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ABSTRACT

Valves are used in many domains and often have system-
critical functions. As such, it is important to monitor the
health of valves and their actuators and predict remaining
useful life. In this work, we develop a model-based prog-
nostics approach for a rotary valve actuator. Due to limited
observability of the component with multiple failure modes, a
lumped damage approach is proposed for estimation and pre-
diction of damage progression. In order to support the goal of
real-time prognostics, an approach to prediction is developed
that does not require online simulation to compute remaining
life, rather, a function mapping the damage state to remain-
ing useful life is found offline so that predictions can be made
quickly online with a single function evaluation. Simulation
results demonstrate the overall methodology, validating the
lumped damage approach and demonstrating real-time prog-
nostics.

1. INTRODUCTION

Prognostics is a key technology in the area of systems health
management. Failure prognostics specifically deals with the
prediction of damage progression, end of useful life (EOL),
and remaining useful life (RUL) of a component. Based on
these predictions, maintenace can be optimized (Tian, Jin,
Wu, & Ding, 2011; Camci, 2009) and/or loads can be reallo-
cated to slow damage progression (Bole et al., 2010; Graham,
Dixon, Hubbard, & Harrington, 2014). In cryogenic pro-
pellant loading systems (Barber, Johnston, & Daigle, 2013;
Zeitlin, Clements, Schaefer, Fawcett, & Brown, 2013), most
hardware faults are observed in the valves controlling the
flow of propellant (Daigle & Goebel, 2011a), therefore, valve
prognostics is a critical technology for safe and efficient cryo-
genic loading operations. Valve prognostics is critical in
many other application domains as well.

Previous work in valve prognostics has focused on
pneumatically-actuated valves (Daigle, Kulkarni, & Gorospe,
2014; Tao, Zhao, Zio, Li, & Sun, 2014), where the major fault
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mode is leaks of the pneumatic gas. As leaks grow over time,
a significant performance degradation, as measured by valve
opening and closing times, can be observed. Our previous
work (Daigle et al., 2014; Kulkarni, Daigle, Gorospe, &
Goebel, 2014, 2015) developed a model-based prognostics
approach for pneumatic valves based on observation of these
features.

In this paper, we investigate prognostics of motor-actuated
valves, specifically, rotary-actuator quarter-turn valves. In
these valves, there is no pneumatic system, and all actuation is
electrical-based. Therefore, other damage modes will domi-
nate, such as an increase in friction (Daigle & Goebel, 2011a)
and electrical resistance over the life of the component. Fur-
ther, while the valves in previous work were operated in a
discrete open/close fashion, the valves considered here are
actuated in a continuous fashion. In particular, they are used
in a replenish operation of cryogenic loading, and so are con-
trolled continuously to, in turn, control the flow of propellant
in the vehicle tank to replace any propellant that has boiled
off while waiting for launch. Thus, the usage of the valve is
much more stochastic, and this presents additional challenges
to the prognostics problem.

Here, we develop a model-based prognostics approach for ro-
tary valve actuators in this usage context. In our application,
only valve position is measured, and we find that friction and
resistance faults cannot, as a result, be distinguished. So, a
novel lumped-damage model (a concept familiar in structural
mechanics (Marante & Flórez-López, 2003)) is used for dam-
age estimation and failure prediction. We develop also new
approaches for dealing with the future component usage in
this kind of usage context. Further, our goals are for real-time
prognostics, i.e., EOL/RUL predictions must be provided in
real-time. To this end, we develop also an efficient model-
based prediction based on offline model analysis, finding the
functional mapping between valve state and RUL, thus avoid-
ing the need for a computationally costly simulation. Al-
though the goal here is to develop an efficient prognostics
solution for the particular valve actuator under study, some of
the methods developed in this paper can be applied on a more
general level.
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Figure 1. Model-based prognostics architecture.

The paper is organized as follows. Section 2 formulates the
prognostics problem and overviews the model-based prog-
nostics approach followed in this paper. Section 3 presents
the model of the rotary valve actuator. Section 4 describes
the estimation approach, and Section 5 describes the predic-
tion approach. Section 6 demonstrates the overall prognostics
approach and presents some experimental results in simula-
tion for validation. Section 7 concludes the paper.

2. MODEL-BASED PROGNOSTICS

In this section, we formulate the prognostics problem, using
the framework presented in (Daigle, Sankararaman, & Kulka-
rni, 2015), which extends the concepts originally presented
in (Orchard & Vachtsevanos, 2009; Daigle & Goebel, 2013;
Saha & Goebel, 2009). We then provide a computational ar-
chitecture for model-based prognostics that will be applied to
the rotary valve actuator.

2.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1 The unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically.

Prognostics is concerned with predicting the occurrence of
some event E that is defined with respect to the states, pa-
rameters, and inputs of the system. We define the event as the
earliest instant that some event threshold TE : Rnx × Rnθ ×
Rnu → B, where B , {0, 1}, changes from the value 0 to 1.
That is, the time of the event kE at some time of prediction

1Bold typeface denotes vectors, and na denotes the length of a vector a.

kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

In this paper, E specifically represents the end-of-life event.
So, kE is EOL and ∆kE is RUL.

2.2. Prognostics Architecture

We adopt a model-based prognostics architecture (Daigle &
Goebel, 2013; Daigle & Sankararaman, 2013), in which
there are two sequential problems, (i) the estimation prob-
lem, which requires determining a joint state-parameter es-
timate p(x(k),θ(k)|Y(kP )) based on the history of obser-
vations up to time k, Y(kP ) = [y(k0) . . .y(kP )], and (ii)
the prediction problem, which determines at kP , using the
joint state-parameter estimate p(x(k),θ(k)|Y(k0:kP )), the
future parameter trajectory p(ΘkP ), the future input trajec-
tory p(UkP ), and the future process noise trajectory p(VkP ),
a probability distribution p(kE(kP )|Y(kP )).

The prognostics architecture is shown in Fig. 1. In discrete
time k, the system is provided with inputs uk and provides
measured outputs yk. The estimation module uses this infor-
mation, along with the system model, to compute an estimate
p(x(k),θ(k)|Y(k)). The prediction module uses the joint
state-parameter distribution and the system model, along with
the distributions p(ΘkP ), p(UkP ), and p(VkP ), to compute
the probability distribution p(kE(kP )|Y(kP )). We describe
an approach to solve the estimation problem in Section 4, and
an approach for the prediction problem in Section 5.

3. VALVE MODELING

We consider here a rotary valve actuator (Flowserve Series
75 Actuator) controlled by a digital positioner (Flowserve
DFP17). The actuator consists of a DC electric motor, and
moves between 0 and 90◦, i.e., it is for a quarter-turn valve.
A 4–20 mA input signal is provided to command to a de-
sired position, and the positioner outputs ±24 V to rotate the
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Figure 2. DC motor circuit.

actuator in either direction to meet the position setpoint. A
positioner deadband ensures that the commanded voltage is
zero when the position error is close enough to the setpoint in
order to prevent oscillations around the setpoint.

We develop a physics-based model of the valve actuator. We
start by developing the nominal model, and then extend it to
include damage modeling.

3.1. Nominal Model

The state variables include the actuator position, θ, and the
actuator velocity, ω:

θ̇ = ω, (5)
ω̇ = α, (6)

where α is the angular acceleration, which is based on the
torques on the actuator. The torques include the motor torque,
τm, and the friction torque, τf :

α =
1

J
(τm − τf ) , (7)

where J is the rotational inertia. The torques are defined by

τm = Ki, (8)
τf = bω, (9)

where K is the motor constant, i is the motor current, and b
is the friction coefficient.

The DC motor circuit is shown in Fig. 2. Ignoring the (fast)
transients in the motor current (i.e, assuming steady-state for
the inductance L, in which the voltage drop is zero), it can be
expressed as an algebraic function of the motor voltage Vm
and back electromotive force (emf) Eb:

i =
Vm − Eb

R
, (10)

where R is the motor electrical resistance. The back emf is

described by:

Eb = Kω. (11)

The motor voltage is controlled by a positioner. A 4–20 mA
input signal, mapping to an angular position between 0 and
π/2, is provided. If the motor position needs to increase, then
a positive voltage is provided by the positioner to the motor,
and if it needs to decrease, a negative voltage is provided.
If the position error is within a small deadband, then zero
voltage is given. The positioner is described by the following
set of equations:

θd =

(
u− 4

16

)
π

2
, (12)

eθ = θd − θ, (13)

where θd is the desired position, u is the input signal (in mA),
and eθ is the position error. The voltage is then determined
using:

Vm =


Vu, if |eθ| > db and eθ > 0,

−Vu, if |eθ| > db and eθ < 0,

0, otherwise.
(14)

where Vu is the input voltage, and db is the deadband.

Here, only one sensor is available, which is the position:

θ∗ = θ
180

π
, (15)

where θ∗ is the measured position in degrees.

In summary:

x(t) = [θ(t) ω(t)]T ,

u(t) = [u(t)],

y(t) = [θ∗(t)].

3.2. Damage Modeling

Based on discussion with subject matter experts, we consider
two distinct damage modes, an increase in internal friction
(as captured by the friction coefficient b) and an increase in
internal electrical resistance (R). We assume that the friction
coefficient increases as a function of an unknown wear pa-
rameter, wb, the motor speed, ω, and the friction force, b · ω,
as described in (Daigle & Goebel, 2013):

ḃ = wb · b · ω2, (16)

which is based on the basic wear equation (Hutchings, 1992).
Note that friction damage only progresses when the valve is
in motion.
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Similarly, we assume that electrical resistance increases as a
function of an unknown wear parameter wR and the motor
electrical power, Vmi:

Ṙ = wR|Vmi|. (17)

Note that resistance will only increase when there is power
applied to the motor.

In the extended model, we now have:

x(t) = [θ(t) ω(t) b(t) R(t)]T ,

θ(t) = [wb wR],

u(t) = [u(t)],

y(t) = [θ∗(t)].

3.3. End of Life

In past valve prognostics applications, the valves were
operated in a discrete open/close fashion, so the EOL
threshold could be expressed based on required open/close
times (Daigle & Goebel, 2011a, 2009). However, in this
case, the valve position is controlled continuously, so the
valve may never even go through an open/close cycle in ac-
tual operation. Thus, the EOL definition must be generalized.

Instead, we can measure degradation through the steady-state
valve velocity, ωss, which is fundamentally equivalent to us-
ing open/close time thresholds. A major difference, however,
is that ωss cannot be directly measured.

In the steady state, ω̇ = 0, and so angular acceleration is zero
and the motor and friction torques must balance, i.e., τm = τf
(by Eq. 7). Assumingwss > 0, i.e., Vm = Vu, this means that
(using substitutions from Eqs. 8, 9, 10 and 11):

Ki = bωss,

K

(
Vu − Eb

R

)
= bωss,

K

(
Vu −Kωss

R

)
= bωss,

and, so, solving for ωss, we have

ωss =
VuK

K2 + bR
. (18)

Now, we express EOL using a minimum steady-state velocity
value, ω−

ss:

TE = ωss ≤ ω−
ss, (19)

i.e., E (EOL) is reached when the steady-state velocity
reaches its minimum value. Since ωss is a function of the
damage variables b and R, given estimates of these variables
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Figure 3. Damage progression with combinations of damage
modes.

an estimate of ωss may be computed for the purposes of EOL
prediction.

4. ESTIMATION

The goal of the estimation step is to compute a joint state-
parameter estimate based on the measured system outputs.
As described in Section 3, here, only position is measured.
However, there are two distinct damage modes that may oc-
cur. In fact, we cannot distinguish between these two faults
based only on the position sensor. As shown in Fig. 3, the two
damage progressions look the same. A zero wR and nonzero
wb can produce observations that look like a nonzero wR and
a zero wb, as well as a nonzero wR and nonzero wb. Even
without sensor noise it is difficult to observe any difference,
so with sensor noise, it will not be possible to distinguish
them.

This lack of distinguishability is implied by the wss relation.
In Eq. 18, both b andR appear in the denominator. For exam-
ple, if b doubles, wss will look the same as if R doubles, or
the product bR doubles. The damage progressions for b and
R are similar enough that as they grow over time one can al-
ways be mistaken for the other, and for this reason, it will be
very difficult to distinguish one from the other or some com-
bination of effects. Fundamentally, this is an observability
problem. We have two damage modes but only one sensor,
and the estimation problem is under-constrained. In longer
time horizons, Fig. 3 suggests that the ambiguity remains.

Since there is practically no hope in distinguishing the dam-
age mode or combination of damage modes occurring, we can
simplify the model and use a lumped damage approach. That
is, we can estimate an equivalent single damage and dam-
age progression rate, and make EOL predictions based on the
lumped damage estimate. Since any combination of dam-
age progressions looks like a friction damage progression, we
just use the valve model minus the constraint describing the
growth of the resistance parameter (Eq. 17), remove R from
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x(t), and remove wR from θ(t).2 If we can still make accu-
rate EOL predictions no matter the combination of damage
modes, then this approximation is acceptable.

We use the unscented Kalman filter (UKF) (Julier &
Uhlmann, 2004) for joint state-parameter estimation for
the lumped damage model. Details on the filter can be found
in (Julier & Uhlmann, 2004) and its application to prognos-
tics in (Daigle, Saha, & Goebel, 2012). To perform joint
state-parameter estimation for the UKF, the state vector is
augmented with the parameter vector, i.e, unknown param-
eters are treated as states. The parameters are assumed to
evolve only via process noise terms.

It is well-known that the variance used for the process noise
for the unknown parameters should be tuned online for opti-
mal performance, and this has been addressed in the context
of UKFs (Daigle et al., 2012; Daigle & Goebel, 2013) and
particle filters (Orchard, Tobar, & Vachtsevanos, 2009; Liu
& West, 2001; Daigle & Goebel, 2011b). We use here the
approach developed in (Daigle & Goebel, 2013), in which a
relative measure of spread on the unknown parameters (in this
case, the wear parameter wb) is controlled. A large variance
is used initially to encourage convergence, and once conver-
gence is reached, a small variance is used. The variance is in-
creased or decreased proportionally to the error in the desired
relative spread (e.g., 10%) from the actual spread currently
estimated by the UKF. Details of the algorithm and pseu-
docode can be found in (Daigle & Goebel, 2013). Here, we
initially control to a relative spread of 50% (as measured by
relative standard deviation of the estimated wear parameter),
and once convergence is achieved (determined by the initial
relative spread being reached), then we control the relative
spread to 15%.

5. PREDICTION

The goal of the prediction step is to, given the joint state-
parameter estimate, predict EOL and RUL. However, in or-
der to make a prediction, we require also an understand-
ing of the uncertainty in the inputs to the prediction prob-
lem (Sankararaman, Daigle, Saxena, & Goebel, 2013). The
inputs to the prediction problem include the state-parameter
estimate, the future input trajectory, the future process noise
trajectory, and the future parameter trajectory. For the pur-
poses of this paper, we assume that process noise is negligible
relative to the future input uncertainty, and that the parameters
are constant (although uncertain at the time of prediction).

5.1. Future Input Uncertainty

Consideration of the future input uncertainty is critical to
making accurate and useful predictions. Characterizing this

2Since any combination of damage progressions also looks like a resistance
damage progression, we could equivalently use that model to represent the
lumped damage instead.

uncertainty depends heavily on the application at hand. For
the rotary valve actuator, the valve is used in a replenish mode
for cryogenic propellant loading, in which the flow through
the valve is controlled to replace any boil off in the vehicle
tank due to heat exchange with the environment.

There are two important things to note about its usage. First,
the valve is used only in a certain mode of operation. Thus, it
makes sense only to report EOL/RUL in terms of usage time,
not absolute time. This is because (i) we do not know how
long the replenish operation will take, and (ii) we do not know
how long the valve will be sitting unused between replenish
operations.

Second, the valve can be in use but with no damage progress-
ing. There must be motion of the actuator for the friction
damage to increase (by Eq. 16) and current flowing through
the actuator motor for the resistance damage to increase (by
Eq. 17). If the actuator has reached its position setpoint within
the deadband, then motor voltage and current are zero, and
the valve is not moving, but the valve is still being used in
the sense that it is receiving a command and responding to it.
Thus, if we want to make a prediction in terms of usage hours,
we must acknowledge the fact that for an (unknown) percent-
age of the time the valve is being used, it is not moving and
damage is not progressing.

Given these considerations, a true future input trajectory will
be interspersed with both nonusage time and usage time, and
the usage time will be further divided into time in which the
actuator is moving and damage is progressing, and time in
which the actuator is not moving and damage is not progress-
ing. If we only want a prediction in terms of usage hours, then
we do not need to waste time simulating trajectories to EOL
including nonusage time. We do not also need to waste time
simulating trajectories in which there are intervals in which
damage is not progressing; instead, we can predict assuming
damage is always progressing, and then correct the predic-
tions using statistical information on the percentage of time
the actuator is actually moving.

So, to make an RUL prediction, we need only a subset of
the model in which we compute TE using Vm as an input,
in which Vm is always 24 V. In this case, the actuator will
continuously move and damage continuously progress. The
needed submodel can be derived from the model equations
using the general structural model decomposition frame-
work presented in (Roychoudhury, Daigle, Bregon, & Pulido,
2013). Using the GenerateSubmodel algorithm in that
work, we can compute the minimal subset of model equa-
tions needed to compute TE using Vm. In this case, we find
that we require only Eqs. 6–11, 16, 18, and 19.

So, given a sample of the system state, we can simulate until
TE evaluates to 1 and obtain corresponding EOL and RUL
predictions. In order to correct these predictions, we require
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Algorithm 1 kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

1: k ← kP
2: x(k)← x(kP )
3: while TE(x(k),ΘkP (k),UkP (k)) = 0 do
4: x(k + 1)← f(k,x(k),ΘkP (k),UkP (k),VkP (k))
5: k ← k + 1
6: x(k)← x(k + 1)
7: end while
8: kE(kP )← k

statistics on the percentage of the actuator usage in which it
is actually moving. We assume that, while being used, the
statistics of the past and future behavior in this context are
equivalent. Thus, we use the history of past sensor measure-
ments to keep track of when the actuator is moving and when
it is not in order to compute these statistics. We have a bi-
nary distribution; either the acutator is moving or not. We
define fm as the fraction of the time that the actuator is mov-
ing while in usage. The actuator is considered to be moving
when the absolute value of the estimated velocity is greater
than some threshold (i.e., 0.01 rad/s). Then, fm is computed
as the amount of usage time this condition is satisfied over
the total amount of usage time. We then compute the cor-
rected RUL, ∆kE,fm , based on the predicted RUL assuming
full-time movement, ∆kE,100%, as:

∆kE,fm =
∆kE,100%

fm
. (20)

The corrected EOL can then be computed based on corrected
RUL:

kE,fm = ∆kE,fm + kP , (21)

where kP is the time of prediction.

5.2. RUL Computation

Given the state estimate, we can sample from its distribution,
simulate each sample to E, and obtain corresponding kE val-
ues using Algorithm 1 (Daigle & Sankararaman, 2013). We
can then correct these predictions using Eqs. 20 and 21 to ob-
tain the desired EOL/RUL distribution. Recall, however, that
we have the requirement of real-time prognostics, that is, we
must compute the prediction for time k before time k + 1.
This is a difficult problem, considering that we must perform
a simulation toE, and the amount of time the simulation takes
depends on the rate of damage progression, which, in reality,
is very small.

A solution to this problem is to move the simulations from
online computation to offline, design-time computation. We
may construct a lookup table for this purpose, in which dif-
ferent values of the state are simulated to EOL and the result
stored, so that a mapping from states to RUL is established.
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Figure 4. Second-order polynomial fits to ∆kE values com-
pared to simulated ∆kE values as a function of b for different
values of wb.

Lookup tables have been used previously in prognostics in the
context of damage estimation (Teubert & Daigle, 2013, 2014;
Daigle et al., 2014). However, the problem with a lookup ta-
ble is that it has only a finite number of elements, so the pre-
cision and range of the table is finite. In reality, the wear rates
can take a variety of values and it is difficult to capture a suit-
able domain. The granularity of the table will also determine
the precision of the RUL predictions available.

So, instead of using a lookup table, here, we find the di-
rect functional mapping from the actuator state to RUL, i.e.,
∆kE = g(x). In the lumped damage approximation, and as-
suming fm = 100%, only b and wb will have an effect on
the RUL prediction, so we have to find a function of only two
inputs that computes RUL, i.e., ∆kE = g(b, wb). We first
simulate to EOL for a range of states, and then use optimiza-
tion methods to fit a the function g to the values.

To determine the structure of this equation, we first consider
only a single value of wb, so we have RUL as a function of
only b. We find that in this case, a second order polynomial
fits very well for any given wb, as shown in Fig. 4:

pb,0 + pb,1b+ pb,2b
2. (22)

Now, we need to determine how the pb parameters change as
a function of wb. We find that these coefficients are propor-
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Figure 5. Fitting the polynomial coefficients as a function of
wb.

tional to the inverse of wb, as shown in Fig. 5:

pb,0 =
p0
wb
, (23)

pb,1 =
p1
wb
, (24)

pb,2 =
p2
wb
. (25)

Now, we have a structure for the overall function:

∆kE =
p0
wb

+
p1
wb
b+

p2
wb
b2. (26)

Fig. 6 shows the match between the function values and the
simulated values. An excellent fit is obtained.

Summarizing the overall approach, online we estimate the
damage state of the acutator using the UKF. We estimate fm,
i.e, how often the actuator is moving while being used. We
then map the state estimate distribution to an RUL distribu-
tion using Eq. 26. We then correct the RUL distribution using
Eq. 20 and the estimated value of fm. The computation at

100

200

b

300

400

5000.3
0.25

0.2
0.15

wb

0.1
0.05

0

5

10

15

0

×104

∆
k
E

Simulated Values
Fitted Values

Figure 6. Fitting function ∆kE values compared to simulated
∆kE values.

each step is constant and small relative to the time step, and
can be completed in real-time or faster.

6. RESULTS

We validate the overall prognostics approach with a set of
simulation-based experiments. Our goals are threefold: (i)
demonstrate successful estimation of the lumped damage
progression, (ii) demonstrate accurate prediction with the
lumped damage model, and (iii) demonstrate accurate predic-
tion with varying levels of component usage. In all scenarios,
the valve is always in usage, and so absolute time is equiv-
alent to usage time. Since EOL/RUL are reported in usage
time, the true RUL only has the downward slope of −1 when
plotted against usage time.

We consider first a scenario in which only friction damage
is present, and the desired position is constantly changing,
so that the valve is always in motion (i.e., fm ≈ 100%).
Fig. 7 shows the lumped damage estimation, and Fig. 8 shows
the wear parameter estimate, including the mean, minini-
mum, and maximum values from the sigma points of the
UKF. With the UKF and the properly tuned variance control
algorithm, convergence happens relatively quickly, in about
1000 s (roughly 10% of the true kE). Due to noise and the
slow damage progression, the mean deviates, but the result-
ing predictions are fairly accurate, as shown in Fig. 9. Using a
relative accuracy measure of α = 0.25, we find that the mean
∆kE prediction falls within the accuracy bounds for most of
the time after estimation convergence. In this case, fm is
estimated to be slightly less than 100%, so the corrected pre-
dictions are shifted up slightly. This error is due to the noise
introduced in the fm computation as a result of the uncertain
estimate of the actuator velocity and the use of the velocity
threshold for determining if the valve is moving.

We consider next a similar scenario, except where only resis-
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Figure 7. b estimation for fm ≈ 100% with only friction
damage.
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Figure 8. wb estimation for fm ≈ 100% with only friction
damage.
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Figure 9. ∆kE predictions for fm ≈ 100% with only friction
damage.

tance damage is present. Fig. 10 shows the lumped damage
estimate, and here it is clear that its shape looks very similar
to that when only friction damage is present (Fig. 7). As a
result, the wear parameter estimate, shown in Fig. 11, con-
verges, although it is not as steady as the estimate for only
friction damage. The predictions, shown in Fig. 12, are fairly
accurate once convergence of the wear parameter estimate oc-
curs (which is relatively slower than in the previous scenario).
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Figure 10. b estimation for fm ≈ 100% with only resistance
damage.
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Figure 11. wb estimation for fm ≈ 100% with only resistance
damage.
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Figure 12. ∆kE predictions for fm ≈ 100% with only resis-
tance damage.

We consider next a scenario in which both friction and re-
sistance damage modes are progressing, and the component
usage is where fm ≈ 75%. Here, the estimation performance
is similar to the first scenario, and the wear parameter es-
timate converges relatively quickly, even though both dam-
age modes are present, i.e, the lumped damage approxima-
tion works fairly well. As kE is approached, the actual future
fm is higher than estimated so the uncorrected predictions be-
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Figure 13. ∆kE predictions for fm ≈ 75% with combined
friction and resistance damage.
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Figure 14. fm esimate for fm ≈ 50% with combined friction
and resistance damage.

come more accurate, i.e., the assumption that the future value
of fm is the same as the past value is violated, resulting in
inaccurate predictions. In practice, some uncertainty should
be considered for fm.

Finally, we consider a similar scenario to the last, except with
fm ≈ 50%. Estimation results are similar as in the previous
scenario; the wear parameter estimate converges and remains
approximately the same once convergence is achieved. The
estimate for fm is shown in Fig. 14, and ∆kE predictions are
shown in Fig. 15. It takes some time for the fm estimate to
converge. Early on, fm is higher than it will be in the future,
and so the predictions are overly optimistic, falling outside
the accuracy bounds. Convergence occurs at roughly 3500 s,
at which point the predictions become much more accurate
(here, fluctations are due to those in the wear parameter es-
timate). After this point, the corrected predictions are much
more accurate than the uncorrected ones, which are too pes-
simistic (overly conservative).

Overall, performance is quite good. Regarding the real-
time performance, each second of real time takes only about
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Figure 15. ∆kE predictions for fm ≈ 50% with combined
friction and resistance damage.

0.024 s of processing, which includes both estimation and
prediction. Thus, the goal of real-time prognostics is eas-
ily achieved, being able to run over 40 times faster than real
time.

7. CONCLUSIONS

In this paper, we applied the model-based prognostics ap-
proach to a rotary valve actuator. This case study presented
several challenges for which new methods were developed
to achieve prognostics. First, due to limited observability, a
lumped damage approximation was used, which was found
to be sufficiently accurate in this case. Note, however, that
this will not apply in general; it works here due to the simi-
lar effect of the two independent damage modes on the sin-
gle observable variable. Second, real-time prognostics was
a requirement, so instead of online simulation to EOL, of-
fline simulations were performed and an algebraic function
was found mapping the damage space to RUL. Thus, for
any system state, RUL could be computed extremely quickly,
enabling the real-time performance requirement. This ap-
proach can be applied to any system, although in some cases
it may be difficult to find such a function, especially for high-
dimensional damage spaces. Third, we implemented an RUL
correction procedure, since predictions were based on 100%
movement of the actuator, when in reality during an actual
usage, damage only progresses when the valve is moving,
which, in our usage context, was stochastic.

In future work, some uncertainty regarding fm should be con-
sidered, as it was not generally true that fm computed over
past values matched fm computed over future values. Sec-
ond, accelerated damage progressions (high wear rate values)
were considered here for the purposes of demonstration. In
reality, wear rates will be much smaller, and this may require
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the splitting of dynamics into fast- and slow-time dynamics,
with different estimation methods for each (Luo, Pattipati,
Qiao, & Chigusa, 2008).
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