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ABSTRACT 

Every day large amounts of process data are recorded in a 

variety of industries. For nuclear power plants, these data are 

stored within the Plant Computer (PC). As parts begin to 

degrade and components fail, maintenance personnel are 

responsible for making repairs and recording these repairs in 

a Computerized Maintenance Management System (CMMS). 

By coupling the information in the PC and CMMS, failure 

data can be extracted and repurposed for lifecycle prognostic 

models. Existing prognostic methods can be utilized to 

develop lifecycle models and predict the Remaining Useful 

Life (RUL). These efforts are currently done manually and 

require substantial amounts of time to develop. This results 

in offline predictions, which can drastically reduce response 

time for preventative maintenance. This paper outlines an 

early concept that uses data mining based on Big Data efforts 

in order to couple the plant computer data with the CMMS so 

that prognostic information can be gathered, sorted, and 

analyzed automatically. The extracted failure data can be 

used to autonomously update or build prognostic models 

based on component failure times, stressor information, and 

signal/residual values.  An effective future implementation of 

this concept means that the results could be used as a priori 

prognostic information in lifecycle prognostic models, and 

the updating and/or development of such models can be 

automated for improved response time. 

1. INTRODUCTION 

Lifecycle prognostics describes a set of data based models 

that can potentially give an accurate determination of the 

health of a system or component using several different forms 

of data such as usage time, usage stress, and degradation 

indicators. As more information is collected, knowledge of 

the system increases allowing for increasingly advanced 

models and the possibility of increased prediction accuracy. 

These data based models are valuable for condition-based 

maintenance efforts including preventive maintenance. In 

order to effectively extract and utilize prognostic information 

from existing operations, it is necessary to develop a semi-

autonomous extraction routine. This algorithm would be 

responsible for repurposing maintenance information with 

the intent to retrieve failure data from process files. The result 

of such an algorithm is a detailed network of failure 

information on specific parts and systems, which is the main 

component necessary to update and develop predictive 

maintenance models. It is necessary for this extraction to be 

carried out autonomously to increase decision time and 

decrease uncertainty for the operator. The extraction 

algorithm is the first step of the process towards improving 

predictive maintenance in commercial applications, and will 

be loosely outlined in the following sections of this report. 

The second step of the process is the utilization of the 

extracted failure data to build or update prognostic models in 

a quick and efficient manner. The set of tools needed to 

achieve this goal must meet several requirements including 

near-to-full autonomy and high confidence decision-making 

in order to have utility in pre-existing commercial 

applications. 

To make the concepts discussed in this paper easier to follow, 

examples will discuss how the proposed design might affect 

a system that includes a 3-phase motor and pump 

combination. The ideas discussed should be scalable to most 

nuclear plant components with modifications to aspects such 

as choice of measurements. Specifics on the application to 

assets and components will not be covered for this early 

discussion.  
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2. OVERVIEW OF LIFECYCLE PROGNOSTICS 

The following section will highlight the important aspects of 

lifecycle prognostic models, and the types of information 

necessary to build them.  

There are several steps involved in the development of a 

lifecycle prognostic model. The path from data collection to 

risk mitigation is outlined in Figure 1. 

 

Figure 1. Path of phases from data collection to risk 

mitigation including detection, diagnosis, and prognosis 

(Hines 2008). 

 

The first step of lifecycle prognostics is data acquisition. 

During the data collection process, monitoring is conducted 

that can detect anomalies or faults from on-line data samples. 

Faulted data is then compared to an analytical, empirical, or 

hybrid model to determine residuals that are related to 

degradation of the system.  These residuals are combined into 

a system health indicator that is a measure of the total 

degradation in the system. Using a prognostic model, these 

health indicators, or prognostic parameters, are used to obtain 

RUL predictions. The RUL predictions are subsequently 

available for risk analysis and mitigation.   

 

Prognostic models are typically divided into three different 

types depending on the failure data available. Type I 

prognostics is based on past failure time distributions and is 

often referred to as traditional reliability analysis. This type 

of prognostic model only utilizes past failure times and does 

not require any additional failure data. Therefore, it can be 

conducted before operation of additional cycles. During 

operation, as stressor information such as operating condition 

or load is obtained, the model transitions to a Type II 

prognostic model. In parallel to the Type II models, anomaly 

detection can be conducted on the failure data. When specific 

signals such as temperature or pressure are tracked over 

lifetime and show an increase in damage to the system, the 

Type I or II model transitions to a Type III prognostic model. 

Type III models use the tracked degradation across multiple 

signals to measure the overall system health. The transitions 

between prognostic model types can be seen in Figure 2. 

 
Figure 2. Transition between prognostic model types 

dependent on availability of failure information  

(Nam 2015). 

 

Only the component run time is needed to perform Type I 

prognostics, which can be mined directly from the CMMS.  

The ability to develop Type II and Type III prognostic models 

is dependent on the ability to collect stressor and degradation 

data for the component or system in question. With respect to 

nuclear power plant applications, these data are stored 

between the PC and CMMS. Data from both of these sources 

are necessary to develop these lifecycle models. 

Effectiveness of the proposed concepts will be dependent on 

the ability to obtain these data for future validation and 

development. 

3. OVERVIEW OF PUMP-MOTOR SYSTEM 

To show how the proposed concepts can be applied to a real 

world situation, a pump-motor system is being used. A simple 

diagram of this system is shown in Figure 3. 

 

Figure 3. Diagram of simple motor-pump system. The top 

of the figure contains a separated 3-phase motor with 

labeled cooling fan (1) and coil windings (2). The output 

shaft of the motor (3) spins the impeller (4) by feeding into 

the impeller eye (5) (Hernandez 2006) (Skvarenina 2004) 
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Within this theoretical setup, there are several fault or failure 

modes to consider. For the 3-phase motor, the cooling fan (1) 

in Figure 3 can break a blade reducing cooling to the motor. 

This would be an example of a system fault. Also bearings 

that surround the motor shaft (3) can fail. The pump consists 

of one major failure mode, which occurs with degradation of 

the impellor fins. There are several ways that the fins can 

degrade, which are visually represented in Figure 4.  

 
Figure 4. Representation of 6 types of impeller degradation: 

(1) fin-pitting, (2) vein tearing, (3) flattening, (4) vein 

ripping, (5) bowing, and (6) vein-pitting. 

 

Impeller fins are used to regulate a vacuum within the pump, 

which creates the differential pressure needed to drive the 

fluid. The effect of each of the degradation forms listed in 

Figure 4 may have a unique effect on the pump-motor system. 

The distinctiveness of each degradation type is important for 

cataloging of CMMS entries. 

 

Aside from degradation/failure modes, the availability of 

sensors in a system also affects decision-making. The 

assumption of what measurements are available both on-line 

and those taken during maintenance events has serious 

impact on the ability to effectively develop a data-mining 

algorithm. The sensor data available will change the degree 

to which Type II and III prognostic information can be 

discovered for the nuclear power plant, or more specifically, 

the system or component under investigation. With 

commercially available signals, effective lifecycle 

prognostics models have already been developed for pumps 

(Jeffries 2014), motors (Nam 2013), and other systems such 

as heat exchangers (Welz 2014). The practical development 

of these models is limited by the current availability of plant 

data. The coupling algorithm will be designed to increase the 

availability of necessary prognostic data and consequently 

the ability to develop these prognostic models. 

 

The choice of a pump-motor system is very meticulous with 

respect to this paper’s application to nuclear power plants. 

There are numerous pumps within the plant that are critical 

to plant operation. An example is the primary Reactor 

Coolant Pump (RCP) in a Pressurized Water Reactor (PWR). 

This means that accurate prediction of pump-motor failure 

times could have a significant impact on planned and 

predictive maintenance. It is important to note, however, that 

the specifics of this system are arbitrarily chosen to provide 

insight into the purpose and functionality of the autonomous 

prognostic program.  

4. NUCLEAR PLANT CMMS FRAMEWORK CHALLENGES 

To effectively mine out maintenance information from the 

CMMS, certain information in regards to the parts and 

components being serviced must be recorded (Bertolini 

2013). For example, rather than a record stating that pump 6 

was serviced at 12:03pm on cycle-day 4, the CMMS would 

require additional specific information such as pump model, 

reason for maintenance, activity (primary or redundant), 

recorded time of failure, etc. This would provide additional 

knowledge to increase the ability of a data mining algorithm 

to locate useful information.  

 

Another aspect of the CMMS software that should be 

evaluated is the need for asset-specific maintenance 

information. Current CMMS work orders are tailored to an 

application, but not always a specific system. To gather 

useful information on a specific part or component, a pump 

may need a different CMMS record than a motor. 

Availability of additional information may directly affect the 

resulting models. This type of customized CMMS database 

may be necessary as the data mining algorithm is being 

developed, evaluated, and validated during future research. 

 

As previously mentioned, specifics on the design of a CMMS 

standard for coupling with the nuclear plant computer will be 

decided based on future research needs. The CMMS design 

will be directly related to the specific needs of the data-

mining program within the coupling algorithm with respect 

to the development of lifecycle prognostic models. The 

availability of these data, and the ability to manipulate 

existing CMMS frameworks are two of the major challenges 

in the development of a coupling algorithm. 

5. PLANT COMPUTER FRAMEWORK CHALLENGES 

Current nuclear plants have most of the information required 

to perform lifecycle prognostics on components, but access 

to the data is not always straightforward.  Some components 

may need additional sensors, data collection systems, and 

data storage systems. Additionally, future plants could 

have/need data systems specifically designed to support 

lifecycle prognostics. These challenges will largely affect the 

success of a coupling algorithm. With the intent to apply 

concepts discussed in this paper to the nuclear fleet, any 

changes to the plant computer framework would likely need 

to be minimal. With the Nuclear Regulatory Commission 

(NRC) supervising critical plant design standards, substantial 

changes to the plant computer would be difficult to 

implement.  
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Other than challenges such as the need for additional 

transducers and data acquisition systems, there are a few 

minor changes that may need to be made depending on 

current plant computer operations. Similar to the CMMS, 

specifics on changes to the plant computer framework will be 

dependent on the coupling algorithm design. For example, 

one modification that may need to be made is the sampling 

frequency. There are several methods of frequency analysis 

that require a specific or large sample rate, therefore if the 

plant computer takes data from a sensor at 1 Hz, it may need 

to be increased to 100 Hz. Changes such as this may have 

minimal impact on plant computer operations, and will need 

to be carefully examined before implementation.  

 

In the design of the coupling algorithm, several assumptions 

about the current software design of plant computers in the 

U.S. will have to be made. As a generic guideline for current 

American plant computer design, Westinghouse pressurized 

water reactor nuclear power plant documentation 

(Westinghouse 1984) will be used. 

6. EARLY COUPLING ALGORITHM CONCEPT DESIGN 

The coupling algorithm is tasked with collecting useable 

prognostic information from the CMMS and combining it 

with information mined from the plant computer data. 

Extracting data from existing systems is the first step of 

predictive model development. Manual extraction from 

human efforts is ineffective and time consuming for many 

applications. The idea behind the coupling algorithm is a self-

sustaining procedure with its own runtime that can remove 

the necessity for human facilitated data extraction. An early 

conceptual design of the algorithm  is shown in Figure 5. 

 

Figure 5. Flow diagram of coupling algorithm design 

concept. 

 

The algorithm itself consists of many smaller algorithms to 

achieve such a goal. The resulting product is able to 

automatically detect the presence of a recently completed 

work order, which contains timestamps associated with the 

part’s or asset’s failure time. The coupling algorithm begins 

with the polling of the CMMS database.  As seen in Figure 5, 

at step 1 the service information for a specific part is polled. 

This includes the current maintenance cycle and the previous 

cycle. With respect to the pump-motor system discussed 

earlier, if the pump impeller were serviced, the algorithm 

would poll the maintenance information for the current event 

(ex: impeller replaced on 1/4/15 at 02:44) and the past event 

of the same category (ex: impeller replacement on 10/14/14 

at 16:00). In order to determine what data must be extracted 

from the plant computer, the CMMS polled maintenance 

records are passed to a sensor query (Figure 5 step 2). The 

sensor query looks at the system under maintenance (pump-

motor system) as well as the specific part (pump impeller) in 

order to return the associated sensors and their location within 

the plant computer records. The next step extracts the 

information from the plant computer (Figure 5 step 3). The 

data for each sensor related to the system is extracted for both 

maintenance services between the time of startup and time of 

failure. After this step is completed, the resulting sensor 

information is processed and passed to a prognostic 

information database (Figure 5 step 4).  

 

During this process, the user can either specify constraints on 

the data extraction, or the computer will choose constraints 

based on optimization efforts. The user will always be aware 

of the program’s status through the use of alert tools (progress 

bars, status beacons, etc.). Extracted data will be sent to a 

directory, which will be displayed to the operator in the event 

that the worker needs to intervene or wishes to catalogue 

specific files for offline evaluation. Visual aids will be used 

to display current system information to the operator, such as 

most recently extracted raw failure data, cross-correlation 

values between signals during the latest cycle, and even 

proximate fault detection results. These tools are grouped in 

a manner that will provide near-instantaneous information to 

the end-user. 

 

After extraction, the data is sorted depending on the 

corresponding prognostic model type, and stored for later use 

in lifecycle prognostic models. Historical data has a different 

utility than current cycle data. As the algorithm strips out a 

current cycle, the data can be used for monitoring. Once the 

information has been sent to a prognostic database, it can be 

used to update existing models as a separate task of 

continuous model improvement. Current cycle data is of key 

importance for critical decision-making. 

7. PROGNOSTIC INFORMATION DATABASE 

It is necessary to provide background into the inputs for 

prognostic models; the link between the coupling algorithm 

and the model inputs is a detailed prognostic information 

database. The coupling algorithm is responsible for sorting 

extracted data into this database, which has a structure similar 

to that in Figure 6. 
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Figure 6. Prognostic information database example structure 

 

By sorting different types of prognostic data into an isolated 

database, the files are immediately available for model 

development purposes. This database is standalone from the 

coupling algorithm and model development to allow for each 

to run simultaneously and independently from one another. 

The utilization of the extracted data as input to prognostic 

models is discussed below. 

8. AUTOMATED PROGNOSTIC MODEL TOOLKIT 

CONCEPTS 

The purpose of extracting useful prognostic data from 

historical process data files is to improve maintenance efforts. 

Two of the primary concerns in the development of predictive 

maintenance models are quick response time, and high 

prediction/model confidence. There are several stages in the 

development of prognostic models when utilizing data 

gathered from the coupling algorithm. Lifecycle prognostic 

models can be updated/transitioned as additional information 

is gathered. The first information stored in the database will 

be simple failure times for the different components, which 

is Type I prognostics. As additional failure times are 

measured, monitoring efforts can be updated and prognostics 

based on current information can be assessed. When stressor 

information is incorporated with the preexisting failure times, 

the model can be updated to Type II prognostics. As the 

coupling algorithm reads in more data, it will be able to 

extract useful signal values related to the failure times of 

components. For example, if the inlet water temperature 

sensor value for a pump increases over each failure cycle, the 

coupling algorithm will identify that temperature signal as 

useful. Once the coupling algorithm has identified several 

useful degradation signals, it will store them as Type III 

prognostic data. All three forms of prognostic data can be 

used to update existing monitoring and prognostic efforts. 

The main focus of this prognostic model “toolkit” is the 

automation of model efforts. Automating the model process 

results in a standard for data development, which reduces 

variance in decision-making and increases model 

development time. Outside of the transition from manual to 

autonomous model development, current industry standard 

and state-of-the-art prognostic methods are still utilized for 

internal functionality. Additional sub-algorithms will be 

included to improve the automated results, but will still rely 

on existing state-of-the-art methods.   

One example of a supplementary function is a model update 

tool that distinguishes between assets repaired to “as good as 

used (AGAU)” and “as good as new (AGAN)” conditions. 

Based on the degree of repair, the model is altered in different 

ways.  In Figure 7, the failure distributions are provided for 

different outcomes in order to highlight the differences 

between a single run to failure, a run and repair to AGAU 

condition, and a run and replacement to AGAN condition. 

 

Figure 7. Representation of the differences in model 

updating for “as good as used” and “as good as new” 

maintenance levels 

Referring to Figure 7 above, the top outcome describes the 

failure distribution for a single run. The time 0 is the Time to 

Failure (TTF) of the asset. This can be represented by 

electrical winding failure in the pump-motor system. In the 

middle outcome, it is assumed that the asset initially fails at 

the mean of the original failure distribution. The cause of the 

failure is then repaired and the asset is certified to AGAU 

condition, resulting in an addition to the lifetime of the asset 

labeled as 1 in the Figure. This would be a repair of the 

electrical windings in the failed pump-motor system. This 

repair shifts the failure distribution to the right (red). In the 

bottom outcome, the asset initially fails at the mean of the 

original failure distribution similar to the middle outcome. 

The cause of the failure in this outcome is replaced, which 

results in the asset being certified to AGAN condition. This 

would be a replacements of the electrical windings in the 

motor. The resulting shift in the failure distribution can be 

seen in blue. The necessity for discrimination between the 

AGAU and AGAN conditions is the difference in these shifts. 

The increase in TTF for the AGAN condition is larger than 

that of the AGAU condition. By discerning the results in the 

differences of these repair outcomes, model predication 

accuracy can be increased, and the uncertainties of these 

distributions can be decreased over a single repair 

distribution. There will be many supplementary functions 
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such as this within the toolkit, as well as industry standard 

prognostic model functionality.  

Due to the complex nature of prognostic model 

developments, the prognostic model toolkit will contain a 

large number of supporting functions. It is important to note 

that with so many automated decisions, the user/operator is 

still in control of the process. Each stage of the program will 

allow the user to override options and set a desired path. This 

allows for the benefits of an automated process without the 

disadvantages of a “black box” program. Not only is the user 

able to specify individual options, but also certain 

supplementary options can be turned off for simple and fast 

model development requirements. 

9. NOVELTY OF METHODS AND COMPARISON TO 

CURRENT STATE-OF-THE-ART EFFORTS 

To discuss the novelty of ideas presented in earlier sections, 

it is important to identify the focus of these new approaches. 

While significant attention is given to internal functions, the 

novelty of these ideas is in the process mechanism, 

specifically the automation of prognostic data extraction and 

model development. Never before has predictive 

maintenance been standardized with an automated model 

development process that begins with prognostic data 

extraction and ends with RUL predictions on a commercial 

scale. By automating these processes, predictive maintenance 

efforts may be improved through increased response time, 

reduced human interaction (decreased error), and decreased 

variability in prognostic model development. In many 

applications, predictive maintenance efforts will not be 

effective enough for implementation until these 

improvements have been satisfied. This makes the novelty of 

presented ideas very attractive. The utilization of the coupling 

algorithm and prognostics toolkit may allow for industry-

wide implementation of prognostics and advanced 

diagnostics on a large scale. To companies, the novelty of 

these programs lies in their ability to reduce unexpected 

downtime for maintenance as well as improve scheduling of 

part orders. The possibility for increased safety is another 

appealing outcome that may be achieved through the 

implementation of these programs. All of these efforts will 

increase the availability of information to the operator/user. 

The novelty of automation with application to nuclear power 

is rather significant. While human operators will always be 

present in a nuclear power plant, industry is pushing towards 

a higher level of plant automation. Figure 8 shows the levels 

of automation from manual control to full autonomy. 

These levels show the change in influence a machine or 

human has on an activity. The current level of automation for 

nuclear power plants is around level 5. Coupling of the 

CMMS and plant computer can push reactor operations 

closer to full autonomy. This not only simplifies the data 

extraction process, but also allows for improvements to 

reliability, safety, and most importantly decision-making for 

continued operation. 

 

Figure 1. Adaptation of Sheridan’s 10 levels of automation 

(Bradshaw 2011). 

 

It is important to reiterate that the methods discussed in this 

paper are not novel because they supersede or replace the 

current state-of-the-art prognostic methods. The automation 

of data extraction is necessary to increase response time for 

operators, but will rely on prognostic indicators and functions 

that are currently used during manual extraction. The 

automation of model development utilizes existing methods 

with individual runtime envelopes to facilitate autonomous 

control. This allows for new automation methods to retain 

existing validation of prognostic functions as a baseline, and 

provide increased confidence to the end-user.  

10. CONCLUSIONS 

With the presence of large pre-existing databanks for storing 

nuclear power plant process data and maintenance records, 

the coupling of the plant computer to a computerized 

maintenance management system could allow for the 

extraction of useful diagnostic, prognostic, and reliability 

information. This data can be passed to modified existing 

state-of-the-art prognostic functions and tools in order to 

autonomously create and update prognostic models for 

individual assets and components. With additional research 

applied to the methods described, effective application of 

predictive maintenance in commercial applications may be 

possible. The automation of model development and 
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predictions may lead to increased response time and 

decreased variability in the model development process. 

These potential benefits of these methods are immeasurable 

across the multitude of possible applications.  
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