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ABSTRACT 

The development of robust monitoring systems for assuring 

the consistency and stability of multistage manufacturing 

processes necessitates the use of add-on sensors and 

advanced data collection, storage, and analysis platforms to 

deal with the high-dimensional data collected from 

machines and products in multiple stages. In many cases, 

such an approach may not be feasible due to high 

implementation costs and the challenges of obtaining the 

process parameters and analyzing them effectively. This 

paper proposes an alternative approach for health 

monitoring and diagnosis of multistage manufacturing 

processes based on product quality measurements in a 

sensor-less environment. In the presented work, the 

available data consists of product quality parameters 

measured from multiple product types along with the 

manufacturing route associated with each product. A 

Gamma distribution is fit to the data for each parameter 

within a moving time window. Using the distribution fits, a 

metric is developed to represent the performance of each 

machine in a stage compared to its peers producing the same 

product. This metric is then aggregated across all the 

products produced by the machine to generate the final 

metric reflecting the overall performance of the machine. 

This performance metric is first calculated for the machines 

in the last stage. After flagging the underperforming 

machines in the last stage, the samples from those machines 

are removed from the data set and the remaining samples 

are used to calculate the similar metric for the prior stage. 

The suggested approach assumes the random distribution of 

products from one stage to the next to facilitate the 

implementation of a comparison-based approach. This 

approach is tested on a data set collected from a 

manufacturing plant. The results demonstrate the 

effectiveness of such approach for monitoring and diagnosis 

of multistage manufacturing processes when the data is not 

available from within the process. 

1. INTRODUCTION 

With the rapid advancement of science and technology, the 

manufacturing processes are becoming more and more 

complicated and so sustaining their performance and 

reliability becomes increasingly important and a pivotal 

factor in global market competition. This trend is driving the 

manufacturers to deploy more advanced and reliable process 

monitoring systems to improve the quality, productivity, 

and reliability of their processes. With the fast development 

of information and sensing technologies, large amounts of 

data are being collected from industrial processes. The 

availability of various resources for collecting data has led 

to the advancement of data-driven process control and 

monitoring technologies which has had a growing impact on 

the final quality of the products (Shu & Tsung, 2000). A 

large amount of research has so far been dedicated to the 

development of multistage process monitoring and 

diagnosis methods based on measurements in different 

stages of the processes (Asadzadeh & Aghaie, 2012; Shu & 

Tsung, 2000; Tsung, Li, & Jin, 2006; Wolbrecht, 

D'ambrosio, Paasch, & Kirby, 2000; Zhou, Huang, & Shi, 

2003; Zhou, Ding, Chen, & Shi, 2003). The developed 

methods in this field can be categorized in two types: 1) 

methods based on variation propagation modeling 

techniques (Ceglarek, Shi, & Wu, 1994; Ceglarek & Shi, 

1996; Hu & Wu, 1992; Liu & Hu, 1997); and 2) methods 

based on Statistical Process Control (SPC) techniques 

(Lucas & Saccucci, 1990; Montgomery, 2007; Neubauer, 

1997; Page, 1954; Rato & Reis, ; Reynolds, Amin, Arnold, 

& Nachlas, 1988; Reynolds, Amin, & Arnold, 1990; 

Roberts, 1959). 

One of the well-established variation propagation-based 

modeling techniques is Stream of Variation (SoV), 

introduced by J. Hu in (7) to identify the sources of 

variation in automobile body assembly. By developing the 
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inherent relationships between errors from various sources 

in a sheet metal assembly process, further improvements in 

SoV-based methods helped to solve two fundamental issues: 

1) lack of analytical models for variation propagation, and 

2) lack of a systematic methodology for analysis of variation 

propagation and its minimization (Shi, 2010). Despite the 

effectiveness of this group of approaches in modeling and 

diagnosis of multistage manufacturing processes, they 

require product quality measurements from each stage of the 

process in order to build the variation propagation model of 

the process.  

The second group of methods mentioned previously in this 

section is based on SPC techniques. The objective of SPC is 

to monitor the process over time and determine whether the 

process is in control or not. SPC charts were first developed 

to monitor the key product variables in a univariate way 

(Lucas & Saccucci, 1990). The most commonly used 

traditional SPC charts include Shewhart, Cumulative Sum 

(CUSUM), and Exponentially Weighted Moving Average 

(EWMA) control charts (Reynolds, Amin, Arnold & 

Nachlas, 1988). In this group of methods, process data 

samples from either fixed or variable time intervals are 

taken. Depending on the selected method, a statistic is 

computed and plotted from the samples in each interval and 

thresholds are set to define the acceptable range of the 

variable. Similar to the SoV-based methods, SPC-based 

methods also require measurements in different stages of the 

process. If only the final product quality measurements are 

available, SPC can still be used to detect variations in the 

process. However, it is unable to provide further 

information regarding the source of the variation in terms of 

process stage and the machine or equipment causing the 

variation.  

Despite the availability of process data in many 

manufacturing sites, there are existing challenges that the 

manufacturers face in measuring the necessary parameters 

from the processes. PHM implementation should have 

minimal adverse impacts on the performance of the 

monitored systems and at the same time, it should be low 

cost as well. Due to the complexity of industrial machinery 

and processes, instrumenting each machine with various 

sensors requires investment both in sensor and data 

acquisition hardware, and the infrastructure for data 

handling, storage and analysis. Besides considering the cost, 

the factors that should be considered for sensor selection 

include the parameters that need to be measured, 

performance needs, electrical and physical attributes of the 

system, and sensor reliability (Cheng, Azarian, & Pecht, 

2010). Due to the existence of such barriers, data-driven 

manufacturing process monitoring often faces major 

challenges in dealing with limited resources and in many 

cases insufficient data to extract information from. As a 

summary, the common barriers for implementing sensor-

rich manufacturing process monitoring systems are: 1) cost 

considerations including the initial and total lifecycle cost of 

sensors; 2) lack of access to critical locations; 3) sensor 

reliability; and 4) non-optimal selection of sensors and their 

location. Despite the significant impact of sensor 

technologies in recent advancements in PHM, there are still 

situations in which the implementation of sensors does not 

seem applicable due to the barriers mentioned above. Sensor 

cost is the most common issue that needs to be dealt with. 

Instrumenting numerous complex machines in a factory can 

impose a significant cost and in many cases is not deemed 

applicable. Such cost can both be related to the purchase of 

sensors and additional data acquisition and storage systems, 

or sensor and hardware maintenance and replacements. 

Determining and accessing the critical locations within the 

machines and processes is also a common challenge. An 

alternative sensor-less approach for manufacturing process 

monitoring is proposed in this paper. Although it may not be 

an option or the best option in many cases, it has proved to 

be a viable option in which sensory data from each machine 

is not available but the data regarding product quality and 

their manufacturing routes are available. 

2. TECHNICAL APPROACH 

2.1. General Concept 

The process that this methodology is designed for may 

consist of several stages, with each stage having several 

machines. This process may produce multiple types of 

products. The data gathered from this process should 

include the quality measurements for each or sampled 

products, along with the manufacturing route associated 

with that product. Moreover, it is assumed that the products 

distribute randomly from machines in stage N to machines 

in stage N+1.  

The data for this study includes a set of quality parameters 

measured for each product in a manufacturing plant. The 

data also contains the type of the product, its unique 

barcode, and its manufacturing route through the process. A 

gamma distribution is fit to the data for each parameter 

within a moving time window. Using the distribution fits, a 

metric is developed to represent the performance of each 

machine in a stage compared to its peers producing the same 

product. This metric is then aggregated across all the 

products produced by the machine to generate the final 

metric reflecting its overall performance. This performance 

metric is first calculated for the machines in the last stage. 

After flagging the underperforming machines in the last 

stage, the samples from under-performing machines in the 

last stage are removed from the data set and the remaining 

samples are used to calculate the similar metric for the prior 

stage. A flowchart of the proposed method is provided in 

Figure 1. 
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2.2. Machine Performance Metric Development 

For developing a comparison-based metric for machines, a 

window with the length of several hours was applied to the 

data. The length of the data was selected based on the expert 

knowledge and maintenance concerns. At each step of the 

window, the distribution of product quality parameters 

where considered as the source for calculating the metric. 

The purpose of developing such metric was to extract a 

standard health value, ranging from zero to one, which 

represents the performance of a machine relative to its 

peers. The first step for building such metric was to fit an 

appropriate distribution function to the data during each 

window. 

As first step, the distribution of parameters for each product 

time and their possible shift over time was studied. The 

original values of the product quality parameters were 

positive real numbers, but due to proprietary concerns, the 

parameters were normalized between zero and one. The 

observed shape of the parameter distribution was close to 

normal (Gaussian), except when the parameter approached 

zero. This sharp drop-off in the distribution varied with the 

parameter, but it was never a hard cutoff at zero—it always 

sloped down to zero magnitude when the domain is zero. 

The negative slope (after the peak) had the appearance of an 

exponential distribution. Similar distribution shapes were 

observed for all the variables considered in this study. Thus, 

only one variable was picked and provided as an example. 

An example of the histogram of one of the parameters is 

shown in Figure 2. Initially, the option of exponential 

distribution was eliminated since the observed distributions 

had a peak at a finite positive value, whereas exponential 

distributions immediately decay from zero. The option of 

Gaussian distribution was also eliminated since its domain 

exists over the entire set of real numbers (-∞, +∞), and there 

was no negative-side “tail” on the distribution. Chi-squared 

distribution was considered, but it was ultimately eliminated 

for the more general gamma distribution, since the gamma 

distribution includes the scale parameter and thus was better 

able to fit the distribution of the parameter, whereas the chi-

squared distribution “spreads out” as the shape parameter 

increases. 

 
Figure 1. Flowchart of the proposed method for multistage manufacturing process monitoring and diagnosis. 
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For a given set of a fairly large number of machines, where 

“large” is subject to discretion based on failure rate, it can 

be assumed that the majority of the machines will be 

functioning properly. The term “majority” indicates a 

number of machines among the total machines that is 

enough for creating a steady baseline performance. Thus, it 

is unlikely that a significant number of machines from this 

“large” set of machines will be faulty at any time, assuming 

repairs are regularly made on the faulty machines. For the 

purposes of this paper, “faulty” means any abnormal 

condition, whether it is a loss of calibration, a mechanical 

failure, a controller failure, or any other event which causes 

the machine’s output to deviate from the correct output. 

Accordingly, an average of the parameters of all the 

machines should approximate a “good” condition. For the 

purposes of this paper, “good” means the state at or nearly 

at the point at which the machine yields the correct output. 

When comparing one machine against the average of all the 

other machines, a significant difference in distribution 

should indicate that the machine is in an abnormal 

condition. 

When analyzing the data, it quickly became apparent that a 

method was needed for determining the difference in the 

distribution of a parameter for a machine versus the 

distribution of the same parameter for peers. Initially, the 

shared area under both probability density function (PDF) 

curves was considered as a percentage of the total area 

under the “good” average PDF curve. This value became the 

Confidence Value (CV) and was used as the health metric. 

Since the total area under a PDF curve is simply one, the 

CV could obtain a maximum value of one when the selected 

machine’s parameter distribution function lay directly atop 

the averaged parameter distribution function. A minimum 

value of the infinitesimal approaching zero could be 

obtained when the means of the averaged and selected 

distributions are very far apart. Ergo, the CV was part of the 

set of (0, 1], where higher values indicated a more healthy 

condition and lower values indicated the reverse. The 

equation for calculating the CV is provided in Eq. (1): 

CV = ∫ min(PDFselected, PDFavg)
+∞

0

𝑑𝑃   (1) 

where P is the product quality parameter. The issue with this 

method was when the selected machine’s parameter 

distribution had a tighter spread than the averaged machine. 

While the selected machine’s data still fell within the 

accepted, averaged bounds, the area under both curves was 

minimal since a large portion of the area in the averaged 

parameter is in the positive and negative “tails” of the 

distribution. 

The majority of the values of the given parameter will fall 

within one standard deviation bounds of the machine. To 

overcome the aforementioned issue, comparing the PDF’s 

of the distributions only within one standard deviation 

bounds was considered. The equation was chosen to just be 

the area under the selected machine’s PDF over the one 

standard deviation limits of the PDF of the averaged 

machines, as shown in Eq. (2): 

CV = ∫ PDFselected

μavg+σavg

μavg−σavg

 𝑑𝑃       (2) 

where P is the product quality parameter. Because either the 

positive or the negative “tails” of the selected machine’s 

PDF will always pass through this domain, the lower limit 

of the function is some positive infinitesimal. The upper 

limit, where the area under the selected machine’s PDF is 

almost wholly within the limits of the integral, is some 

infinitesimal less than one. Ergo, the CV is some positive 

real number on the set of (0, 1). This solved the problem of 

when the PDF of the parameter of the selected machine is 

much taller and narrower (sharper) than the PDF of the 

averaged function. 

However, it added a new potential for error. When the 

PDF’s were almost the same, the CV would approach 0.7 

rather than one. This happened because roughly 70% of the 

area is within the one-sigma limits. To combat this error, the 

confidence value equation was changed such that the CV 

was equal to the percentage of the area under the one-sigma 

limits of the selected machine’s PDF that intersected the 

one-sigma limits of the averaged PDF (Eq. (3)): 

CV

=
∫ PDFselected

min(μavg+σavg,μselected+σselected)

max(μavg−σavg,μselected−σselected)

∫ PDFselected
μselected+σselected

μselected−σselected

 𝑑𝑃 (3) 

This confidence value is bounded on the range of (0, 1]. For 

healthy machines that fit the average healthy value, the CVs 

would be around 0.95 to 1. Faulty CVs are chosen based on 

a threshold CV that varies dependent upon the application of 

 
Figure 2. The histogram of a product quality parameter. 
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this technique. Examples of three different cases with CV 

values ranging from near zero to one are shown in Figure 3. 

 

While this technique worked, the performance cost of 

calculating and fitting the gamma distributions was higher 

than might be necessary. Additionally, having a software 

statistics package capable of fitting gamma distributions 

might not always be the case. Thus, as an alternative to 

gamma distribution, the authors further used normal 

distribution as an alternative with less computational 

requirements and slightly less accuracy. Accordingly, the 

gamma distributions were approximated as normal 

distributions. For any cases where the shape parameter of 

the gamma distribution (commonly represented by k) is 

large enough (normally 5 or higher), the normal distribution 

becomes a reasonable approximation of the gamma 

distribution for PDF values not near zero. Since the given 

technique uses at the farthest from the mean the one-sigma 

bounds which are still part of the “hump” of the PDF curve, 

this error does not normally come into play. 

For rough estimations, a different equation for calculating 

the CV can be used. In this method, the standard deviation 

is ignored and only the mean values of the selected 

machine’s parameter and the averaged machines’ parameter 

are compared, as shown in Eq. (4): 

CV = 1 − |1 −
μsel

μavg
|                   (4) 

Results seemed promising, as shown in Figure 4. The 

gamma distribution fit is plotted in blue, the normal 

distribution fit is plotted in red, and the mean comparison is 

plotted in green. 

As can be seen in the Figure 4, the machine was run for a 

while, and then the CVs began dropping rapidly. Then 

production stopped for maintenance. When production was 

restarted following the maintenance, the CVs were back in 

the normal range. The normal approximation to the gamma 

distribution worked well, and the mean comparison worked 

as a rough estimate of the gamma distribution method. 

2.3. Process Performance Monitoring 

Besides calculating the health metric for each machine, the 

framework suggested in this paper also includes a 

methodology through which multiple stages of the process 

could be monitored and the machines adversely impacting 

the quality of the final products could be identified. The 

suggested approach for identifying faulty machines along 

the manufacturing rout is constructed based on a general 

assumption. It is assumed that products are being randomly 

distributed from each stage to the next. Having this 

assumption in place, the suggested approach analyzes the 

manufacturing process in reverse order. Therefore, the first 

step is to calculate health metrics for a specific type of 

product at the last stage of the production. After identifying 

the machines and the time frames in which the machine(s) 

affected the product quality, these samples are filtered out 

from the data and the remainder of the data is used to assess 

 

  
Figure 3. Examples of the metrics calculated within one 

time window: a) two very similar distributions yielding a 

CV of close to 1; b) two distributions yielding a CV of 

around 0.5;  c) two significantly different distributions 

yielding a CV of close to 0.2. 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n
 

CV = 0.52

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.18

a) 

b) 

c) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Parameter

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n

CV = 0.92

 

 

PDF
avg

PDF
selected

Overlap



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

 

6 

the machines performance in the previous stage. Removing 

these samples help to filter out any effect by current stage 

machines on the product quality once moving back to the 

previous stage. Based on the random distribution 

assumption, this sample removal process will not mask any 

faulty situation coming from previous stages as the fault 

signature would be present in the products distributed 

amongst all the machines at the current stage.   Once the 

metric based on the remainder of the data is calculated, the 

same procedure is performed for previous stages until it 

reaches the first stage. The suggested approach for an 

example of a three-stage manufacturing process is illustrated 

in Figure 5. 

3. RESULTS AND DISCUSSION 

In section 2.2, the general approach for calculating a 

comparison-based machine performance metric based on 

product quality parameters was discussed. Subsequently, in 

section 2.3, an approach for extending the machine 

performance metrics from covering one stage of the process 

to covering all the stages of the process was introduced. In 

this section, an example is provided from a small subset of 

data to demonstrate the performance of the suggested 

process monitoring approach. The selected subset includes 

data acquired from the manufacturing process during three 

days. Over ten quality parameters are measured from each 

product manufactured during the selected time period. 

Although for this particular data set all the products are 

undergone quality check but the suggested approach is 

applicable to the situations in which the quality check is 

being done by random sampling. . The data is limited to 

only one type of product at two stages of production. At 

stage one, there is only one machine, and in stage two, there 

are 12 machines. Having only one machine at first stage 

does not allow the implementation of a comparison-based 

approach. Hence, in this situation, the historical data that 

one machine is used to create a baseline. This baseline is 

later used to compare the current performance of the 

machine against it.   

The data was analyzed by calculating comparison-based 

metric for each of the product quality parameters.. Using all 

the metrics calculated based on these parameters, one final 

metric needs to be extracted as the health indicator of the 

machines. Simply averaging all the calculated metrics may 

not be effective since there are cases in which among all the 

parameters, only one or two contain deviation from normal. 

In order to address this issue, during each time window, the 

minimum value among the metrics is considered as the final 

metric.  Although more complex statistical features might 

convey additional information about the machine condition 

or severity of faults, but the minimum value represent robust 

performance in identifying faulty machines. This can be the 

direction of future works on this method to improve the 

suggested approach.   

The purpose of this example is to show how the suggested 

method can determine the root cause of the problem and 

isolate it within a stage and a machine by taking into 

account the manufacturing route of each product. Figure 6 

shows the machine health metrics for nine selected 

machines out of total of 12 machines in stage two. The other 

three machines are not included in the chart to avoid taking 

up more space as their data does not provide any additional 

information and is pretty similar to the presented ones. It 

can be observed that in machines 2, 6 and 9, there is a 

noticeable deviation from normal behavior. While the 

performance of the machines 2 and 9 declines in the short 

term, machine 6 underperforms consistently throughout the 

time window shown. These machines were detected as 

faulty as they were deemed to adversely affect the quality of 

the products. In the next step, the products gone through 

these machines were filtered out from the data and the 

remainder of the data was used for calculating the health 

metric for the machine in stage one.  For filtering out the 

mentioned samples, a threshold was obtained by applying k-

means clustering approach to the data, similar to how it is 

used in (Siegel & Lee, 2011). The purpose of using k-means 

was to partition all the calculated CV’s into two clusters of 

normal and faulty. Figure 7 shows the clusters detected by 

the algorithm. Based on the results from k-means algorithm, 

the threshold of 0.65 was selected for determining the 

underperforming machines. After removing the samples 

affected by the faulty machines, the metric for the machine 

in stage one was calculated. For comparison, this metric was 

also calculated without removing the samples from 

machines in stage 2. Figure 8 shows both metrics for 

machine in stage one. The blue line shows the metric based 

on all the samples. After removing the samples affected by 

machine 9 in stage 2, a portion of the metric inclined 

significantly (red line in Figure 8). The overall increase in 

the metric within the shown time period is correlated to the 

removal of samples produced by machine 6 (Figure 6). 

Therefore it can be inferred that the remaining low CV 

values within the red line are due to faulty machine in stage 

1. Special cases might happen when even until stage 1, 

some of low quality products are not being captured by the 

method. In those special cases it is possible that an 

environmental factor or raw material, which equally affects 

all the machines, are the root cause of low quality products. 

4. CONCLUSION 

This paper provides a machine health monitoring approach 

for manufacturing processes by relying only on the product 

quality measurements. Although the advancement and 

availability of sensing technologies provides a rich 

information source for PHM scientists and engineers to 

monitor the machines, the suggested method provides an 

affordable alternative approach for situations in which the 

implementation of the sensors are too costly or impractical. 
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Figure 5. The flowchart of the proposed approach for an example of a three-stage manufacturing process. 
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Figure 6. Calculated CV for four machines in stage 2 producing the same type of product. 
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The comparison-based method has been applied to a two 

staged manufacturing data where quality measurement 

values used as inputs of the suggested method. The method 

was able to identify underperforming machines in second 

and first stage of the manufacturing process by only relying 

on product quality measurements. There is potential to 

improve the suggested method by using other statistical 

features in calculating the final CV value (comparing to use 

minimum now). 
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Figure 8. Calculated CV for the machine in stage 1 before 

removing the samples from stage 2 (blue) and after 

removing the samples from stage 2 (red). 
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