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ABSTRACT 

We have developed a technique that enhances the 

detectability of sensors used to acquire data from a journal 

bearing rotor system. Usually, at an axial position for the 

rotating shaft on a journal bearing system, two sensors are 

fixed in radial direction at a right angle. The conventional 

diagnosis researches use only the acquired signals. However, 

two fixed sensors may not give sufficient information for 

diagnosis of the system since anomalies can happen in 

arbitrary direction. To improve the robustness of the 

diagnosis, coordinate transformed gap sensor signal is 

generated in arbitrary direction without installing extra 

sensors or adjusting sensor positions. With the original 

signals, the generated signals are used in the process of 

diagnosis. The powerful but simple method is described in 

the paper, and is verified by data sets from the experiment. 

1. INTRODUCTION 

The journal bearing supports rotating parts of the mechanical 

systems with a fluid. Since the fluid ensures smooth rolling 

of the rotors, it is frequently used in large systems that require 

safe operation. For example, turbines and pumps in power 

plants use journal bearings to maintain the systems safely in 

heavy load and high speed conditions. Without a direct 

contact between the rotor and the stator, the vibration can be 

kept below in a certain magnitude. Apart from the stability of 

the journal bearings, a large rotor system requires an anomaly 

diagnosis system. Although the design of the rotor systems 

satisfy the requirements of the system, uncertainties can 

arouse from operation as well as manufacturing process. 

These uncertainties in the rotor systems cause the system to 

operate in an unexpected way. Sometimes, a sudden failure 

or an accident can happen if proper maintenance action is not 

performed and the consequence can be disastrous. Thus, to 

prevent such unfortunate events and to take proper measures 

based on the exact condition of the system, diagnosis systems 

are commonly installed in large rotor systems.  

The diagnosis systems for rotors use data-driven method 

frequently. The method follows the steps: data acquisition, 

feature generation, and classification. First, the signals from 

each health state are obtained. Most of the signals for rotors 

use vibration signals since they can well represent the state of 

the operating condition. Then the obtained signals are 

processed by appropriate techniques. Next, the processed 

data are used to extract features that represent each health 

state and the condition of the rotors. With the extracted 

features, a classifier is trained, and the classifier classifies 

newly acquired data after following the same steps as the 

training data.  

Among the stated steps, various signal processing techniques 

are developed to generate features of good separation ability, 

which eventually leads to accurate diagnosis results. 

Examples of various signal processing methods for vibration 

data are angular resampling (Bonnardot, El Badaoui, Randall, 

Daniere, & Guillet, 2005; Villa, Reñones, Perán, & De 

Miguel, 2011), statistical approach (Jeon, Jung, Youn, Kim, 

& Bae, 2014), principal component analysis (Malhi & Gao, 

2004; Sun, Chen, & Li, 2007), and wavelet transform (Liu, 

2003; Sanz, Perera, & Huerta, 2007). However, the gap 

sensors are mostly fixed in the rotor systems and the sensor 

location is hard to adjust. Due to the fixed location of the 

sensors, the diagnosis accuracy of direction oriented 

anomalies (e.g. rubbing, misalignment) may be demanding. 

Researches have been conducted to resolve the limitation of 

the fixed location of sensors. Orbit identification in time-
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domain and full-spectrum in frequency-domain are the two 

methods.  

The orbit information can be obtained since most of the rotor 

systems have two sensors in a right angle. Yan, Zhang, Li, Li, 

and Huang (2009) modified the orbit into seven different 

features to identify the state of the steam turbine generator. 

H. Wang, Wang, and Ji (2013) quantified the orbit 

information with isometric feature mapping to identify faults 

in rotors. Other researches also tried to quantify the orbit 

shape to make more accurate diagnosis of rotors 

(Bachschmid, Pennacchi, & Vania, 2004; Bo, Jian-Zhong, 

Wen-Qing, & Bing-Hui, 2004; C. Wang, Zhou, Kou, Luo, & 

Zhang, 2012; Yan, Zhang, & Wu, 2010). Full-spectrum 

analysis uses both x- and y- signals to expresses the forward 

and backward frequency of the rotors (Chen & Chen, 2011; 

Goldman & Muszynska, 1999; T. H. Patel & A. K. Darpe, 

2009; Patel & Darpe, 2011; Zhao, Patel, & Zuo, 2012). 

Fengqi and Meng (2006), and T. Patel and A. Darpe (2009) 

tried to detect rubbing state by using full-spectrum.  

However, full-spectrum as well as orbit identification are not 

enough to represent thorough information of each state. 

Quantification of the orbit information varies from papers to 

papers, and the quantification process has huge effects on the 

overall performance of diagnosis. Full-spectrum uses x- and 

y- signals acquired from the fixed gap sensors, but the two 

signals may not be enough to represent the direction-oriented 

anomalies. To overcome these limits and to make robust 

diagnosis system, we have suggested omni-directional 

regeneration (ODR) technique to enhance the robustness of 

the various anomalies.  

The paper is organized as follows. Section 2 briefly states 

overview of journal bearing diagnosis system. Section 3 

describes the experiment set-up used in this research. Section 

4 states procedures of ODR based diagnosis. Section 5 shows 

the results of ODR based diagnosis. In section 6, short 

summary of the research and future works are stated.  

 

2. OVERVIEW OF JOURNAL BEARING DIAGNOSIS SYSTEM 

This section describes general procedures of journal bearing 

diagnosis. Section 2.1 describes the characteristics of gap 

sensor signals used. Section 2.2 describes diagnosis process 

based on supervised-learning.   

2.1. Gap Sensor Signals in Journal Bearing Systems 

The proximity sensors, also known as gap sensors, are widely 

used in journal bearing systems because the system operates 

in a low level of vibration, and thus require high resolution 

sensors. The high resolution of the gap sensor is possible as 

it measures the change of the eddy current. The vibration 

signals are acquired as voltage. Alternating current (AC) 

component of the voltage represents relative vibration, while 

direct current (DC) component represents absolute radial 

position of the rotor. Generally, two gap sensors are placed in 

the same axial location at a right angle to show orbit of the 

rotor as presented in Figure 1.  

  

Figure 1. Gap Sensors in Rotor. 

 

2.2. Diagnosis Process Based on Supervised-Learning 

The supervised learning method is commonly used in 

diagnosis process of journal bearing systems. The acquired 

vibration signals from the gap sensors are used to generate 

features. The feature generation includes feature selection as 

well as extraction. Then an appropriate classifier is trained 

and is used to classify the system into health states. The 

following subsections describe the feature generation and the 

classification.  

2.2.1. Feature Generation  

Feature generation, which can be divided into feature 

extraction and selection processes, has significant effect on 

the performance of diagnosis. Since the research targets on 

steady-state system, time- and frequency- domain features 

rather than time-frequency domain features are used. The 

candidate features listed in Table 1 and 2 are widely used 

ones in detecting the faults or abnormality of rotor systems 

(Jeon et al., 2014; Sun et al., 2007). Time-domain features 

include statistical moments and waveform related features. 

Frequency-domain features include various frequency 

spectrum features which are closely related to the state of the 

rotor system. 

 Total of sixteen features were extracted from the vibration 

signals. Before extracting the features, angular resampling 

was applied to the raw vibration signals to enhance the 

separation ability of the features and to reduce the noise. 

From the resampled signals, time-domain features were 

extracted by one cycle basis, while freq.-domain feature by 

sixty cycle basis (Jeon et al., 2014).  

Among the extracted features, optimal features are selected 

by using the genetic algorithm. Features have different ability 

in health state separation, so not every feature listed in Table 

1 and 2 guarantee accurate diagnosis result. For example, a 

specific feature can represent the oil whirl very well, but it 

may not tell difference between normal and rubbing states. In 
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addition, highly correlated features are redundant features 

that can be reduced. The optimal feature subset of k number 

of features was obtained by finding a subset that maximizes 

the following fitness function, fn, presented as:  

 𝑓𝑛 = (1 − 𝛼) × 𝑚𝑒𝑎𝑛(𝑀𝐼) − 𝛼 ×
1

 𝑘𝐶2 
∑ |𝜌𝑖,𝑗|𝑘

𝑖,𝑗=1,𝑖≠𝑗   (1) 

 

Table 1. Time-domain Features. 

 

Number Contents Description 

1 Skewness 
∑(𝑋𝑖 − �̅�)3

(𝑁 − 1)𝑠3  

2 Kurtosis 
∑(𝑋𝑖 − �̅�)4

(𝑁 − 1)𝑠4  

3 Crest Factor Max(|𝑋𝑖|) × √
𝑁

∑ 𝑋𝑖
2 

4 Shape Factor √
∑ 𝑋𝑖

2

𝑁
×

𝑁

∑|𝑋𝑖|
 

5 Impulse Factor Max(|𝑋𝑖|) ×
𝑁

∑|𝑋𝑖|
 

 

 

Table 2. Frequency-domain Features. 

 

Number Contents Description 

6 FC 
∫ 𝑓 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
 

7 RMSF [
∫ 𝑓2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

8 RVF [
∫(𝑓 − 𝐹𝐶)2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

9 0.5X / 1X √𝑠(𝑓0.5𝑋)/𝑠(𝑓1𝑋)  

10 2X / 1X √𝑠(𝑓2𝑋)/𝑠(𝑓1𝑋)  

11 (1x~10x)/1x {∑ √𝑠(𝑓𝑛𝑋)
10

𝑛=1
} /√𝑠(𝑓1𝑋) 

12 (0~0.39x)/1x {∫ √𝑠(𝑓)
0.39𝑋

0

𝑑𝑓} √𝑠(𝑓1𝑋)⁄  

13 (0.4x~0.49x)/1x {∫ √𝑠(𝑓)
0.49𝑋

0.4𝑋

𝑑𝑓} √𝑠(𝑓1𝑋)⁄  

14 (0.51x~0.99x)/1x {∫ √𝑠(𝑓)
0.99𝑋

0.5𝑋

𝑑𝑓} √𝑠(𝑓1𝑋)⁄  

15 (3x~5x)/1x {∫ √𝑠(𝑓)
5𝑋

3𝑋

𝑑𝑓} √𝑠(𝑓1𝑋)⁄  

16 (3x,5x,7x,9x)/1x {∑ √𝑠(𝑓2𝑛+1𝑋)
4

𝑛=1
} √𝑠(𝑓1𝑋)⁄  

 

 

 

where mean(MI) is the average of mutual information 

between the feature and the class, ρi,j is the correlation 

coefficient between ith and jth
 features, α is the penalty 

coefficient, k is the user defined number of features for the 

optimal subset, and n indicates the nth feature subset among 

N number of subsets in a generation (Guo, Damper, Gunn, & 

Nelson, 2008). The mutual information represents the 

separation ability of the features, and the correlation 

coefficient represents redundant features.  

2.2.2. SVM Classification 

The supervised learning method frequently uses support 

vector machine (SVM) algorithm for the classification step 

because of its simple and strong performance. First, the 

classifier is trained by using the optimal features acquired via 

feature generation process. Only the feature data with known 

class is used for training the classifier. The trained classifier 

denotes a hyper-plane that maximizes the margin between the 

classes. After the classifier is trained, the feature data with 

unknown class is tested. The testing predicts the class of 

feature data. In this research, the known feature data is used 

for the testing step, and the predicted class was compared to 

the actual class to evaluate the performance of the classifier.  

Although SVM was originally designed for linearly separable 

two-class problem, it can be used for non-linear two-class 

problem by introducing the slack variable and the kernel 

function. Furthermore, by applying one-against-one (OAO) 

decision method, SVM can be expanded to classify multi-

class problem. In this research, the LIBSVM algorithm was 

used (Chang & Lin, 2011).   

 

3. DIAGNOSIS METHODOLOGY USING OMNI-DIRECTIONAL 

REGENERATION 

This section describes the ODR signal based diagnosis 

procedures. Most of the diagnosis procedures follow as in 

section 2, but few steps are modified and adjusted as 

described in this section. Section 3.1 defines ODR signals, 

and section 3.2 describes how ODR signals are used in the 

diagnosis procedure.  

3.1. Omni-Directional Regeneration of Gap Signals 

3.1.1. Definition of ODR 

The principal of ODR signal generation is the transform of 

the coordinate system as presented in Figure 2. The clock-

wise transform of a data point (x1, y1) in two-dimension 

Cartesian coordinate system can be expressed as:  

 [
𝑥2

𝑦2
] = [ 

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 ] × [
𝑥1

𝑦1
]  (2) 

where θ denotes degree of rotation, and x2 & y2 denotes the 

data point in θ rotated coordinates system. 
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The scalar data values, xi and yi, in equation (2) can be 

replaced by vectors, xi and yi, as: 

 𝒙𝟐 = 𝑐𝑜𝑠𝜃𝒙𝟏 − 𝑠𝑖𝑛𝜃𝒚1  (3) 

 𝒚𝟐 = 𝑠𝑖𝑛𝜃𝒙1 + 𝑐𝑜𝑠𝜃𝒚1  (4) 

where xi and yi are vectors in ith coordinate system. The 

vibration signals from the sensors (a) and (b) in Figure 3 can 

be indicated by x1 and y1, respectively.  Then, the coordinate 

transformed signals by θ, x2 and y2, can be regarded as the 

signals obtained from sensors (c) and (d), respectively.  

Using this principle, the ODR signals, xn and yn, can be 

defined as: 

 

𝒙𝒏 = cos(𝑛𝛥𝜃) 𝒙0 − 𝑠𝑖𝑛(𝑛𝛥𝜃)𝒚0

𝒚𝒏 = sin(𝑛𝛥𝜃) 𝒙0 + 𝑐𝑜𝑠(𝑛𝛥𝜃)𝒚0

(𝑛 = 1, 2, … , 𝑁)
  (5) 

where x0 and y0 are the acquired vibration signals from gap 

sensors, Δθ is the increment of the rotation angle, and N 

(=⌊𝜋/𝛥𝜃⌋ ) is the maximum number of ODR that can be 

generated.  

The ODR can generate vibration signals from an arbitrary 

direction. Multiple ODR signals around the rotor can be 

obtained by adjusting the increment of the angle, Δθ. To 

diagnose the state of the system accurately, Δθ should be fine. 

However, if Δθ is too fine, the number of ODR signals (N) 

will increase, and the computational load will also increase. 

Thus the increment of the angle, Δθ, is set as π/16 in this 

research. In addition, the vibration signals are radial 

symmetric, so ODR signals within the π rotation angle range 

will be generated. Likewise, there is no need to use both xn 

and yn, because xn signal is equal to yn+8, which is 90° rotated 

signal of yn. The xn covers all yn if ODR covers more than half 

rotation. 

3.1.2. Validation of ODR 

To check that ODR signals truly represent the signal acquired 

from rotated direction, three evidences are provided by the 

example vibration signals. 

First, x8 which is 90° counter-clockwise (ccw) ODR signal 

of x0 exactly matched to y0. As shown in Figure 4, the two 

signals are identical to each other. Second, x0 is located in the 

opposite direction of y8, so the signals were in reverse of each 

other. This is also shown in Figure 4. Last, the orbit shape 

remained the same for any xn and yn. This is shown in Figure 

5 that the orbit shape is consistent over rotation angle. Thus 

from the three evidences, the ODR signals exactly shows 

behavior of the rotor in arbitrary angle.  

 

 

 

 

  

Figure 2. Coordinate transformation of a point in two-

dimensional system. 

 

  

Figure 3. Gap sensor and virtual sensors. 

 

3.2. Diagnosis Procedures using ODR Signals 

3.2.1. Feature Extraction and Reduction  

Each ODR signal generates sixteen features defined in 

section 2.2.1, which makes 16 × N features in total. Since the 

number of ODR, N, was set as sixteen, total number of 

features add up to 256. But not all 256 features are useful in 

classification of health states, so the number of features are 

reduced by Principal Component Analysis (PCA) (Malhi & 

Gao, 2004).  

PCA decorrelates the multi-dimension features by finding 

coordinates of principal components. The principal 

components, vi, are derived by solving the following equation: 

 
𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖

(𝑖 = 1,2, … ,256)
 (6) 

where A is the covariance matrix of feature vectors and λi is 

indices, i, are sorted in descending order of eigenvalues. The 

projection matrix, V, is defined as equation (7) (Sun et al., 

2007). 

 𝑽 = [𝑣1, 𝑣2, … , 𝑣256]  (7) 

By multiplying V to the feature vectors, new de-correlated 

features are obtained.  

X1 

Y1 

(x1, y1) 

θ 

X2 

Y2 

(x2, y2) 

Rotor 

Gap Sensor 

θ 

(a) 

(c) 

(b) 

(d) 
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However, not all the de-correlated features have good 

separation ability. Among the 256 new features, ones that had 

variances larger than one were used, which counts for ten 

features. Thus principal components corresponding to ten 

largest eigenvalues are used in this research. Consequently, 

256 ODR features were reduced to ten features by PCA. 

3.2.2. Feature Selection and Classification 

The ten reduced features by PCA are used for feature 

selection process. As stated in Section 2.2.1, the number of 

features for optimal subset, k, should be defined prior to 

feature selection. Since the number of reduced features are 

ten, k ranges from two to ten. For each k, feature selection 

was performed. Then, the selected features were used for 

classification process as stated in Section 2.2.2. To validate 

the effectiveness of ODR, the classification results of non-

ODR signals were also performed. The results are presented 

in Section 5.  

 

4. DESCRIPTION ON EXPERIMENT 

4.1. Test-bed Description 

The research is based on the data acquired from the 

experiment. The experiment was conducted on the RK4 test-

bed made by GE Bently-Nevada. Four health states—normal, 

rubbing, misalignment, oil whirl—were tested on RK4. First, 

the normal health state was tested with two shafts. A short 

and a long shaft of 10mm diameter were connected by a 

flexible coupling, and the short shaft was driven by the motor. 

An 800 gram disc was attached at the middle of the long shaft 

supported by two bearings. The amplitude of vibration was 

set to a certain level by balancing procedure. Second, the 

rubbing state also had the same set-up as that of normal, but 

the rubbing screw induced direct point contact on the shaft at 

steady-state. An accelerometer was attached to the screw jig 

to maintain the consistent level of the rubbing. For the 

misalignment state, a special jig was added to the normal set-

up to shift the shorter shaft horizontally, which represents an 

angular misalignment. An exact amount of misalignment was 

controlled by the jig. For the last health state, oil whirl, one 

shaft and two discs were used to enforce whirling force at the 

end of the shaft. The pressure of oil in the bearing was 

controlled to produce whirling in the bearing.  

4.2. Data Acquisition 

All four health states were tested for sixty-seconds to obtain 

enough amount of data. Since the speed of the rotor was 3,600 

rpm, sixty-seconds of test can collect 3,600 cycles of 

vibration. In addition, each health state was repeated twice, 

which adds up to three sets, to apply cross-validation.  

The displacement of the shaft was obtained by Bently Nevada 

3300 proximity sensors. The two sensors in a right angle were  

 

Figure 4. Example of ODR signals. 

 

 
  

Figure 5. Example of ODR signal orbits. 

 

  

Figure 6. Set-up of RK4 test-bed. 

 

placed at an axial location adjacent to the anomaly position. 

Additionally, tacho signal was measured to acquire the phase 

of the rotating shaft, and was used in the resampling process. 

All three signals were acquired through NI DAQ 4432. 

 

5. RESULTS AND DISCUSSION 

5.1. Qualitative Analysis 

The four health states were tested on RK4 test-bed. Graphical 

representations such as orbits are widely used to distinguish 

each health state. Two cycles of orbits are represented in 
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Figure 7. Rotors in a normal state rotates smoothly, so the 

orbit of normal is close to a clear circle. The orbit of rubbing 

state shows trace of contact between the rubbing screw and 

the shaft. Misalignment has preloaded shaft, and this is 

characterized by two small circles. Oil whirl health state 

shows orbits of incomplete circles, a typical sign of sub-

harmonic dominant signals.  

As shown in Figure 8, the rubbing and misalignment show 

characteristics of direction oriented health states. The ODR 

signals of direction oriented anomalies change over the 

rotation angle. However, the conventional method only uses 

the acquired signals, x0 and y0. Therefore, the performance of 

the classification may depend on the anomaly directions.  

5.2. Quantitative Analysis 

The effectiveness of the ODR signals with PCA feature 

reduction can be evaluated by class prediction results. The 

results are compared for all the number of possible optimal 

feature subset, k. As described in section 3.2.2, the k ranged 

from two to ten. In addition, as stated in section 4.2, leave-

one-out cross-validation was performed. Since three datasets 

were acquired through experiment, two sets were used to 

train classifier and the other one set was used as testing data. 

The three graphs in Figure 9 correspond to each case of cross-

validation.  

The two dotted lines in Figure 9 are the results using x0 and 

y0 signals, while the single line is the results using ODR 

signals with PCA. The dotted lines represent the conventional 

data-driven method using only the signals acquired from the 

sensors. On the other hand, the single lines represent the 

results using ODR signals. The ODR signal not only uses the 

acquired signals but also signals in other directions. Thus the 

sixteen ODR signals can characterize health state of the 

system more accurately, and eventually gives enhanced 

results.  

The (a), (b), and (c) in Figure 9 represent each case of the 

classification results of cross-validation. When number of 

optimal features were larger than three, the ODR signal based 

method predicted the testing data 100% accurate. In contrast 

to that, the results by the x0 and y0 signals are not consistent. 

The (a) case shows that the prediction accuracy increases as 

the number of features are increased, and 100% accuracy is 

obtained when five or more features are used. However, in 

(b), the accuracy of x0 signals oscillates. Moreover, the 

accuracy of y0 signals are relatively lower in (b) and (c). This 

results indicate that conventional method of using the 

acquired signals cannot guarantee good results, whereas 

ODR signals can give good results consistently regardless of 

direction of anomalies and sensors.  

6. CONCLUSION 

This research was conducted to enhance the diagnose 

performance on the health state of journal bearing systems. 

The data used in this study were acquired from RK4 test-bed. 

For non-direction oriented health states, normal and oil whirl 

were selected, whereas rubbing and misalignment were 

selected for direction oriented health states. From the two 

acquired signals, ODR signals were generated for each health 

state. The generated ODR signals represented vibration 

signals around the rotor, and all the signals were turned into 

time- and frequency- domain features. The sixteen features of 

sixteen ODR signals piled to 256 features, then the features 

were reduced by PCA. Finally feature selection and 

classification were performed. To add reliability to the study, 

leave-one-out cross-validation was performed on the three 

data sets.  

We have suggested PCA based ODR method to diagnose the 

journal bearing rotor system. To the best of our knowledge, 

no research had tried to generate vibration signals based on 

the two signals in a right angle. This method is useful for 

characterizing the direction oriented health states as well as 

non-direction oriented ones. Characterizing the health states 

successfully lead to accurate diagnosis results, while signals 

without ODR presented inconsistent diagnosis results.  

 

  

Figure 7. Two cycle orbits of (a) normal, (b) rubbing,  

(c) misalignment, and (d) oil whirl. 

 

  

Figure 8. ODR signals of (a) normal, (b) rubbing,  

(c) misalignment, and (d) oil whirl. 
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Figure 9. Classification results by x0, y0, and ODR signals  

 

For future works, study regarding the optimal number of 

ODR signals should be defined considering the 

computational resources and the accuracy of diagnosis. In 

other words, optimal Δθ is to be determined using appropriate 

method. Furthermore, correlation among the ODR signals 

can be considered to reduce computational loads of 

calculating ODR signals.  
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