(ty), computed at the moment of
fault detection, as initial conditions for the fai¢ prognostic
routines.

By using the state equation to represent the evolwf the
fault dimension in time (Eg. 3), it is possibledenerate a
long-term prediction for the state pdf, in the atrgeof new

measurements, then use the predicted siatés estimate
the resulting evolution of the feature.

The algorithm terminates the prediction when thereged
feature pdf for a given point in time completelysasses
the set threshold.

The limit, beyond which the component is considdesied,
and thus needs to be replaced, has been estimatbd t
equal to a mean error of 4 mm.

Figure 15 shows example results of the RUL estionatihe
end of life (EOL) of EHSA is 986 flight hours, wihic
corresponds to a remaining useful life, defined as
RUL=EOL-ty, equal to 313 flight hours.

B 46— 3
E
3
o |
S |
5] -
= 255 I T T T T T T T Tr o
: : : 95% of accuracy :
o 1 1 1 1 1 1 1 1
700 750 800 850 900 950 1000 1050 1100
Flight hours
0.1
0.08
> 0.06
‘@
5
o 0.04
0.02
0

850 900

Flight hour

950 1000 1050 1100

is

Figure 15. RUL prediction

8.1. Perfor mance metrics

The performance of the prognostic algorithm waduatad
using the metrics proposed by Saxena, Celaya, Balab
Gobel, Saha B, Saha S, and Schwabacher (2008). In
particular, the following metrics were used:

Prognostic horizonH(i)): defined as the difference
between the current time indéxand the end of
prediction (EOP) utilizing data accumulated up to
the indexi, provided the prediction meets desired
specification.

H@G) = EOP —i

a-A performance: which allows to verify that the
prediction to a generit instant has an accuragy
A-a)*r@®) <nrn®) <A +a)*r()

Wherer, is the predicted RUL at time t,is the
real RUL,a is the accuracy ands defined as

t =P+ A(EOL —P)

WhereP is the first prediction time instant afids
window modifier.

10
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e Relative Accuracy (RA):

is RA=1.

Ir@®) — @)

RA(t) =1- o

Wherer, is the predicted RUL at time t,is the
real RUL and is defined as

t=P+AEOL - P)

WhereP is the first prediction time instant afds
window modifier.

e Cumulative Relative Accuracy (CRA): normalized

relative prediction
accuracy at a specific time instance. Perfect score

Relative accuracy (RA) []

sum of the relative prediction accuracies. PerfecB. CONCLUSIONS

score is CRA=1.

EOL

1
Cha = mz RA(®)
=p

8.2. Results

The prognostic algorithm has shown good result$ it
ten data sets used; in all cases, the metrics detnaded the

This paper presented a particle-filter based faleltector
capable of detecting the occurrence of a majot faode in

its incipient stages for a safety critical aircrafttuation
system. Furthermore, the same basic estimationadetlas
adopted for prediction of the remaining useful ldé the
actuator. An overview of a generic PHM architectwas
presented and applied to a particular EHSA faultdeno
based on a FMECA study. The primary fault mode was

robustness and accuracy of the algorithms. The meanodeled using physics-of-failure mechanisms indicathe

prognostic horizon of the algorithm is equal to Z8ght
hours. Example results for the metwid, shown in

Figure , demonstrate the accuracy of the algorithrthe
estimation of the RUL, with the estimated value ae/
within the limits of 20% for all data sets.

350

RUL
RUL estimate
— ~ — 20% accuracy limit

|
|
300 — =< 4 - —— —I-—

’

250"
200
-l
>
x
150

100

50

0

Gamma [-]

Figure 16.0-\ performance

Similarly, the RA and CRA metrics have demonstratesl
accuracy of the algorithm in estimating the usdifet for
all the data sets the 95% of the RA value is infigerange
0.98 + 0.88, the minimum value is equal to 0.8%guFe 17
exhibits the trend of the metric in the case ofragle data
set. The average value of CRA, for the ten datg setqual
to 0.943. The best CRA is 0.948 while the wor€:.841.

primary failure effect. A feature was derived usstgtistical
analysis to quantify the primary failure effect. €mh
simulation data were acquired to validate the model
Although a specific system, an EHSA, was selectetha
test-platform with a specific fault mode, the oveRHM
architecture can be applied to an entire ranggstess and
application domains. In fact, similar techniqueshich
allow for early fault detection with acceptable foemance

in the presence of faults, are being developedafavide
variety of system actuators in both manned and nmex
air vehicles. Therefore, the concept of using syskealth
information (diagnosis and prognosis) is at thesfimmt of
modern space and avionics applications requiring
increasingly sophisticated diagnostic and progoosti
systems that are robust, reliable, and relativedxpensive.
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