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ABSTRACT

Almost all engineered systems are nonlinear and show non-
linear phenomena that can only be predicted by nonlinear
models. However, the application of model-based approaches
for diagnostics has been constrained mostly to linearized or
simplified models. This paper introduces a fundamental ap-
proach for characterization of nonlinear response of systems
based on the topology of the phase space trajectory. The
method uses the density distribution of the system states to
quantify this topology and extracts features that can be used
for system diagnostics. The proposed method has been em-
ployed to diagnose a multi degree of freedom system with
various simultaneous defects.

1. INTRODUCTION

The ability to determine the state of the system and predict
failures would greatly increase the safety and productivity
of systems. The predictive maintenance, health monitoring
and diagnostics methods have become the focus of many re-
search projects in recent years (Rezvanizaniani, Dempsey,&
Lee, 2014; Fekrmandi, 2015). Generally speaking, a defec-
tive system would have a different dynamical response from
a healthy system. From the mathematical point of view, these
dynamical changes can be caused by either alternations in
the values of the system parameters or transformation of the
structure of the model, which we would call parametric and
structural defects, respectively. The development of a crack in
a beam is an example of parametric defects which will result
in a change in the stiffness of the beam. In contrast, structural
defects cause change the structure of the mathematical model.
A broken capacitor in an electrical circuit drops the first order
derivative in the model and can be considered as a structural
defect. Given the mathematical model of the system along
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its parameter values, one can easily obtain the response of
the system using numerical integration techniques. In con-
trast, the diagnostics problem would be the inverse problem,
where we have the dynamical response of the system and we
want to identify and quantify changes in the mathematical
model. The solution to this problem however, is not always a
straight-forward task. In practice, all engineering systems are
nonlinear and exhibit nonlinear phenomena that can only be
predicted by nonlinear models. This includes periodic, multi-
periodic, quasi-periodic and chaotic behaviour, limit cycles,
bifurcations of the equilibrium points, etc. Many studies have
reported the emergence of these complex nonlinear phenom-
ena in machinery originating from defects or even due to their
nonlinear nature in healthy conditions (Sankaravelu, Noah,
& Burger, 1994; Mevel & Guyader, 1993; Kappaganthu &
Nataraj, 2011). The prevailing estimation methods which are
mostly based on optimization algorithms show poor perfor-
mance coping with such complexities. In many cases, the
models are linearized to simplify the estimation problem or
behaviour of the system in such complex regimes is simply
ignored.

A phase space is a space in which all states of a system are
represented and a phase portrait is a visual representationof
the trajectory of this space. For the two-dimensional case,the
phase space will turn into a phase plane. The phase space
trajectory consists of a closed single loop for a periodic re-
sponse and multiple loops for a multi-periodic behaviour. The
topology of the phase space trajectory provides valuable in-
formation regarding the dynamics of a system in a qualita-
tive fashion. While much work has been devoted to extract
information from these topological patterns (Letellier etal.,
1995; Carroll, 2015; Tufillaro et al., 1991), the concern here
is to extract a set of features that can quantify the phase space
topology in order to do the inverse problem.

This paper presents a novel method for characterization of
the nonlinear response of the system based on the topology
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of its phase space. In an earlier work (Samadani, Kwuimy,
& Nataraj, 2015), we developed a method that we name here
“Phase Space Topology (PST)” for characterizing the topol-
ogy of the phase space trajectory with quantitative measures.
This method which is based on the probability density dis-
tribution of time series was used to extract features from the
phase plane response of a 1-DOF nonlinear pendulum in the
periodic and multi-periodic domains and estimate two pa-
rameters of the system. The present paper is an extension
to the previous work which generalizes the applicability of
the method to multi degree of freedom systems with higher
complexities. A 3-DOF nonlinear mass-spring-damper sys-
tem with up to six simultaneous parametric defects has been
used for the demonstration of the method. The robustness
and sensitivity of the characterization method to various pa-
rameters including noise, time series length and time step and
density estimation parameters have been considered as well.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the method of PST and the computa-
tional approach which has been used in this study. In section
3, the case study and its mathematical model are introduced.
Section 4 describes the feature extraction and diagnosticspro-
cedure and presents the results of its application to numerical
and experimental data. The conclusion has been presented in
Section 5.

2. CHARACTERIZATION OF SYSTEMS USING THE METHOD

OF PHASE SPACE TOPOLOGY (PST)

PST quantifies the topology of these closed curves by com-
puting the density distribution of points along each axis of
the phase space. For simplicity of illustration, the examples
here are presented in the two dimensional space; however, it
can be extended to higher dimensions. For dimensions higher
than three, even though the visualization of the phase space
space trajectory is not possible, the method is still applicable.
In fact, the computations are performed individually and in-
dependently for each state of the system. The density of each
state is computed by Kernel density estimator as described in
the following

Kernel density estimation: LetX=(x1,x2,...,xn) be an inde-
pendent and identically distributed sampled data drawn from
a distribution with an unknown density functionf . The shape
of this function can be estimated by its kernel density estima-
tor.

f̂h(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

(1)

where,h >0 is a smoothing parameter called bandwidth and
K(.) is the kernel function which satisfies the following re-
quirements.

∞
∫

−∞

K(u)du = 1 (2)

K(−u) = K(u) for all values of u (3)

There are a range of kernel functions that can be used includ-
ing uniform, triangular, biweight, triweight, Epanechnikov,
normal, etc. Due to its conventional mathematical properties,
we use the normal kernel function in our approach.

This density function can be computed and plotted for any
state of the system. It turns out that the shape of the phase
space trajectory which is a closed curve for periodic and multi-
periodic behavior is in a direct relationship with the proper-
ties of the peaks in the density plots. Specifically speaking,
as shown in (Samadani et al., 2015):

• At the end of the curve in the phase plane (where the
curve turns back at the local maximum or minimum along
each axis) the density of points is significantly higher
than the other areas. This produces a sharp peak in the
probability density plot of the corresponding axis. In
other words, each loop in the phase plane portrait pro-
duces two sharp peaks in the density plot of each axis.

• The density of points on the curve at sharper ends (cur-
vature with lower radius) is higher than density of points
at rounder ends (bigger radius). Therefore, the sharper
the end of the curve, the higher the corresponding peak
will be in the probability density plot.

• A depression in the curvature of the phase plane causes
a higher density of points in that region which is pro-
portional to the extremeness of the depression and this
creates a smooth peak in the probability density plot.

According to these empirical rules, the topology of the phase
space trajectory can be characterized with the properties of
the peaks in the density plot which themselves can be quanti-
fied with following measures:

• li : Location of the peaks

• hi : Height of the peaks

• si : Sharpness of the peaks

– Sharpness is defined as the difference between the
left and right slopes at the peak

Therefore, them dimensional trajectory of the phase space is
mapped intom density plots, each of which containing sev-
eral peaks whose properties can characterize the original tra-
jectory. This mapping is unique for a specific set of estima-
tion parameters; however, the inverse statement is not always
true. In other words, there can be an unlimited number of
phase space topologies for a given set of peak features. Let
us now consider the phase plane portrait of a system response
with n=30,000 sampled points shown in Fig. 1a. The data
has been obtained by numerical integration of a second order
ODE with time step∆t=0.001 sec. A closed curve with two
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loops represents a bi-periodic behavior with two commensu-
rable frequencies. The kernel density of the horizontal axisx
evaluated atnp=1000 points is shown in Fig. 1b, whenh=5e-
04 has been used for the kernel bandwidth value. As can be
seen, the ends of the curve along the horizontal axisx has
produced fours sharp peaks in the density plot. The curve has
a lower radius in the left side than in the right side and there-
fore, the first peak in the density plot is higher and sharper
than the last peak. The two peaks in the middle are also
the result of the small loop in the middle of the phase plane.
Similarly, due to the lower radius curvature in those turning
points, their corresponding peaks are higher and sharper than
the other two.
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Figure 1. (a): A sample phase plane plot of a nonlinear sec-
ond order system obtained from numerical integration (b):
The distribution curve

3. CASE STUDY: D IAGNOSTICS OF A 3-DOF NONLIN -
EAR OSCILLATOR WITH SIX PARAMETRIC DEFECTS

3.1. Experimental setup

A 3-DOF nonlinear mass-spring-damper system has been used
in this study to demonstrate the implementation of the method.
This system which is shown in Fig. 2a is a model 210-rectilinear
plant manufactured by ECP and is designed to emulate a broad
range of real-world applications including 1-DOF rigid bod-
ies, flexibility in linear drives, gearing and belts, and other
coupled discrete oscillatory systems. The mechanism con-
sists of three mass carriages interconnected by springs. The
mass carriages are mounted on anti-friction ball bearing type
linear motions. Dashpots which provide adjustable viscous
damping can be attached between the masses and the base

(a)

(b)

Figure 2. (a): Model 210-Rectilinear Apparatus. (b): Per-
manent magnets were used to produce nonlinear force and
damping

plate. The position of all masses are measured by high reso-
lution encoders. The masses, the springs stiffness and viscous
damping of dashpots are adjustable and the reconfigurable
design of the electromechanical apparatus allows the user to
transform it into a variety of configurations which represent
various important classes of real life systems. The rotary mo-
tion produced by a brushless DC servo motor is transformed
to a linear excitation and is transmitted to the first carriage
through a rack and pinion mechanism.

Model 210-rectilinear plant is originally a linear system.The
system was transformed into a nonlinear mass-spring-damper
system with mounting permanent magnetic discs on each mass
carriage, as shown in Fig. 2b. With identical poles of mag-
nets facing each other, a nonlinear repelling force is produced
which is proportional to the inverse of the distance squared.
In addition to this nonlinear force, a damping force is also
produced by the magnets whose coefficient was found to be
proportional to the inverse of the distance of magnets. The de-
sign of the system allows the user to adjust the initial distance
of the magnets by rotating the screws on which the magnets
are mounted.

3.2. Mathematical Model

The mathematical model of the system can be described by
Eqn. 4. In this equation,mi, i = 1, 2, 3 are the total mass
of moving masses (The mass of carriagesmc, i = 1, 2, 3 plus
the additional weights on each carriage),ki, i = 1, 2, 3 are
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the stiffness of springs,ci, i = 1, 2, 3 are the viscous damp-
ing coefficients of each mass,cm is the damping coefficient
due to magnets,p is a constant coefficient associated with the
force between magnets,r0i, i = 1, 2, 3 are the initial distance
of the magnets on each two masses, andµ is the coulomb
friction coefficient.

The rated values of the parameters representing the system in
healthy conditions were estimated using system identification
techniques. The value ofp was estimated by measuring the
static force between two repelling magnets at different dis-
tances. The values ofm, k andc were estimated by fitting
the numerical response to the experimental initial condition
response of each mass using the method of nonlinear least
squares. This procedure was done for several times, and the
average values of each parameter were obtained. The mag-
nets then were attached to the mass carriages and the addi-
tional damping coefficient value added to the system due to
the magnets were estimated. The estimated parameters of the
system are presented in Table 1. Note that the second and
third mass carriages are similar; therefore, their masses and
damping coefficients are identical. Also, the same springs
and magnets were used for all masses of the system.

The magnitude of the input force is adjusted by parameter
A on the experimental setup. The relation ofA andf0 was
obtained by scaling the amplitude of a periodic numerical re-
sponse to fit the experimental response of the system. This
relation was found to be:

f0 = 6.4 A (5)

3.3. System diagnostics using PST

3.3.1. Feature extraction

This section demonstrates the implementation of the method
of PST in order to estimate up to six parameters of the sys-
tem including the values of the masses and initial distance of
magnets. Due to the complexity of the system, if the range of
parameters is not bounded, a variety of different behaviours
can be seen in the system response. However in practice, the
parameters of a system stay in a limited range in defective
conditions. Here we assume thatmi ∈ [0.8 1.0] kg andr0i ∈
[0.019 0.023] m fori=1,2 and 3. Figure 3 shows three sam-
ple phase portraits of the first mass response (positionx1 vs.
velocity x2 ) along with the corresponding density plots for
bothx1 andx2, for system parameters presented in Table 2.

Let us now see how the density ofx1 and its peaks proper-
ties change based on the topology of the phase portraits. In
Fig. 3a, we have a double-loop phase portrait which is a char-
acteristics of a bi-periodic motion. The edges of the loops in
thex1 direction have produced four sharp peaks in the den-
sity plot ofx1. The two sharp peaks in the middle are higher
than the other two due the lower radius of the phase plot curve

in those parts. In addition, the depression of the phase plane
curve in the middle has produced a smoother peak in the den-
sity plot. In Fig. 3b we have a similar topology; however, the
depressed part has moved rightward. It can be seen from the
corresponding density plot that the smooth peak has shifted
rightward to the middle of the two sharp peaks as well. In
Fig. 3c another loop has been evolved in the phase plane;
representing a response with three frequencies. As a result,
two more sharp peaks have been emerged in the density plot
of x1. The density plots ofx2 can also be explained in a sim-
ilar way. Although here we characterized the topology of the
phase portrait of the first mass response based on the den-
sity of its position and velocity, this distinction betweenthe
system states is not always easy or practical as they can be
of different natures (e.g position, velocity, electrical current,
fluid flow, etc.). However, this process can be done for any
state of the system independently; regardless of the natureor
number of states. In other words, we do not even need to
obtain any phase plots to do the analysis and the presented
examples are just for the sake of illustration.

3.3.2. The inverse problem

With the features extracted from the states of the system, a
machine learning tool can be used as a classifier to classify
the faults or as a regressor to estimate the parameters of the
system. An artificial neural network (ANN) has been used in
this study to regress the computed features to the six parame-
ters of the system. For this purpose, a two-layer feed-forward
network with sigmoid hidden neurons and linear output neu-
rons was developed. Due to the complexity of the system
response and having three degrees of freedom, we will have
a relatively large number of features for each sample of data.
This requires a higher number of hidden neurons in order for
the network to be trained with minimum regression error. The
regression error was found to be minimum for twenty hidden
neurons in this case. Depending on the number of the loops
and the complexity of the curvature in the phase portrait, the
number of peaks and therefore the number of inputs to the
neural networks can vary. In this problem, we know that the
maximum number of peaks is seven for the possible range of
parameters. This knowledge can be obtained from bifurcation
diagrams or by simulation of the system for many random pa-
rameter sets. We then build the matrix of inputs with respect
to this maximum number. For example, in this problem, the
response can produce a maximum of seven peaks. Three fea-
tures are extracted from each peak and therefore, the number
of inputs would be 21 for each state and 126 in total for all
six states. For cases where the response of the system con-
tains less number of peaks, since we need a constant number
of inputs for the neural network, we choose to put zeros in
the remaining columns, according to the procedure explained
in (Samadani et al., 2015). The data was obtained by random
selection of the values of parameters, simulation of the sys-

4



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2015

ẋ1 = x2

ẋ2 = 1
m1

[

f0 sin(ωt) +
p2

(r01+x1)2
−

p2

(r02+(x3−x1))2
+ k2(x3 − x1)− k1x1 − (c1 + cm)x2 − sign(x2)µm1g

]

ẋ3 = x4

ẋ4 = 1
m2

[

p2

(r02+(x3−x1))2
−

p2

(r03+(x5−x3))2
+ k3(x5 − x3)− k2(x3 − x1)− (c2 + cm)x4 − sign(x4)µm2g

]

ẋ5 = x6

ẋ6 = 1
m3

[

p2

(r03+(x5−x3))2
− k3(x5 − x3)− (c3 + cm)x6 − sign(x6)µm3g

]

(4)

Table 1. Nominal parameter values of the nonlinear oscillator

mc1 (kg) mc2 (kg) c1 (Ns/m) c2 (Ns/m) k1 (N/m) p2 (Nm
2) cm (Ns/m) r0 (m)

0.880 0.397 2.5 1.175 368 0.052 0.014 0.022
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Figure 3. Sample phase portraits of the first mass and the corresponding probability density plots forx1 andẋ1 time series

tem and computation of the response features each time. A
total number ofN=200 sample data were used to train, and
validate the neural network.

Figure 4a shows the learning curve of the ANN for training,
validation and test sets. The mean square error (MSE) can be
seen as an index of the performance of the feature extraction
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Table 2. Parameter values for three sample cases

m1 (kg) m2 (kg) m3 (kg) r01 (m) r02 (m) r03 (m)

(a) 0.96 0.85 0.94 0.0207 0.0212 0.0220

(b) 0.98 0.85 0.91 0.0220 0.0200 0.0228

(c) 0.82 0.88 0.99 0.0223 0.0206 0.0211
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Figure 4. Learning curve of the neural network for training,
validation, and test sets

and response characterization as lower values of MSE repre-
sent higher precisions in mapping the response features to the
parameters sets. The best validation performance is achieved
at epoch 35 with mean square error (MSE) of1.3077× 10−4.
The small values of MSE for all data sets are representatives
of a perfect fit and effectiveness of the proposed method.

In real applications, some states of the system might not be
available. For example in our system, we can only measure
the position signalsx1, x3 andx5. We are interested to see
how effective the method of PST would be when the whole
phase space is not available. A new ANN was developed us-
ing the same data set; but only based on the features extracted
from these three states. Figure 4b shows the MSE of the new
ANN for training, validation and test sets. Interestingly,it
can be seen that even though the convergence has taken a bit
longer here, the minimum MSEs achieved here for all data
sets are lower compared to the case where all six states were
used. This can be due to the fact that a less number of inputs
are involved in the optimization process which makes it com-

putationally more efficient. This example clearly shows that
including all states of the system does not necessarily provide
additional information and make the analysis more efficient
and accurate.

Estimation of Parameters

Figure 5 shows the estimated values of each parameter versus
their real values for seventy cases, where all six parameters
have been chosen randomly. Red points on this plot represent
the estimated values of the real parameters on the set-up com-
puted with experimental data. In order to do so,x1, x3 and
x5 were measured for these six random cases, and the corre-
sponding features were extracted from them. As long as the
obtained response is close enough to the response predicted
by the mathematical model, the extracted features and the cor-
responding estimated parameters are expected to be close to
their actual values. Figure 5 shows that the developed net-
work can effectively estimate the values ofm1, m2, andm3;
whereas the estimation error forr01, r02 and especiallyr03 is
relatively higher. Figure 6 shows the distribution of this esti-
mation error for all six parameters. Note that in our analyses,
all six parameters of the system were changed randomly at
the same time, which rarely happens in real applications and
makes the estimation problem more complicated.

4. CONCLUSION

A new method, namely the method of Phase Space Topology
(PST) was employed in this paper to diagnose a multi degree
of freedom system. The diagnostics was treated as a parame-
ter estimation here, which is an accurate assumption for most
real world defects. The features extracted from the nonlin-
ear response of the system using PST are able to quantify the
topology of the phase space trajectory. This is done by map-
ping the phase space trajectory into the density distribution
plots of each state. The properties of the peaks in the den-
sity plots including their location, height and sharpness can
describe this topology with quantitative measures.

The results show the effectiveness of the approach in char-
acterizing the system behaviour and tracking the dynamical
changes in the worst case scenario where six parameters were
changed simultaneously. This is analogous to a system with
six simultaneous defects which rarely happens in practice.
The method shows superior capability in extracting useful in-
formation from the response in comparison to conventional
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Figure 5. Estimated parameters for numerical and experimental data versus actual values

frequency, or time-frequency feature extraction methods which
provide little information in the presence of nonlinear phe-
nomena.

Some key aspects of the approach need to be addressed in
the future work including the dependence of the method on
density estimation parameters and robustness of the method
to noise and other properties of data. The signals in this prob-
lem were fairly smooth and clean; whereas, in some real ap-
plications, the data is contaminated with noise and other un-
certainties which makes the problem more complicated.
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