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ABSTRACT 

Adaptive multiscale prognostics and health management 

(AM-PHM) is a methodology designed to support PHM in 

smart manufacturing systems. As a rule, PHM information 

is not used in high-level decision-making in manufacturing 

systems. AM-PHM leverages and integrates component-

level PHM information with hierarchical relationships 

across the component, machine, work cell, and production 

line levels in a manufacturing system. The AM-PHM 

methodology enables the creation of actionable prognostic 

and diagnostic intelligence up and down the manufacturing 

process hierarchy. Decisions are made with the knowledge 

of the current and projected health state of the system at 

decision points along the nodes of the hierarchical structure. 

A description of the AM-PHM methodology with a 

simulated canonical robotic assembly process is presented. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) refers to a class 

of techniques and methods that enable condition monitoring 

of a physical machine or functional process. PHM 

encompasses health monitoring of a system; provides 

diagnostic information including what is at fault, why the 

fault occurred, and how the fault can be remedied; and 

offers prognostic intelligence as to when a system or process 

is going to degrade to various states that may include going 

out of specification or failure.  

A manufacturing system is a complex system-of-systems 

with a hierarchical structure. A manufacturing system 

hierarchical structure is described as a facility consisting of 

multiple assembly/fabrication lines that are further divided 

into work cells or work stations which are further divided 

into multiple machines consisting of components (Hopp & 

Spearman, 2008). One challenge in PHM for manufacturing 

is that in most applications data gathering and analysis is 

limited to the component level. For example, prognostic 

intelligence for machines, such as robots or machine tools, 

typically does not propagate beyond the boundaries of the 

machine even though the failure of a single component may 

lead to failure of other components or to system-wide 

effects. 

The use of PHM technologies in manufacturing operations 

continues to experience growth driven by advances in 

sensor, computing, and communications technologies, and 

in machine learning and other data analytic techniques. An 

increased interest in PHM within manufacturing is also 

reflected in recent academic literature. Yoon, He, and Van 

Hecke (2014) applied PHM to an additive manufacturing 

process for improved fault diagnosis and quality control. 

Philippot, Marang, Gellot, Ptin, and Riera (2014) suggest a 

fault tolerant control structure for manufacturing plant 

control. The self-aware machine platform for application in 

a manufacturing shop floor proposed by Liao, Minhas, 

Rangarajan, Kurtoglu, and de Kleer (2014) provides a richer 

set of PHM information, including predicted component 

wear and real-time anomaly detection to the shop supervisor. 

However, there is a notable absence of methodologies to 

support the development of agile and flexible PHM systems 

in smart manufacturing environments (Peng, Dong, & Zuo, 

2010). 

Ideally, PHM would be available at the system level, 

including prognostic intelligence being propagated up the 

hierarchical structures that relate components to machines, 

machines to work cells, and work cells to production lines. 

Model-based diagnostic methods that have been developed 

for hierarchical aerospace systems may be applied to 

hierarchical manufacturing systems. For example, 

Narasimhan and Brownston (2007) suggested a general 
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framework for stochastic and hybrid model-based 

diagnostics for aerospace systems. Feldman, de Castro and 

van Gemund (2013) proposed a decision support framework 

for satellite systems that uses active testing to increase 

diagnostic accuracy. Biswas and Mahadevan (2007) also 

proposed a framework for system health management that 

includes fault detection, fault identification, and adaptive 

control for aerospace applications. In the manufacturing 

domain, Celik, Lee, Vasudevan, and Son (2010) applied a 

dynamic data-driven framework on a supply chain system to 

perform multi-fidelity simulation. Ferri, Rodrigues, Gomes, 

de Medeiros, Galvo, and Nascimento (2013) have suggested 

a method for achieving system-level PHM by propagating 

the remaining useable life (RUL) along the fault tree 

structure of the manufacturing system model. This is a 

positive step in creating a methodology for achieving 

system-level PHM within Smart Manufacturing based on 

the system model and component-level PHM. 

To address the existing gap in providing PHM for 

hierarchical manufacturing systems, we propose a 

methodology termed Adaptive Multiscale PHM (AM-PHM). 

The AM-PHM methodology is designed to support PHM in 

Smart Manufacturing Systems (SMS). AM-PHM is 

characterized by its incorporation of multi-level, 

hierarchical relationships and PHM information gathered 

from a manufacturing system. AM-PHM utilizes diagnostic 

and prognostic information regarding the current health of 

the system and constituent components, and propagates it up 

the hierarchical structure. By doing so, the AM-PHM 

methodology creates actionable prognostic and diagnostic 

intelligence along the manufacturing process hierarchy. This 

information includes the predicted health state upon 

completion of a task. The AM-PHM methodology allows 

for more intelligent decision-making to increase efficiency, 

performance, safety, reliability, and maintainability. 

AM-PHM, at a given level along the system hierarchy, uses 

operational profiles from adjacent, higher-level operational 

profiles. These profiles describe the production goals under 

consideration by the decision-makers (e.g., operators and 

supervisors) at the higher level. In addition to the traditional 

workload, bill of materials, and requirements of the 

manufacturing process, the operational profile may have a 

focused objective such as minimizing cost or maximizing 

reliability. One instantiation of the AM-PHM concept may 

be as an AM-PHM module situated at every node along the 

hierarchical structure. The AM-PHM module gathers PHM 

information from subordinate systems or components and 

makes a decision ideal for the task corresponding to the 

operational profile. The AM-PHM module then creates 

operational profiles for its subordinate AM-PHM modules 

while producing diagnostic and prognostic information for 

its higher-level subsystem. 

An example robotic assembly process is selected to show 

the effectiveness of the AM-PHM methodology. In today’s 

manufacturing world, the finished products/goods are 

becoming more complex as machines with increased 

capabilities are being deployed to the manufacturing floor. 

One example is the utilization of the industrial robot. 

Worldwide, the manufacturing landscape has experienced 

extensive growth in the development and deployment of 

new robotic technologies. Paired with the introduction of 

newer, cheaper, and more reliable sensing technologies, the 

capabilities of robotic systems have improved in a relatively 

short amount of time. Processes that were historically 

performed by manual labor may now be accomplished using 

robots. As such, the use of robots outside of the automotive 

and electronics industries is on the rise (Orcutt, 2014). 

Global manufacturing initiatives are stressing the 

development and integration of smart manufacturing 

technologies in modernized manufacturing facilities. Such 

technologies are seen as key to maintaining economic 

stability within an increasingly competitive global market 

(Holdren et al, 2011). 

Robotic assembly is expected to be a principle application 

of robotics in manufacturing (Marvel & Falco, 2012). 

Historically, mechanical assembly has been addressed by 

manual labor. However, advancements in robotic perception, 

force control, and kinematic dexterity have enabled robotics 

to be viable options for assembly applications. This expands 

the traditional application suite of material handling, 

painting, and welding that have been more typical of robotic 

operations in manufacturing. Moreover, with the 

introduction of collaborative robot technologies, the 

expansion of robotics is expected to positively impact 

manufacturing processes that remain largely manual in 

nature (Marvel, 2014). 

With the anticipated integration of robots into both new and 

preexisting manufacturing lines, the quality of PHM will 

directly influence the effectiveness of interoperability and 

system performance. This is particularly true when humans 

are expected to work alongside robotic collaborators, where 

robot performance also impacts safety. Should a robotic 

system experience a failure, it is expected to do so in a safe, 

reliable manner that does not negatively impact its 

environment, process, or collaborators. Moreover, the road 

to recovery must be clearly established and easy to 

implement. This necessitates significant advancements in 

the quality and dissemination of robotic PHM. 

The remainder of the paper is organized as follows. Section 

2 examines the current state of PHM capabilities and 

standards in manufacturing. Section 3 presents the AM-

PHM methodology including the proposed AM-PHM 

features for describing the health state of systems. Section 4 

discusses two example implementations of the AM-PHM 

methodology as applied to a test robotic assembly 

production line scenario. Section 5 concludes the paper by 

highlighting the significance of AM-PHM in manufacturing. 
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2. CURRENT STATE OF PHM IN SMART MANUFACTURING 

PHM technologies in manufacturing systems reduce time 

and costs for maintenance of products or processes through 

efficient and cost-effective diagnostic and prognostic 

activities. In 2010, a comprehensive review was conducted 

of prognostic and diagnostic methodologies for condition-

based maintenance (CBM) that presented the existing 

strategies within four categories: physical models, 

knowledge-based models, data driven models, and 

combination (hybrid) models (Peng et al., 2010). This 

review highlighted many specific methods across four 

categories (Hidden Markov Models, Bayesian network-

related methods, Fuzzy Logic, Principal Components 

Analysis) along with their successes and limitations. No 

method stood out as being sufficient to provide both 

diagnostic and prognostic intelligence at multiple levels. 

This review demonstrated that for every method’s strength, 

there was at least a single weakness. Similarly, another 

review of existing methods for manufacturing systems was 

conducted in 2012 that focused on comparing time-based 

maintenance (TBM) and condition-based maintenance 

(CBM) (Ahmad & Kamaruddin, 2012). TBM, commonly 

referred to as preventative maintenance, is typically simpler 

to implement (in that maintenance is scheduled based upon 

a specific unit of time; e.g., cycle time) while CBM, 

sometimes termed predictive maintenance, may ultimately 

be more cost effective if a process’s or equipment’s health 

data accurately reflects its current state and allows a 

machine to run longer until maintenance (as compared to a 

TBM schedule). The challenge in CBM is gathering 

sufficient data to make a reasonably accurate prediction. 

Product PHM (providing health monitoring, diagnostics, 

and/or prognostics for a finished system; e.g., automobile, 

aircraft, power generation station) is more widespread as 

compared to process PHM (providing health monitoring, 

diagnostics, and/or prognostics to a system that integrates 

one or more pieces of equipment to complete a task; e.g., 

assembly process, welding process, machining process) 

(Batzel & Swanson, 2009) (Holland Barajas, Salman, & 

Zhang, 2010) (Hu & Koren, 1997) (Shen, Wan, Cui, & 

Song, 2010). Likewise, PHM techniques have been 

developed and applied more widely at component/ 

equipment levels, yet some work has occurred at the higher/ 

system levels. For example, innovative methods have been 

developed to support various machining operations (Al-

Habaibeh & Gindy, 2000) (Altintas, Verl, Brecher, Uriarte, 

& Pritschow, 2011) (Biehl, Staufenbiel, Recknagel, 

Denkena, & Bertram, 2012) (Borisov , Fletcher, Longstaff, 

& Myers, 2013). System-level PHM methods have also 

been developed, yet seem to be focused in their applicability 

and/or limited in capability (Barajas & Srinivasa, 2008) 

(Datta, Jize, Maclise, & Goggin, 2004) (Hofmeister, 

Wagoner, & Goodman, 2013). 

Vogl et al. (2014) conducted a detailed review of existing 

standards that were designed to help guide implementation 

of PHM in manufacturing. Specifically, many of the current 

PHM standards were developed within the International 

Organization for Standardization (ISO) and focus primarily 

on condition monitoring and diagnostics (ISO, 2002) (ISO, 

2003) (ISO, 2012). Few standards include discussion of 

prognostics (ISO, 2004). Most standards fall into one of two 

categories; standards that are very specific and only 

applicable to a few processes and standards that are very 

broad that may lack guidance for applications. Likewise, no 

standard has been developed that offers the flexibility to be 

applied at multiple hierarchical levels of a complex system 

to promote effective PHM practices. 

3. ADAPTIVE MULTISCALE PHM FOR SMART 

MANUFACTURING 

A manufacturing system hierarchical structure can be 

described as a facility consisting of multiple 

assembly/fabrication lines which are further divided into 

work cells or work stations which are further divided into 

multiple machines (Hopp & Spearman, 2008). For this 

paper, the hierarchical structure of the facility, assembly 

line, work cell, and machine will be used as a primary 

example, although there exists more complex methods of 

describing a manufacturing facility. 

Information is passed down in the form of orders, schedules, 

bills of materials, or control signals between each 

hierarchical level of the system. The job of the subordinate 

system is to follow the tasks assigned by the higher-level 

node. Historically, maintenance policies for machines have 

been based on usage time or workload, as static policies 

defined in these terms can be estimated through historical 

data and experience. An effort to modify this approach into 

a feedback system where the health state of the machine or 

component is considered in making maintenance decisions 

emerged only recently. (National Institute of Standards and 

Technology, 2015) However, health state information is 

often confined to the component or machine level and is not 

propagated up to the system level. 

On the other end of the spectrum, the system-level approach 

to analyzing a manufacturing system has resulted in 

generalized risk and fault analysis methods such as fault tree 

analysis (FTA) and failure mode and effects analysis 

(FMEA) (SAE International, 2009). Also, modeling 

software tools such as SysML have been used to describe 

the system structure including interoperability and 

interdependency between components of the system 

(Wünsch, Lüder, & Heinze, 2010). 

The AM-PHM methodology is designed to provide 

decision-makers with enhanced information on the current 

and predicted health state of the decision-maker’s 

subsystems. Figure 1 depicts the AM-PHM methodology for 

a simple hierarchical manufacturing structure. 
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Figure 1. Conceptual representation of AM-PHM 

For AM-PHM, a decision-maker is not limited to the 

machine operator. Rather, it refers to any person or machine 

such as the control unit of a manufacturing robot or the 

supervisor of an assembly line that is responsible for 

making decisions that can influence the outcome of the 

system. The point at which the decision-maker resides in the 

hierarchical structure is called the decision point within the 

AM-PHM methodology. Conceptually, an AM-PHM 

module resides at every decision point of the hierarchical 

structure of the manufacturing system. 

A hierarchical manufacturing system refers to a 

manufacturing system in which multiple levels exist. For 

each level, the higher-level nodes encompass the lower-

level nodes. In this level structure, the parent nodes have 

control over the states of its subsystems while subsystems 

do not have direct control over the states of its parent nodes. 

Examples of the hierarchical structure may be a SysML 

description or a fault tree structure of the manufacturing 

system. Another example may be a treelike description of 

the physical setup of a manufacturing system consisting of 

assembly lines, work cells, and machines. 

 

For the example structure shown in Figure 1, an order is 

placed to the Facility Manager with the number of products 

requested, product requirements, and expected finish date. 

The order information and the operational directive are 

passed onto the facility level AM-PHM module. The 

directive refers to a particular set of attributes or objectives 

that the decision-maker would like to focus on. For 

example, the decision-maker may be interested in reducing 

the time, cost, risk, or wear in maximizing the utilization 

rate.  

The facility level AM-PHM module reports the health 

information of the facility to the Facility Manager. PHM 

information on the subsystem is needed for effective 

directive-driven decisions to be made. The PHM 

information from the subsystem is processed at each AM-

PHM module. This results in health metrics that 

appropriately represent the current and future state of the 

system. These health metrics may include remaining usable 

life of the system, expected health state upon completion, 

nature of fault, and proposed solutions. 

The AM-PHM module also creates operational profiles once 

all aforementioned information is gathered. Each 

operational profile is designed to control the subsystems 

with a focused directive. The operational profile also 

contains the projected health information for the subordinate 

systems such as projected health upon completion. The 

decision-maker may now choose from the set of operational 

profiles that fit within the constraints handed down from its 

superior nodes. 

The Facility Manager selects the operational profile that 

best fits the directive and order requirements. Once the 

operational profile is chosen, the set of instructions 

contained within that operational profile are handed down to 

the subordinate AM-PHM module and a similar process 

repeats itself. For the example in Figure 1, the selected 

operational profile containing the number of products 

needed to be produced by each production line and 

operational directive is passed down to the Assembly Line 

level. 

A similar process is now repeated at the Assembly Line 

level. The Assembly Line Manager takes the operational 

profile handed down from the Facility level and selects an 

appropriate operational profile. The operational profile 

handed down to the Work Cell level contains information 

such as number of products produced for a particular work 

cell and bill of materials needed for the processing of the 

order. 

A similar process is repeated for the Machine level. For the 

Machine level the operational profile contains machine 

operation parameters and the AM-PHM information contain 

data such as the aggregated wear for critical components. 

Although the simplified scenario depicted in Figure 1 is 

convenient for initial discussion of the AM-PHM concept, 

the concept may be expanded for more general SMS 
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environments in which there exists an extensive hierarchy of 

processes and components.  

Additional features that better describe the current health 

state at a particular juncture of the system are needed for the 

AM-PHM system to be helpful to the decision-maker. The 

newly suggested features are (a) greatest wear, (b) average 

wear, (c) health balance score, (d) probability of successful 

completion, and (e) estimated health state upon completion. 

(a) Greatest wear represents the most extreme wear in 

percent from all the wear states of all the subordinate 

components. This gives an idea of the state of the most worn 

component of the system. 

(b) Average wear represents the arithmetic weighted mean 

of the wear in percentage of all the subordinate components. 

This metric represents the overall average health state of the 

system. The average on its own may not reveal much 

information but in conjunction with the greatest wear and 

the health balance score, this helps to describe the health 

state of the all the components of the subsystem. Different 

components contribute differently to the overall 

performance of a manufacturing system. There are 

established methods such as FTA, FMEA, Hierarchical 

Holographic Modeling (HHM), and Risk Filtering, Ranking, 

and Management (RFRM) that may be used to analyze the 

weight of each component to different failures. The 

differing importance of a component is included as a 

weighted coefficient.  

(c) Health balance score is the standard deviation of the 

wear state of each of the subordinate components at a given 

node. This metric indicates degree of concentration of wear 

of the system. A higher number would indicate that wear 

values vary greatly among components, while a smaller 

number would indicate that the system has similar wear 

along most of its components. 

(d) Probability of successful completion is the probability 

that the component will complete the given operational 

profile with the current state of health. This gives decision-

makers an idea of the success rate or confidence involved 

with a given solution. 

(e) Estimated health state upon completion refers to the 

expected final state of health for all metrics involved in 

AM-PHM. This is used to show a predicted picture of the 

overall state of health at the point of completion of the 

assigned task.  

The average wear, health balance score, and probability of 

successful completion may be further customized so that 

each of the components carry different weights. This means 

the proposed metrics can focus on certain components 

depending on its importance within the overall structure of 

the system. 

One notable point for the proposed features is that the basis 

for the usefulness of these metrics lies on the assumption 

that the PHM information from the component level is 

accurate to a certain degree. An accurate wear model is 

necessary for the health metrics to be useful.  

4. AM-PHM IMPLEMENTATION IN SMART 

MANUFACTURING ROBOTIC ASSEMBLY 

An example assembly line involving multiple robots is 

described in this section. The AM-PHM methodology is 

applied to the canonical manufacturing process simulation. 

The canonical process is a generalized test case of the 

example assembly line and includes related assumptions. 

This simplified test case, including its simulated results, 

highlights the usefulness of the AM-PHM implementation. 

The structure and the trend of the numbers involved are 

reasonable in real manufacturing settings. The use of robotic 

arms in industry is widespread as stated in Snyder (1985) 

and the trend of the drill wear in the canonical example 

simulation follow the model by Kadirgama, Abou-El-

Hossein, Noor, Sharma and Mohammad (2011). 

The example hierarchical structure of a manufacturing 

environment consists of a single assembly line with multiple 

work cells, each of which has multiple machines, each 

comprised of multiple components. The operational profiles 

flow from the higher-level block to the lower-level blocks in 

the AM-PHM framework. The PHM information is reported 

from the lower-level blocks up to the higher-level block. 

However, both the operational profile and the PHM 

information are processed appropriately for each level. 

The specific information that is listed in the operational 

profiles and the PHM reports differ depending on the 

block's location in the hierarchical structure. For example 

the operational profile generated by the assembly line for 

each work cell will resemble a bill of materials; the 

operational profile generated by the work cell for each 

machine will resemble a process instruction; and the 

operational profile generated by the machine to its 

components will be close to a set of control signals. 

The operational profile generator of the AM-PHM module 

at each level must translate the task it receives from the 

higher-level AM-PHM module into a task that can be 

understood by the subordinate level. Similar concepts apply 

to the PHM information at each stage. The PHM 

information from the component to the machine will include 

RUL of replaceable parts, while the PHM information from 

the machine to the work cell includes more information on 

the tradeoffs involved with different operational profiles. 

Finally, the PHM report from the work cell to the assembly 

line would include more information on the probability of 

successful completion and the overall health state of the 

work cell. The AM-PHM module must process the PHM 

information it receives from the lower levels and provide 

value-added, level appropriate information for the upper 

level. 
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Two different examples of AM-PHM are given. The first 

example is focused on a simple AM-PHM structure with 

simple operational profiles and a PHM report involving only 

RUL. This structure may be implemented if the nature of the 

task performed at an assembly line does not require 

sophisticated PHM capabilities or if changing the existing 

system model and fault tree structure is not desired. The 

deployment of AM-PHM into the existing assembly line 

model is minimally invasive and most likely will not affect 

the overall structure of the fault tree. 

The second example is a more sophisticated AM-PHM 

system. This is needed if the assembly line handles a more 

complex process involving many different machines with 

interdependencies and interoperability. The downside is that 

the implementation may become more complicated and the 

use of AM-PHM may impact the existing fault tree structure 

of the system model. 

In the canonical example, a robot with two drilling arms is 

used to drill holes into a box. The left and right drilling arm 

are each responsible for drilling holes into the left and right 

side of the box, respectively. A SysML model of the drilling 

robot is presented in Figure 2. The corresponding FTA 

diagram of the drilling robot is shown in Figure 3. Only the 

flank wear of the drill bit component on each arm is 

considered for the simplified AM-PHM example, as flank 

wear is one of the common wears exhibited in drilling 

(Kadirgama et al. 2011). It is important to note that one 

drilling arm may perform the job of the other drilling arm 

with the penalty of reduced production rate. 

In real-world manufacturing systems, there are many factors 

such as material properties, work piece structure, and 

machine characteristics that are carefully considered when 

selecting machining parameters. Machining parameters are 

optimized to best fit the particular manufacturing process. 

However, in a complex system-of-systems, optimization 

based on one feature means there is a trade-off with other 

features. Also, for a particular process there is a range of 

acceptable machining parameters rather than one fixed 

operating point (Furness, Wu, and Ulsoy, 1996). Drill bit 

manufacturers recommend a range of feed rates and cutting 

speeds for their drill bits (Sandvik Coromant, 2005).  

When the parameters for a process are selected, the model 

[for the process] does not account for the fact that the 

system may change as the machine experiences wear in its 

components. The wear of the components, such as the flank 

wear of the drill bit, affects the characteristics of the system. 

Thus, the optimal operating parameters may need 

adjustment to account for the change in the system caused 

by the deteriorating health state of the machine. 

For the canonical process example simulation, 

simplifications are made to emphasize the effect of the AM-

PHM methodology and to reduce the complexity of the 

example. The drilling robot is tasked to drill 100 holes on 

the left and right side of the box. The left and right drilling 

arm each drill on their respective sides, simultaneously. 

Though there are several different types of wear involved 

with the drill bit, only the flank wear occurring on the 

cutting edge of the drill bit is considered. 

The work piece is made of Nickel alloy with a Brinell 

hardness of 200. The production line has identified an 

acceptable and stable range of operating parameters. The 

cutting speed is between 100 m/min to 180 m/min. The feed 

rate is between 0.1 mm/rot and 0.2 mm/rot. Each hole has a 

cutting depth of 1.5 mm and the drill diameter is 10 mm. 

Expected tool life is different for different combinations of 

cutting speed and feed rate and follows the values stated by 

Kadirgama et al. (2011). 

The drill bit is considered completely worn and reached its 

replacement point when there is 0.3 mm of flank wear. The 

RUL or tool life depends on the machining parameters and 

the replacement threshold for the drill bit. Tool life also 

differs depending on the size and geometry of the drill bit. 

Thus, to provide a more comparable quantitative figure for 

the amount of wear, the wear is presented as a percentage. 

The wear percentage is calculated by dividing the remaining 

tool life by the tool life for a new tool. 

 

Figure 2. SysML description of drilling robot 
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Figure 3. Fault tree analysis (FTA) of drilling robot 

4.1. Simple Implementation of AM-PHM 

The AM-PHM module is implemented on the canonical 

example robotic assembly process. Only the RUL is 

propagated based on the system's SysML model to provide 

RUL information along the system's hierarchical structure. 

Two methods by Mhenni et al. (2014) and Ferri et al. (2013) 

were combined to achieve this task. Mhenni et al. (2014) 

suggested a method for converting a SysML model into a 

fault tree. The method uses templates that translate several 

basic SysML subcomponent blocks into an equivalent fault 

tree structure. Then rules are suggested for combining these 

small fault trees into a complete system fault tree. Figure 3 

shows the fault tree constructed using this automated 

algorithm. The leaf nodes of the fault tree correspond to the 

individual components of the left arm of the driller robot. 

Another example PHM technique that could be applied 

within AM-PHM was developed by Ferri et al. (2013). This 

research team developed a method for propagating the RUL 

along a fault tree. This methodology takes the RUL of the 

end components and applies a set of rules to produce the 

RUL at each node of the fault tree. The PHM capability 

provides the RUL for each component. The individual 

component-level RUL is combined, resulting in the overall 

RUL for the driller robot. 

A semi-automated method for building system-level AM-

PHM is completed through the combination of these two 

methods. The system-level RUL is produced given the 

availability of the SysML model and component-level RUL. 

In this case, the actual implementation of the AM-PHM is 

done through the use of FTA as an intermediate, semi-

automated step of linking system-level hierarchical 

information and component-level health information. Only 

the RUL given at each level is used as the source of health 

information. 

The work cell is tasked to build 20 boxes. The starting wear 

state of the individual drill bits are 85 % worn for the left 

drill in Robot 1 and new for all other drill arms. The default 

operating speed is set to a feed rate of 0.2 mm/rot and 120 

m/min. This results in a wear rate of 15 % per minute for the 

drill bit and a production rate of 5 boxes per minute. The 

component-level RUL is calculated based on this initial 

condition. The component-level RULs show that for Robot 

1, the left arm has an RUL of 1 minute and the right arm has 

an RUL of 6.6 minutes. For Robot 2, both the left and right 

arm has an RUL of 6.6 minutes. This information is 

propagated along the hierarchical structure according to the 

rules. Robots 1 and 2 each result in RULs of 1 minute and 

6.6 minutes, respectively. The decision to distribute the load 

to the two robots is made based on the production targets 

and RUL information by the work cell operator. A work 

load of five boxes is assigned to Robot 1 and a work load of 

15 boxes is assigned to Robot 2. The job takes three minutes 

to complete and the final RUL upon completion for each 

robot is 0 and 3.6 minutes, respectively. The complete 

results including additional information on the health of the 

work cell are presented in Table 1. 

The result shows that the system has an RUL of 3.6 

minutes. This is information previously unattainable to the 

decision-maker. Utilization of the RUL information enables 

more efficient use of the components of the manufacturing 

system. The advantage of this degree of PHM reflection is 

that at any point in the hierarchical structure the same RUL 

calculation method can be applied again reducing the 

complexity of implementation. The upper-level RUL is 

calculated using simple multiplication and comparison 

process. This begins by converting the fault tree (consisting 

of logic AND and OR gates) to a sum of products (SOP) 

expression. Once the SOP expression for the system is 

obtained, the system RUL is calculated by multiplying the 

probability distribution of the RULs for the product terms of 

the expression. The next step is to select the appropriate 

RUL for the sum portion of the expression. The system 

RUL ends up highlighting the set of components that are 

contributing to the nearest expected system failure. 

However, the system RUL does not contain health 

information on the other components of the system that are 

not directly tied to the upcoming failure. This limits the 

range of intelligent decisions that can be made. 
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Table 1. AM-PHM based manufacturing results using RUL 

Time (min) 0 1 2 3 

Production Rate of 

Robot 1 

(box/min) 

5 5 - - 

RUL of Robot 1 (min) 1 0 - - 

Production Rate of 

Robot 2 (box/min) 
5 5 5 5 

RUL of Robot 2 (min) 6.6 5.6 4.6 3.6 

Produced (box) 0 10 15 20 

RUL of Work Cell 1 

(min) 
6.6 5.6 4.6 3.6 

4.2. Full Implementation of AM-PHM 

A more sophisticated implementation of the AM-PHM 

concept would be to introduce additional features that help 

convey timely information on the health state of the system. 

The new features used in this example are the health 

balance score, average wear state, worst wear state, and 

estimated wear state upon completion. An order to make 

five boxes was given to the work cell as with the previous 

example. For the starting health state, only the right drill 

arm's wear state is at 75 % while all other components are 

new.  

The PHM information from a subordinate component is 

conveyed to the upper-level AM-PHM module. The 

collected PHM information is processed to produce the 

PHM information at the current node. The cutting speed and 

feed rate parameters are changed to a different operating 

point within the stable and acceptable range. Work load is 

changed and the expected results are calculated for all the 

different parameters. The drill bit wear trend follows the 

model suggested by Kadirgama et al. (2011). The 

production rate is changed by adjusting the cutting speed 

and feed rate which effects the wear rate of the drill bit. 

According to Furness, Wu and Ulsoy (1996) the feed and 

speed have relatively small effects on the drill hole quality 

and that the drilling feed and speed is limited by factors 

such as drill wear. The drill speed parameters may be 

adjusted within a certain confine without significantly 

affecting the hole quality. The final decision is made from 

the set of choices that best fits the operational directive. The 

results for this simulation are given in Tables 2 and 3. 

For the case in Table 2, the work cell was handed down 

orders to produce 20 boxes with a directive of minimum 

health balance. Low balance score means that the 

components are at a similar state of health and may be used 

to align maintenance points for the components. The chosen 

operational profile distributes a load of five boxes for the 

first robot and 15 boxes for the second robot. However, the 

cutting speed is adjusted to 100 m/min and the feed rate is 

also adjusted to 0.1 mm/rot. The production rate is slowed 

down to 2.1 box/min as a result which reduces the wear of 

Robot 1’s drill bits to 0.02 mm/min or 6.6 % of its tool life 

per minute. This results in the production taking 

approximately 2.1 minutes.  

For the case in Table 3, the work cell is also ordered to 

produce 20 boxes but with a directive of minimum time. 

The operational profile chosen suggests a cutting speed of 

180 m/min and a feed rate of 0.2 mm/rot. The production 

rate is increased to 7.6 boxes per minute at the cost of seeing 

0.1 mm of flank wear per minute or 33 % of reduction in 

tool life per minute. The left drill bit reaches its failing point 

after 30 seconds and the right drilling arm handles the job of 

drilling holes on the left side as well which reduces the 

production rate for Robot 1. Production is completed in 1.5 

minutes at an increased cost on the wear of the drill bits. 

The AM-PHM methodology is being applied in a simulated 

environment that is designed to resemble real-world 

hierarchical manufacturing systems. The canonical example 

simulation is based on real-world drill bit wear trends. For 

simplicity, in this paper, tool life is only dependent upon the 

operating parameters since the material stays consistent. The 

AM-PHM suggests operating points by optimizing a 

weighted cost function. The cost function includes all the 

health related features. The weight used in the cost function 

is adjusted depending on the decision-maker’s operational 

directive. The suggested actions such as changes in 

parameters are based on existing stable operating conditions 

to ensure system stability.  

Table 2. AM-PHM results based on maximum mean health 

Time (min) 0 1 2 3 

Production Rate of 

Robot 1 

(box/min) 

2.1 2.1 2.1 - 

RUL of Robot 1 (min) 15.15 14.15 13.15 13 

Production Rate of 

Robot 2 (box/min) 
7.6 7.6 7.6 - 

RUL of Robot 2 (min) 3 2 1 1 

Produced (box) 0 9.7 19.4 20 

RUL of Work Cell 1 

(min) 
15.15 14.15 13.15 13.15 
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The canonical simulation used in this example is based on 

models from literature. In the future the AM-PHM 

methodology will be applied to real-world data some of 

which is obtained from actual production facilities. The real 

data will also include a more detailed wear model in which 

the wear rate is also dependent on additional factors such as 

current state of wear and material properties. 

 

Table 3. AM-PHM result using maximum health balance 

and minimum time  

Time (min) 0 1 2 3 

Production Rate of 

Robot 1 

(box/min) 

7.6 5.7 3.8 0 

RUL of Robot 1 

(min) 
3 2 1 1 

Production Rate of 

Robot 2 (box/min) 
7.6 7.6 7.6 0 

RUL of Robot 2 

(min) 
3 2 1 1 

Produced (box) 0 15.2 20 20 

RUL of Work Cell 1 

(min) 
3 2 1 1 

5. CONCLUSION 

The concept of Adaptive Multiscale PHM for manufacturing 

was introduced in this paper. The AM-PHM methodology 

calls for the AM-PHM module at each decision point along 

the hierarchical structure to receive operational profiles 

outlining the job requirements and report back performance 

and health estimates appropriate for the upper level. 

The AM-PHM is demonstrated on a canonical test 

manufacturing scenario simulation. Directive oriented 

decisions were made in the simulation by using additional 

information on the health of the system in addition to 

knowledge on the system hierarchical model. The AM-PHM 

shows promising results as it enables manufacturing work 

cells to adapt to changing machine conditions. 

Further development of the AM-PHM methodology will 

continue. A modified work cell canonical process is in 

development. This model is based on a real-world 

manufacturing facility. A canonical process work cell 

simulator capable of simulating continuous wear of the 

components is being developed. The AM-PHM will be 

tested using this simulation environment and will be 

compared against other existing PHM based decision-

making policies. The results of the different policies will be 

compared using quantitative measures such as time, 

monetary cost and Overall Equipment Effectiveness (OEE).  

NIST DISCLAIMER 

Certain commercial equipment, instruments, or materials are 

identified in this paper in order to specify the experimental 

procedure adequately. Such identification is not intended to 

imply recommendation or endorsement by the National 

Institute of Standards and Technology, nor is it intended to 

imply that the materials or equipment identified are 

necessarily the best available for the purpose. 
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