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ABSTRACT 

A simulation-based real options analysis (ROA) approach is 

used to determine the optimum predictive maintenance 

opportunity for multiple wind turbines with remaining useful 

life (RUL) predictions in offshore wind farms managed under 

outcome-based contracts, i.e., power purchase agreements 

(PPAs). When an RUL is predicted for a subsystem in a 

single turbine using PHM, a predictive maintenance option is 

triggered that the decision-maker has the flexibility to decide 

if and when to exercise before the subsystem or turbine fails. 

The predictive maintenance value paths are simulated by 

considering the uncertainties in the RUL predictions and 

wind speeds (that govern the turbine’s revenue earning 

potential). By valuating a series of European options expiring 

on all possible predictive maintenance opportunities, a series 

of option values can be obtained, and the optimum predictive 

maintenance opportunity can be selected. The optimum 

predictive maintenance opportunity can also be determined 

using a stochastic discounted cash flow (DCF) approach that 

assumes the predictive maintenance will always be 

implemented on the selected opportunity. For a wind farm 

managed via a PPA with multiple turbines indicating RULs 

concurrently, the predictive maintenance value for each 

turbine depends on the operational state of the other turbines, 

the amount of energy delivered and to be delivered by the 

whole wind farm. A case study is presented in which the 

stochastic DCF and European ROA approaches are applied 

to a single turbine and to a wind farm managed via a PPA. 

The optimum predictive maintenance opportunities obtained 

from the two approaches are compared and it is demonstrated 

that the European ROA approach will suggest a more 

conservative opportunity for predictive maintenance with a 

higher expected option value than the expected net present 

value (NPV) from the stochastic DCF approach. 

1. INTRODUCTION 

The global cumulative wind power capacity at the end of 

2013 was 318,105 megawatts (MW), representing an average 

annual growth of approximately 25% over the last 10 years 

(Fried, Sawyer, Shukla, and Qiao, 2014a). For offshore wind, 

at the end of 2013 the global cumulative capacity was roughly 

6.8 gigawatts (GW), of which 6.6 GW was in the Europe 

Union (EU), providing 0.7% of the EU’s total energy 

consumption (Fried, Shukla, Sawyer, and Teske, 2014b). 

Operation and maintenance (O&M) cost, as a major 

contributor to the wind levelized cost of energy (LCOE), 

accounts for 0.027 to 0.048 US dollars/kilowatt-hour 

(USD/kWh), (IRENA Secretariat, 2012). Maintenance for 

wind turbines has been categorized as scheduled preventive 

maintenance, corrective maintenance and predictive 

maintenance (Karyotakis, 2011; Kovacs, Erdos, Viharos, and 

Monostori, 2011; Nilsson & Bertling, 2007). The cost of 

corrective maintenance (after failure happens) is expensive 

for offshore wind farms, since it requires expensive resources 

such as vessels, and maintenance windows are limited due to 

the harsh marine environment (Kovacs et al., 2011). 

Prognostics and Health Management (PHM) technologies 

have been introduced into wind turbines to assess the 

reliability and forecast remaining useful life (RUL) of key 

subsystems (Haddad, Sandborn, and Pecht, 2014). PHM 

based predictive maintenance is expected to reduce the wind 

farm O&M cost (Tchakoua, Wamkeue, Ouhrouche, Slaoui-

Hasnaoui, Tameghe, and Ekemb, 2014). Once a PHM 

indication and a RUL prediction is triggered for a subsystem 

in a turbine, the maintenance decision-maker needs to decide 

if and when to perform the predictive maintenance. To 

address this challenge, Haddad et al. (2014) treated the 

predictive maintenance opportunities as American style real 

options. An American real option can be exercised on or prior 

to a predetermined expiration time (Kodukula & Papudesu, 

2006). Haddad et al. (2014) determined the latest predictive 

maintenance opportunity (the optimum American real option 
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expiration time) by minimizing the risk of expensive 

corrective maintenance after failures, while reducing the 

RUL thrown away by predictive maintenance.  

Lei, Sandborn, Bakhshi, and Kashani-Pour (2015) developed 

a European style Real Options Analysis (ROA) approach 

based on Haddad et al. (2014). Different from the American 

real option, a European real option can only be exercised on 

the predetermined expiration time (Kodukula and Papudesu, 

2006). Lei et al. (2015) determined the optimum predictive 

maintenance opportunity (the optimum European real option 

expiration time), and extended the European ROA approach 

to multiple turbines with remaining useful life (RUL) 

predictions in offshore wind farms managed under outcome-

based power purchase agreements (PPAs). Lei et al. (2015) 

considered the operational status of the other turbines, the 

lower price for over-delivered energy, and the penalties for 

under-delivered energy defined by PPAs.  

During the predictive maintenance value formulation, both 

Haddad et al. (2014) and Lei et al. (2015) only considered the 

cumulative revenue earned between the RUL indication and 

the predictive maintenance opportunities. However, if the 

predictive maintenance is not implemented and the turbine is 

run to failure (where corrective maintenance occurs), more 

revenue can be earned. Therefore, to reflect the true value of 

predictive maintenance, the difference between the 

cumulative revenue earned up to either predictive or 

corrective maintenance should be considered, and the 

revenue lost due to predictive maintenance should be 

included in the analysis.  

According to Lei et al. (2015), the European ROA approach 

assumes that the predictive maintenance is an option but not 

an obligation, and will only be implemented if the predictive 

maintenance value is higher than the predictive maintenance 

cost. Alternatively, the optimum predictive maintenance 

opportunity can also be determined by a stochastic 

discounted cash flow (DCF) approach that assumes the 

predictive maintenance will always be implemented at the 

selected opportunity no matter how much the predictive 

maintenance value is. 

In this paper, for multiple turbines indicating RULs in an 

offshore wind farm managed via a PPA, the optimum 

predictive maintenance opportunity is determined. The time-

history cost avoidance and cumulative revenue lost paths are 

simulated and combined to form the predictive maintenance 

value paths. By applying the simulation-based European 

ROA approach (Lei et al., 2015), a series of predictive 

maintenance options are evaluated by considering all 

possible maintenance opportunities. Assuming that all 

turbines with RULs are maintained concurrently, the 

optimum predictive maintenance opportunity can be 

determined as the one with the maximum option value. The 

stochastic DCF approach is also applied to the simulated 

                                                           
1 For detailed calculation method TTFk see Lei et al. (2015) 

predictive maintenance value paths, and the results from the 

two approaches are compared. 

The remainder of the paper is structured as following: Section 

2 explains the European ROA and stochastic DCF 

approaches. Section 3 presents a case study for the two 

approaches applied to both a single turbine and multiple 

turbines indicating RULs. Finally, Section 4 concludes the 

work and discusses future research opportunities. 

2. ANALYSIS METHODOLOGY 

We assume an offshore wind farm is operated under a PPA. 

At time t0, K turbines are indicating RULs (while J turbines 

operate normally without RUL indications). Each RUL is 

predicted for some subsystem (e.g., for the gearbox or main 

shaft in cycles), and that subsystem will fail before the end of 

the year (called EOY) if the predictive maintenance is not 

implemented. Once the subsystem fails, the turbine will fail. 

From t0 to EOY there are multiple discrete predictive 

maintenance opportunities, and the decision-maker wants to 

decide which predictive maintenance opportunity should be 

scheduled for all K turbines. If the predictive maintenance is 

not implemented, there will be a corrective maintenance 

event at EOY to fix all failed turbines and restore them to 

operation.  

Using the wind speed historical data from the National Data 

Buoy Center (NDBC) Station 44009 (National Data Buoy 

Center, 2013), M buoy height wind paths can be simulated 

according to Lei et al. (2015), each of which represents a 

possible future wind profile for the whole wind farm. 

For each turbine with a RUL indication, a unique triangular 

distribution is assumed to represent uncertainties in the 

subsystem RUL prediction as used in Sandborn and 

Wilkinson (2007). For each simulated wind path, Monte 

Carlo simulation can be used to obtain an actual RUL sample 

(called ARULk, e.g., in cycles) for turbine k, then time to 

failure for turbine k (TTFk) can be obtained as the actual time 

to failure in calendar time according to Lei et al. (2015).1 M 

TTFk samples can be simulated for turbine k, and then this 

procedure is repeated for all K turbines. 

2.1. Power Purchase Agreement (PPA) Modeling 

A PPA is an outcome-based contract between a seller who 

generates electricity and the buyer who wants to purchase 

electricity. Wind farms are typically under PPAs for several 

reasons. First, although wind power can be sold directly into 

the local market, the average local market energy prices that 

vary daily and hourly tend to be lower than the contract prices 

defined in PPAs, (Stoel Rives Wind Team, 2014). Second, 

PPAs guarantee to the buyer and the seller that the energy 

generated and delivered will be paid for at the agreed price 

schedule. Third, as shown by Barradale (2008), utilities don’t 
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want to build and operate their own wind farms; they prefer 

to simply purchase power. 

PPA terms are typically 20 years (Stoel Rives Wind Team, 

2014). Barradale (2008) made the observation that PPAs 

often set annual energy delivery targets. The contract price 

can be either constant or escalated annually throughout the 

whole term. For each year, the buyer will generally agree to 

pay for all power generated and delivered to a specified 

transmission point. However, a maximum and a minimum 

annual energy delivery limit can also be set. Once the seller 

has delivered beyond the specified maximum limit, the buyer 

may choose to buy at a lower excess price or not to buy the 

excess energy at all, (Bonneville, 2007; Gloucester, 2011; 

Sonoma, 2014). The buyer may also have the right to adjust 

the annual target of the next year downward for the amount 

of energy over-delivered (Anaheim, 2003; Delmarva, 2008; 

World Bank, 2002; Xcel, 2013). If the seller is unable to 

reach the minimum limit, then the seller may have to 

compensate the buyer for the energy not produced at a 

predefined price (Delmarva, 2008; PacifiCorp, 2008; World 

Bank, 2002). The buyer may also adjust the annual target of 

the next contract year upward to compensate for the under-

delivered amount (Anaheim, 2003). 

As described in Lei et al. (2015), we assume in the PPA 

governing the wind farm, there is a constant annual energy 

delivery target (which is also the maximum/minimum annual 

energy delivery limit) set at the beginning of each year, 

reflecting the buyer’s exact annual demand. During each 

year, if the delivery target is reached, the energy generated by 

the whole farm will be priced by a constant contract price; if 

it is not reached, a lower constant excess price applies for all 

power generated thereafter until the EOY. On the other hand, 

at EOY, if the target is not met, the buyer has to purchase 

energy from other sources with a price higher than contract 

price (called replacement price) to fulfill the demand, and the 

seller must pay the buyer a compensation equals to the 

shortfall amount of energy priced by the difference between 

the replacement and contract price. 

The next step is to develop a PPA framed revenue and penalty 

calculation model. We assume that the turbine energy 

generation capacity will not degrade as damage accumulates 

in the subsystems, and the downtime for predictive 

maintenance is negligible. 

If the predictive maintenance is going to be implemented on 

all K turbines at time t, the cumulative energy generated by 

the whole wind farm from the beginning of the year (BOY) to 

time t, ECPM(t) can be calculated as 

 
𝐸𝐶𝑃𝑀(𝑡) = 𝐸𝐶(𝑡0) + ∑ ∑ 𝐸𝑗(𝜏)𝐽

𝑗=1
𝑡
𝜏=𝑡0+1 +

∑ ∑ 𝐸𝑃𝑀,𝑘(𝜏)𝐾
𝑘=1

𝑡
𝜏=𝑡0+1   

(1) 

                                                           
2 For detailed calculation method for Ej(τ) and EPM,k(τ) see Lei et al. 

(2015). 

where EC(t0) is the cumulative energy delivered by the whole 

wind farm from BOY to time t0, Ej(τ) and EPM,k(τ) are the 

energy generated by turbine j (the jth turbine operates 

normally without RUL indication) and k (the kth turbine 

indicating RUL), respectively, from time τ-1 to τ according 

to Lei et al. (2015).2 

The revenue earned from time τ-1 to τ by all J and K turbines 

RPM,J(τ) and RPM,K(τ), respectively, can be calculated as 

 𝑅𝑃𝑀,𝐽(𝜏) = 𝑃𝑃𝑀(𝜏) ∙ ∑ 𝐸𝑗(𝜏)𝐽
𝑗=1   (2) 

 𝑅𝑃𝑀,𝐾(𝜏) = 𝑃𝑃𝑀(𝜏) ∙ ∑ 𝐸𝑃𝑀,𝑘(𝜏)𝐾
𝑘=1   (3) 

where PPM(τ) is the energy price at time τ with predictive 

maintenance implemented at time t, defined as 

 𝑃𝑃𝑀(𝜏) = {
𝑃𝐶, 𝐸𝐶𝑃𝑀(𝜏) ≤ 𝐸𝑇

𝑃𝐸, 𝐸𝐶𝑃𝑀(𝜏) > 𝐸𝑇
  (4) 

where PC is the constant contract price, PE is the constant 

excess price, and ET is the annual energy delivery target for 

the wind farm. 

The cumulative revenue earned from time t1 to t2 by all K 

turbines and by the whole wind farm RCPM,K(t1,t2) and 

RCPM(t1,t2), respectively, can be calculated as 

𝑅𝐶𝑃𝑀,𝐾(𝑡1, 𝑡2) = ∑ 𝑅𝑃𝑀,𝐾(𝜏)
𝑡2
𝜏=𝑡1+1   (5) 

𝑅𝐶𝑃𝑀(𝑡1, 𝑡2) = ∑ 𝑅𝑃𝑀,𝐽(𝜏)𝑡2
𝜏=𝑡1+1 + 𝑅𝐶𝑃𝑀,𝐾(𝑡1, 𝑡2)  (6) 

If ET hasn’t been met at EOY, there will be under-delivery 

compensation UPPM paid by the seller to the buyer calculated 

as 

 𝑈𝑃𝑃𝑀 = {

(𝐸𝑇 − 𝐸𝐶𝑃𝑀(𝐸𝑂𝑌)) ∙ (𝑃𝑅 − 𝑃𝐶),

  𝐸𝐶𝑃𝑀(𝐸𝑂𝑌) < 𝐸𝑇

0, 𝐸𝐶𝑃𝑀(𝐸𝑂𝑌) ≥ 𝐸𝑇

  (7) 

where PR is the constant replacement price. 

Similarly, if the predictive maintenance is not going to be 

implemented on all K turbines before EOY, the corrective 

maintenance will fix all failed K turbines at EOY. The 

cumulative energy generated by the whole wind farm from 

BOY to time t, ECCM(t) can be calculated as 

 
𝐸𝐶𝐶𝑀(𝑡) = 𝐸𝐶(𝑡0) + ∑ ∑ 𝐸𝑗(𝜏)𝐽

𝑗=1
𝑡
𝜏=𝑡0+1 +

∑ ∑ 𝐸𝐶𝑀,𝑘(𝜏)𝐾
𝑘=1

𝑡
𝜏=𝑡0+1   

(8) 

where ECM,k(τ) is the energy generated by turbine k from time 

τ-1 to τ, calculated as 

 𝐸𝐶𝑀,𝑘(𝜏) = {
𝐸𝑃𝑀,𝑘(𝜏), 𝑡0 < 𝜏 < 𝑇𝑇𝐹𝑘

0, 𝑇𝑇𝐹𝑘 ≤ 𝜏 ≤ 𝐸𝑂𝑌
  (9) 

When turbine k fails at TTFk, it will be down for the corrective 

maintenance event at EOY. 
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The revenue earned from time τ-1 to τ by all J and K turbines 

RCM,J(τ) and RCM,K(τ), respectively,  can be calculated as 

 𝑅𝐶𝑀,𝐽(𝜏) = 𝑃𝐶𝑀(𝜏) ∙ ∑ 𝐸𝑗(𝜏)𝐽
𝑗=1   (10) 

 𝑅𝐶𝑀,𝐾(𝜏) = 𝑃𝐶𝑀(𝜏) ∙ ∑ 𝐸𝐶𝑀,𝑘(𝜏)𝐾
𝑘=1   (11) 

where PCM(τ) is the energy price at time τ with predictive 

maintenance not implemented before EOY, defined as 

 𝑃𝐶𝑀(𝜏) = {
𝑃𝐶,   𝐸𝐶𝐶𝑀(𝜏) ≤ 𝐸𝑇

𝑃𝐸,   𝐸𝐶𝐶𝑀(𝜏) > 𝐸𝑇
  (12) 

The cumulative revenue earn from time t1 to t2 by all K 

turbines and by the whole wind farm RCCM,K(t1,t2) and 

RCCM(t1,t2), respectively, can be calculated as 

𝑅𝐶𝐶𝑀,𝐾(𝑡1, 𝑡2) = ∑ 𝑅𝐶𝑀,𝐾(𝜏)
𝑡2
𝜏=𝑡1+1   (13) 

𝑅𝐶𝐶𝑀(𝑡1, 𝑡2) = ∑ 𝑅𝐶𝑀,𝐽(𝜏)𝑡2
𝜏=𝑡1+1 + 𝑅𝐶𝐶𝑀,𝐾(𝑡1, 𝑡2)  (14) 

The under-delivery compensation UPCM paid by the seller to 

the buyer at EOY can be calculated as 

 𝑈𝑃𝐶𝑀 = {

(𝐸𝑇 − 𝐸𝐶𝐶𝑀(𝐸𝑂𝑌)) ∙ (𝑃𝑅 − 𝑃𝐶),

  𝐸𝐶𝐶𝑀(𝐸𝑂𝑌) < 𝐸𝑇

0, 𝐸𝐶𝐶𝑀(𝐸𝑂𝑌) ≥ 𝐸𝑇

  (15) 

2.2. Predictive Maintenance Value Simulation 

If predictive maintenance is implemented on all K turbines at 

time t, the cumulative revenue earned by all K turbines from 

t0 to t is RCPM,K(t0,t); if corrective maintenance is 

implemented on all K turbines at EOY, the cumulative 

revenue earned by all K turbines from t0 to t is RCCM,K(t0,t).  

The predictive maintenance value V(t) at time t, representing 

the extra value obtained by carrying out the predictive 

maintenance on all K turbines at time t rather than waiting for 

the corrective maintenance at EOY, is defined as  

𝑉(𝑡) = (𝑅𝐶𝑃𝑀,𝐾(𝑡0, 𝑡) − 𝑅𝐶𝐶𝑀,𝐾(𝑡0, 𝐸𝑂𝑌)) + 𝐶𝐴(𝑡)  (16) 

where t0 < t < TTFmin, and TTFmin is the shortest TTFk of all K 

turbines. It is assumed that all K turbines will be maintained 

predictively together before TTFmin. Therefore once the first 

turbine failure happens, the predictive maintenance option 

expires, and the value path simulation will be stopped. The 

first item in parentheses reflects the revenue lost or the value 

of the RUL thrown away due to predictive maintenance. The 

earlier the predictive maintenance is scheduled, the more 

revenue will be lost (more of RUL will be wasted). The 

second item represents the cost avoidance by replacing 

corrective maintenance with predictive maintenance, can be 

calculated as 

 𝐶𝐴(𝑡) = ∑ 𝐶𝐶𝑀,𝑘
𝐾
𝑘=1 + (𝑈𝑃𝐶𝑀 − 𝑈𝑃𝑃𝑀) + 𝑅𝐿  (17) 

Figure 1 shows a graphical representation of Eq. (16).  

Figure 1. Simple predictive maintenance value formulation. 

In Eq. (17), CCM,k is the corrective maintenance cost for 

turbine k at EOY, which includes the cost of parts, equipment 

and facilities and labor. The second item in parentheses is the 

under-delivery penalty due to corrective maintenance, and RL 

is the revenue lost during downtime for corrective 

maintenance at EOY, can be calculated as 

 𝑅𝐿 = 𝑅𝐶𝑃𝑀(𝑡, 𝐸𝑂𝑌) − 𝑅𝐶𝐶𝑀(𝑡, 𝐸𝑂𝑌)  (18) 

2.3. Stochastic DCF Approach 

The predictive maintenance can be seen as an investment, and 

the predictive maintenance value can be treated as its gross 
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profit. If we assume that the predictive maintenance will 

always be implemented at some selected opportunity, the 

optimum predictive maintenance opportunity can be 

determined by optimizing the net profit of the predictive 

maintenance as 

 𝑁𝑃𝑉(𝑡) = {
𝑉(𝑡) − ∑ 𝐶𝑃𝑀,𝑘

𝐾
𝑘=1 ,

  𝑡0 < 𝑡 < 𝑇𝑇𝐹𝑚𝑖𝑛

0, 𝑇𝑇𝐹𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝐸𝑂𝑌

  (19) 

where NPV(t) is the net present value (called NPV) at t0 of 

the predictive maintenance implemented on all K turbines at 

t, and this is called the stochastic DCF approach. CPM,k is the 

predictive maintenance cost for turbine k at time t, including 

cost of parts, equipment and facilities, and labor. The 

discount rate is ignored assuming the time period from time 

t0 to t is short. When t0 < t < TTFmin, NPV(t) can also be 

expressed as 

𝑁𝑃𝑉(𝑡) = (𝑅𝐶𝑃𝑀,𝐾(𝑡0, 𝑡) − ∑ 𝐶𝑃𝑀,𝑘
𝐾
𝑘=1 − 𝑈𝑃𝑃𝑀)  

−(𝑅𝐶𝐶𝑀,𝐾(𝑡0, 𝐸𝑂𝑌) − ∑ 𝐶𝐶𝑀,𝑘
𝐾
𝑘=1 − 𝑈𝑃𝐶𝑀 − 𝑅𝐿)  

(20) 

where the first item in parentheses is the present net profit of 

predictive maintenance on all K turbines at time t, and the 

second item in parentheses is the present net profit of 

corrective maintenance on all K turbines at time EOY.  

Equations (19) or (20) can be used to valuate the NPVs of all 

possible maintenance opportunities after t0, then the optimum 

predictive maintenance opportunity can be selected that 

generates the maximum NPV. 

2.4. European ROA Approach 

There is an implicit assumption in Eqs. (19) and (20) that the 

predictive maintenance will be implemented at the selected 

optimum maintenance opportunity whether the NPV is 

positive, zero or negative. According to Eq. (20), if the 

present net profit of predictive maintenance is lower than 

corrective maintenance, a negative NPV will be generated. In 

other words, replacing corrective maintenance with 

predictive maintenance will not always be beneficial, which 

is the limitation of the stochastic DCF approach. 

It is reasonable to assume that the decision-maker is willing 

to schedule a predictive maintenance only if it is more 

beneficial than corrective maintenance (a positive NPV is 

generated from Eq. (19) or (20)), otherwise it is better to have 

all K turbines run to failure for corrective maintenance. 

Therefore, as demonstrated in Lei et al. (2015), the predictive 

maintenance opportunities that follow PHM prediction for 

wind turbines can be treated as real options, and on each 

opportunity, a European ROA can be applied to valuate the 

predictive maintenance option as a “European” style option  

 𝑂𝑉(𝑡) = {
𝑚𝑎𝑥(𝑉(𝑡) − ∑ 𝐶𝑃𝑀,𝑘

𝐾
𝑘=1 , 0),

  𝑡0 < 𝑡 < 𝑇𝑇𝐹𝑚𝑖𝑛

0, 𝑇𝑇𝐹𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝐸𝑂𝑌

  (21) 

where OV(t) is the present option value at t0 of the predictive 

maintenance implemented on all K turbines at t. The risk free 

rate is ignored for the short time period from time t0 to t. 

By applying the European ROA approach, we assume before 

TTFmin on each predictive maintenance opportunity, if the 

predictive maintenance value is higher than the predictive 

maintenance cost, it will be implemented on all K turbines; 

otherwise, all K turbines will be run to failure, and the option 

value is 0. After TTFmin, the option expires and the option 

value is 0. 

An ROA process can be implemented to valuate the option 

values of all possible maintenance opportunities after t0 as a 

series of European options. The optimum predictive 

maintenance opportunity can be selected as the opportunity 

with highest predictive maintenance option value.  

It is worth mentioning that the decision-maker may also want 

to schedule predictive maintenance for each of the K turbines 

individually, in that case the predictive maintenance value 

paths can be generated for each of the K turbines till its own 

TTF. Then the European ROA can be applied to each turbine 

to determine its own optimum predictive maintenance 

opportunity, which may be different from each other. Due to 

the harsh environment and limited availability of the 

maintenance resources, in reality the decision-maker may 

prefer to maintain multiple turbines during a single visit to 

the farm, as assumed in the presented model. 

During the valuation process for each predictive maintenance 

opportunity, the stochastic DCF approach has to carry out the 

predictive maintenance, while the European ROA approach 

has the flexibility and may choose not to carry out the 

predictive maintenance if corrective maintenance is more 

beneficial. 

3. CASE STUDY 

In this section, the European ROA and stochastic DCF 

approaches are applied to a single turbine and a wind farm 

managed via a PPA. The optimum predictive maintenance 

opportunities obtained from the two approaches are 

compared. 

1000 wind paths are simulated from t0 to EOY by using the 

method described in Section 2. The wind turbines under study 

are Vestas V-112 3.0 MW offshore turbines, with cut-in, cut-

out and rational speeds of 3 m/s, 25 m/s and 12 m/s, 

respectively, and a nominal rotational speed of 14 RPM 

(Vestas, 2013). 

3.1. Predictive Maintenance Optimization for Single 

Turbine 

We assume there is a single offshore wind turbine operated 

under a PPA, ET is 8000 MWh, PC, PE and PR are 

$20/MWh, $10/MWh and $40/MWh, respectively. At t0 = 

8400 hrs when EC(t0) is 7800 MWh, a PHM indication is 
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triggered and a RUL of 100,000 cycles is predicted for a key 

subsystem (e.g., the main shaft). The width of the RUL 

triangular distribution is 200,000 cycles. Using Monte Carlo 

simulation, 1000 TTF samples are obtained.  

By applying Eqs. (1) to (5), 1000 cumulative revenue paths 

are simulated if predictive maintenance is implemented. 

Similarly, using Eqs. (8) to (13), 1000 cumulative revenue 

paths with corrective maintenance are obtained. 

Predictive and corrective maintenance costs are assumed to 

be $10,000 and $9000, respectively. Using Eqs. (6), (7), (14), 

(15), (17) and (18), 1000 cost avoidance paths are simulated. 

Using Eq. (16), the predictive maintenance value paths are 

obtained, as illustrated in Figure 2. 

 

Figure 2. Predictive maintenance value paths for one 

turbine. 1000 paths are shown. 

 

As shown in Figure 2, while the cost avoidance is staying 

constant (see Figure 1), since the revenue lost due to 

predictive maintenance decreases over time, all value paths 

are ascending. Each path terminates at a different time point 

when the RUL is used up, which represents the uncertainties 

in the predicted RUL and wind speeds. The earlier the RUL 

is used up, the higher the path’s initial value is; it is because 

the revenue lost during downtime for corrective maintenance 

is also larger.  The change in slopes of some paths indicate 

that ET is reached and then the PE is applied. 

For offshore wind turbines, predictive maintenance 

opportunities are not continuously available. We assume the 

predictive maintenance is available every 2 days. For the 

simulated 1000 predictive maintenance value paths, using 

Eq. (23), 1000 option value paths are obtained. At each 

predictive maintenance opportunity, all option values are 

averaged to get the expected option present value as shown 

in the left graph of Figure 3. In order to compare it to the 

expected NPV obtained from DCF method, the stochastic 

DCF approach is also applied to get the expected NPV as a 

comparison, and the results are shown in the right graph of 

Figure 3. 

As can be seen in Figure 3, the optimum predictive 

maintenance opportunity predicted by the European ROA 

approach is 4 days (96 hours) after t0, with a higher expected 

value of $1,563 when 13.5% turbine samples have failed. 

Stochastic DCF approach suggests 6 days (144 hours) after t0 

with a lower expected NPV of $1,363 when 31.6% turbine 

samples have already failed. Since The European ROA 

approach is an asymmetric approach that only captures the 

upside value (when predictive maintenance is more 

beneficial) while limiting the downside risk (when corrective 

maintenance is more beneficial), it suggests to implement 

predictive maintenance earlier. Also, because of this 

asymmetric characteristic, at each maintenance opportunity, 

the expected option value from the European ROA approach 

is always greater than or equal to the expected NPV from the 

stochastic DCF approach. The difference is the additional 

value provided by the flexibility that the real option approach 

correctly models.  

 

Figure 3. Left – expected predictive maintenance option 

present value (from European ROA approach) and right - 

expected predictive maintenance net present value (from 

stochastic DCF approach) for one turbine. 

 

If the predictive maintenance value is higher than the 

predictive maintenance cost at all predictive maintenance 

opportunities due to high revenue lost, under-delivery penalty 

or expensive corrective maintenance cost, then there will be 

no differences between the results from the European ROA 

and stochastic DCF approach. As it is shown in Figure 4, 

under the assumption of having a high corrective 

maintenance cost of $50,000 and keeping all other parameters 

the same, both approaches suggest the same result for the 

predictive maintenance: 2 days (48 hours) after t0.  
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Therefore, unless the predictive maintenance value is much 

higher than the predictive maintenance cost, the European 

ROA approach offers a more conservative opportunity to 

schedule predictive maintenance. This means that when the 

maintenance crew arrives on the suggested maintenance date, 

the probability that the turbine has failed is lower, which also 

means a higher probability for the predictive maintenance to 

be implemented successfully. The European ROA approach 

also leads to an expected option value higher than the 

expected NPV from stochastic DCF approach.  

 

Figure 4. Left - expected predictive maintenance option 

present value (from European ROA approach) and right - 

expected predictive maintenance net present value (from 

stochastic DCF approach) for one turbine with expensive 

corrective maintenance. 

3.2. Predictive Maintenance Optimization for a Wind 

Farm 

We assume there is an offshore wind farm with 5 turbines 

managed via a PPA with the ET of 40,000 MWh, PC, PE and 

PR are assumed to be the same as the one turbine case. At t0 

= 7800 hrs when EC(t0) is 39,000 MWh, RULs are predicted 

for turbine 1 to be 80,000 cycles (with 160,000 cycles width 

triangular distribution) and for turbine 2 to be 100,000 cycles 

(with 200,000 cycles width triangular distribution). Assume 

at the same time, there are two turbines in the wind farm that 

are not operating. The predictive maintenance value paths can 

be generated for turbine 1 and 2 in Figure 5. 

Assuming the predictive maintenance opportunity is once 

every 2 days, the expected predictive maintenance option 

present value and predictive maintenance net present value 

can be determined as shown in Figure 6. The optimum 

predictive maintenance opportunity according to European 

ROA approach is 2 days (48 hours) after t0, and by stochastic 

DCF approach it becomes to 4 days (96 hours) after t0. Again, 

the European ROA approach provides a more conservative 

opportunity with the expected option value higher than the 

expected NPV from stochastic DCF approach. Figure 7 

shows the results when the corrective maintenance cost 

assumed to be $50,000; both approaches suggest optimum 

maintenance opportunity as 2 days (48 hours) after t0. 

 

Figure 5. Predictive maintenance value paths for turbine 1 

and 2. 1000 paths are shown. 

If there are less turbines not operating at time t0, the optimum 

predictive maintenance opportunity will shift to 4 days (96 

hours) after t0 by using the ROA approach as shown in Figure 

8. When two turbines are down, considering the significant 

revenue loss and under-delivery penalty due to corrective 

maintenance, the selection of optimum predictive 

maintenance opportunity will tend to be conservative. 

 

Figure 6. Left - expected predictive maintenance option 

present value (from European ROA approach) and right - 

expected predictive maintenance net present value (from 

stochastic DCF approach) for turbine 1 and 2. 
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Figure 7. Left - expected predictive maintenance option 

present value (from European ROA approach) and right - 

expected predictive maintenance net present value (from 

stochastic DCF approach) for turbine 1 and 2 with 

expensive corrective maintenance. 

 

 

Figure 8. Predictive maintenance option present value for 

turbine 1 and 2 when the number of turbines down is 

varying. 

4. CONCLUSION 

The objective of the work presented in this paper is to 

determine the optimum predictive maintenance opportunity 

for wind farms managed under PPAs when multiple turbines 

are indicating RULs. Uncertainties in the wind speed and the 

RUL predictions from PHM are considered, and both ROA 

and stochastic DCF approaches are applied. This work 

demonstrates that the predictive maintenance option’s 

flexibility to expire if the predictive maintenance value is not 

enough to cover the predictive maintenance cost, results in 

the ROA approach always having an expected option value 

higher than the expected NPV from stochastic DCF approach. 

For the same reason, the ROA approach always suggests an 

optimum maintenance opportunity that is earlier than the 

stochastic DCF approach. However, the results from two 

approaches are the same when the predictive maintenance 

value is higher than the predictive maintenance cost at all 

predictive maintenance opportunities. 

For a wind farm managed via a PPA with multiple turbines 

indicating RULs concurrently, the predictive maintenance 

value for each turbine depends on the operational state of the 

other turbines, the amount of energy delivered and to be 

delivered by the whole wind farm. When there are many 

turbines not operating in the wind farm, the revenue lost and 

under-delivery penalties due to corrective maintenance will 

be significant; therefore, the selection of the optimum 

predictive maintenance opportunity by ROA approach tends 

to be more conservative. 

In the future, the effects of collateral damage that causes 

higher corrective maintenance costs, the degradation in 

power generation capacity and the escalating predictive 

maintenance cost due to damage accumulation will be 

studied. The uncertainties in the predictive maintenance 

opportunities/windows and the energy demands will also be 

introduced. 
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NOMENCLATURE 

ARULk simulated actual RUL for turbine k 

BOY beginning of the year 

CCM,k corrective maintenance cost of turbine k 

CPM,k predictive maintenance cost of turbine k 

CA(t) cost avoidance obtained if predictive 

maintenance is implemented on K turbines at 

time t 

Ej(t) energy generated by turbine j from t-1 to t 

ECM,k(t) energy generated by turbine k from t-1 to t with 

turbine k running to failure 

EPM,k(t) energy generated by turbine k from t-1 to t if 

predictive maintenance will be implemented 

EC(t0) cumulative energy delivered by the whole 

wind farm from BOY to t0 
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ECCM(t) cumulative energy generated by the whole 

wind farm from BOY to t by running K turbines 

to failure 

ECPM(t) cumulative energy generated by the whole 

wind farm from BOY to t if predictive 

maintenance will be implemented on K 

turbines 

EOY end of the year 

ET annual energy delivery target of the wind farm 

J number of turbines operating normally at time 

t in the wind farm  

K number of turbines indicating RULs at time t in 

the wind farm 

M number of simulation paths 

NPV(t) expected predictive maintenance net present 

value at t0 if predictive maintenance scheduled 

at time t 

OV(t) Expected predictive maintenance option 

present value at t0 if predictive maintenance 

scheduled at time t 

PC contract price in PPA 

PE excess price in PPA 

PR replacement price in PPA 

RCM,J(t) revenue earned by J turbines from t-1 to t with 

K turbines running to failure 

RCM,K(t) revenue earned by K turbines from t-1 to t with 

K turbines running to failure 

RPM,J(t) revenue earned by J turbines from t-1 to t if 

predictive maintenance will be implemented 

on K turbines 

RPM,K(t) revenue earned by K turbines from t-1 to t if 

predictive maintenance will be implemented 

RCCM(t1,t2) cumulative revenue earned  by the whole wind 

farm from time t1 to t2 with K turbines running 

to failure 

RCCM,K(t1,t2) cumulative revenue earned  by K turbines from 

time t1 to t2 with K turbines running to failure 

RCPM(t1,t2) cumulative revenue earned by the wind farm 

from t1 to t2 if predictive maintenance 

implemented on K turbines 

RCPM,K(t1,t2) cumulative revenue earned by K turbines from 

time t1 to t2 if predictive maintenance will be 

implemented 

RL revenue lost during downtime for corrective 

maintenance at EOY 

RUL nominal remaining useful life in cycles 

t, τ time of the year  

t0 time of the year when RULs are predicted and 

predictive maintenance decision needs to be 

made 

TTFk simulated time to failure of turbine k 

TTFmin smallest TTFk of K turbines 

UPCM under-delivery compensation if corrective 

maintenance implemented at EOY 

UPPM under-delivery compensation if predictive  

maintenance scheduled at time t 

V(t) predictive maintenance value for K turbines at 

time t 
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