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ABSTRACT Hess, & Wu, 2007). Traditional approaches to design of
prognostic systems have been focused on applying prognosti
duce costs and increase availability of assets. As a resutl‘tachr.]IOIues ona case-by-.case basis to cre_ate a f|t-for-wrp_o

solution for each application. These solutions are notyeasi

of the_ rapidly growing interest in prognostics, rE.}Se‘r.ir‘;hertransferable to other domains, and therefore impede the-ado
have independently developed a number of applications fof.

asset-specific modeling and prediction. Consequentlyethe tion of prognostics applications in industrial fields.

is some inconsistency in the understanding of key concepti® order to generalize the adoption of prognostics techesqu
for designing prognostic systems. This further complisate a clear and consistent justification of the use of prognostic
the already-challenging design of new prognostic systéms. algorithms is needed. This justification should provide mec
order to progress from application-specific solutions tmlsa anisms for prognostics model selection so as to integrége th
structured and efficient prognostic implementations, the d criteria into the design flow. Accordingly, in this paper we
velopment of a comprehensive and pragmatic methodologgresent a generally applicable methodology to design prog-
is essential. Prognostic algorithm selection is a key #gtiv nostics applications systematically. The main goal of the
to achieve consistency throughout the design processidn thmethodology is to choose a priori an adequate prognostics
paper we present a design decision framework which guidealgorithm that meets the system requirements. This regjuire
the designer towards a prognostic algorithm through a eausshifting from taxonomy and classification of prognostics ap
effect flowchart. Failure modes, application charactiedst proaches towards a design framework for the systematic se-
and qualitative and quantitative metrics are used to déterm lection and design of prognostic applications based otestra
an appropriate approach for the stated problem. The applgic decision points.

cation of the methodology can reduce the time and eﬁortl'he main contribution of this paper is the development of a

required to develop a prognostic system, ensure that all the " - T
: : . . . design decision framework which integrates the knowledge
possible design options have been considered, and provide . . L2
. . : . heeded to design prognostics applications. As a proof-of-
a means to compare different prognostic algorithms consis- ) oo .
concept, we have analyzed its usability in different agplic

tently. The framework has been applied to different PIO98%0ns within the power industry. The successful implemen-

nostic problems within the power industry to illuminate its haetion of this framework can (1) reduce the time and effort

effectiveness. Case studies are presented to show how tre uired to develop a prognostic system: (2) ensure that all
framework guides designers through the choice of prognos; q ba prog y ’

tic algorithm according to system requirements. The result he possible design options have been considered; and (3)

demonstrate the applicability of the methodology to the de_provide a means to compare different prognostic algorithms
. . : . consistently.
sign of prognostic systems which consistently meet the es-

An effective implementation of prognostic technology cen r

tablished requirements. The remainder of the paper is organized as follows: Sec-
tion 2 presents the state of the art analyzing existing prog-
1. INTRODUCTION nostics methodologies and classifications. Section 3 define

. . . . the overall methodology and the activities undertakeniwith
Successful implementations of prognostic techniques pro; : o . .
: . : ; : . the methodology. Section 4 specifies the design decision
vide benefits for maintenance planning which result in cost; . . o .
. ; : framework as a crucial activity within the design methodol-
effective operation of assets (Vachtsevanos, Lewis, Roeme : R : .
ogy. Section 5 presents the applicability of the design-deci

. — o sion framework through the analysis of different case stsidi
Jose Aizpurua et al. This is an open-access article diségbunder the terms ithin th indust Finally Secti 6 d |
of the Creative Commons Attribution 3.0 United States Lgsgrwhich per- within theé power industry. Finally, section raws conclu-

mits unrestricted use, distribution, and reproductiomipmedium, provided ~ Sions and presents the future work of this research.
the original author and source are credited.
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2. STATE OF THE ART prognostics applications (Haykin, 1998), attributing awgy

. o level entity to a specific technique may not be accurate. Be-
Due to the fast growth of prognostics applications, theee ar _; - .
sides, due to the ambiguity of some groups, some techniques

divergences in the literature with respect to the definitibn can fit in more than one group. For instance, Particle Filtgri

prognostics (e.g., see (Sikorska, Hodkiewicz, & Ma, 2011) : ) LT
for different definitions). Literally, the word prognosis & (PF) (Daigle, Saha, & Goebel, 2012) is grouped within life

combination of two Greek wordsirog - before; andynosis- expectancy models. However, according to the engineering

knowledae. Accordinalv. a widelv accepted proanosis defini requirements, PF needs a degradation equation and observa-
ge. gy, y pted prog tion data for RUL estimation. Therefore, it could fit within

tion is: the ability to acquire knowledge about events before . : )
they actually occufVachtsevanos et al., 2007). While in the physical models as well. They define advantages and disad

medical field it has been used to predict the probable cours\ézr;tgﬁgzt;r;]digzigaIlizlpga(;r:g of;nsg(]a ii(r:‘: 2$i2rc>ona(£iva:IS
of a disease, in the industrial field it is aimed at foretgllihe y P

Remaining Useful Life (RUL) of a component after a fault (or alternative approaches, .bUt Itis necessary to link these ap
o S ) - .~ 7 proaches through a design process to integrate them seam-
a specific failure mode) is diagnosed, i.e., prognosis fipsci

: . lessly (e.g., design decision points to choose a model decor
the fault-to-failure progression of an asset. . 4 :
ing to design requirements).

Accordingly, in this work we consider prognosis as the PTO"rhe classification proposedin ISO 13881-1 focuses on 12 dif-

. . o . - ferent groups (ISO, 2004) (see Table 1). This results in a flat
failure data, degradation-specific equations, or theirlom classification tree without hierarchies. It is possibleuwter

nations. These predictions must include mechanisms to rep- .. : e )

. : . “refine this classification by gathering the proposed groops t
resent the inherent uncertainty of a prognosis, and predICCtreate structured and non-overlapping boundaries andsehoo
within reasonable bounds (Sankararaman, 2015). PpIng

a model according to design requirements.

(Si, Wang, Hu, & Zhou, 2011) further develop data-driven
statistical approaches based on the direct or indirectr@atu

: - of the condition monitoring data. For direct condition mon-
duce costs and increase availability. Inrecentyears hqlat .. : ) )
itoring data the following groups are addressed: regrassio

of new techniques have be_en prop(_)sed for prognosis of eng(t'jased, Wiener, Gamma, and Markov processes; while for
neering assets. Our goal is to design a prognostics metho

! : ) L indirect condition monitoring data: stochastic filtering-a
ology for the systematic design of prognostic applications . .
; . ; : . proaches, covariate hazard approaches, and Hidden Markov
cluding systematic prognostics algorithm selection. Adeo
) . P . Model based approaches are covered.
ingly, we review the scientific literature addressing the-pr
posed prognostics algorithm classifications (cf. Subsecti (Lee et al., 2014) provide an overview of alternative ap-
2.1) and prognostics methodologies (cf. Subsection 2.2).  proaches with their respective advantages and disadwestag
Unfortunately, they are considered separately and there is
2.1. Classification of Prognostics Techniques link between them. The authors suggest a ranking method

Two groups, data-driven and model-based prognostics tecrt])_ased on concepts of quality function deployment and house

nigues, have been identified by many authors as prognosti Of quality (Govers, 1996) to rank the suitability of progtics

C . . o .
approaches derived from historical data and expert know! gﬁgorlthms with respect to the specific problem. A combina-

edge respectively (e.g., see (An, Kim, & Choi, 2015)). HOW_t|on of engineering att_nbutes and.customer qeeds is useq to
e . ._rank prognostics algorithms. The idea of ranking progiessti
ever, not all the proposed classifications in the prognestic

algorithms is interesting, but still the designer needsteas

arena have been limited to these groups. This situation €M 2 adequacy of the algorithm on a case-bv-case basis
phasizes the general lack of agreement on fundamentardesig quacy 9 y ’

activities. There is no unique solution for the classifisati (An et al.,, 2015) group approaches into model-based and
criteria, and depending on the viewpoint, the same approaadtiata-driven techniques. The authors present practical op-
can be classified in a different way. However, a generally actions to select a prognostic algorithm identifying possits-
cepted classification framework is needed for the systematisues for data-driven (Neural Networks, Gaussian Process Re
design of prognostic systems. gression) and model-based (Particle Filtering) techrégunel
comparing their results through a case study. Aligned with

(Sikorska et al,, 2011) define four groups for RUL predic—our design decision framework, the authors present a model
tion influenced by the ISO 13881-1 (ISO, 2004): knowledge- >S9 . S P .
: .y selection tree with 3 decision points (1) existence of infor

based, life expectancy, Artificial Neural Networks (ANNSs), o : . ) S
. . . mation: physical model, loading or no information; (2) dam-
and physical models. Prognostics techniques are grouped ac . X ; .
.age growth: simple or complex; and (3) noise level: small or

cordingly, and their advantages and disadvantages are d'ﬁa{rge. From these decision points four prognostic techesqu

cussed. Despite ANNs having been widely used for MaNYre suggested. In our design framework we address a com-

Prognostics techniques focus on predicting fault progwass
and providing an early indicator of the RUL in order to im-
plement asset-specific maintenance strategies, and yhereb
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plete set of prognostic approaches including combinatiéns to system requirements. This requires introducing enginee
model-based and data-driven approaches. To this end, it iag criteria into the classification trees in order to adapigp
necessary to consider more design decision points, highlig nostics design decisions systematically. To this end, we pr
ing the cause/consequences of alternative paths in the tree pose the transformation from classification-like appragch

(Liao & Kottig, 2014) classify prognostics approaches ir]totowards design decision-like flowcharts based on trade-off
' analyses and design decision metrics.

Experience-Based (EB), Data-Driven (DD), and Physics-
Based (PB) models. From the combination of these ap-
proaches, they provide a comprehensive overview of hybri
approaches identifying the following groups: (1) EB with The need to develop a generally applicable methodology has
DD; (2) EB with PB; (3) DD with DD; (4) DD with PB; been recognized in the literature (Uckun, Goebel, & Lucas,
and (5) a combination of EB, DD, and PB. The proposed2008). However, some of the proposed approaches have
flowchart for hybrid approaches is influenced by this workused a particular solution technique (e.g., see (Peyssaln et
(cf. Subsection 4.3). We complement this work by including2009)), and others need to be developed further in order to
(1) high-level drivers to select a hybrid prognostic corfigu be generally applicable. This subsection analyses some of
ration; and (2) different connections between DD and MBthe prognostics methodologies presented in the literatare
approaches. explain the direction of this work.

.2. Prognostics Designh Methodologies

Table 1 displays the approaches gathered in this subsectigkumar, Torres, Chan, & Pecht, 2008) proposed a method-
considering relevant grouping aspects and analyses ifghe aology for electronic products. To this end, they (1) identif
proach addresses model selection aspects. the critical failures, (2) establish a healthy baselinesblasn

) o monitoring data, (3) incorporate a physics-of-failure rabod
Table 1. Summary of prognostics classification approachesnig the prognostics model, and (4) evaluate the RUL based
on the Mahalanobis distance from baseline. Although the hy-

Reference Prognostic groups MS . . .
(Sikorska et al,, | Knowledge-based, life expectancy brid approach reduces uncertainty, the method is not gener-
2011) ANNS, & physical models X ally applicable because it may not be feasible for specific re
Behavioral models, statistical, quirements (e.qg., lack of run-to-failure data). For theesak
probabilistic, ANNSs, life i ; ; staria i
AINIA generality, prognostics model selection criteria is neags
expectancy, reliability based, ; . e . .
(ISO, 2004) deterioration based, knowledge | X instead of focusing on a specific prognostics algorithm.
based, rule based, causal tree, & . - .
case-based reasoning (Uckun et al., 2008) identified the need of a universal method
(Sietal., 2011) Data-driven X ology to design prognostics and health management systems
(Lee et al., 2014) No grouping v and gather some of the key activities of the methodology
(An et al., 2015) Model-based & data driven v (see Table 2). Some of these activities have been formal-
(Liao & Kottig, Experience based, data-driven, ized: transformation from high-level requirements to hess
2014) physics based, & hybrid X 9 q

case (Saxena et al., 2012); (2) metric selection (Saxerig et a
2008); and (3) validation and verification tests (L. Tang; Or

There are some papers in the literature that deal with mod&hard. Goebel, & Vachtsevanos, 2011). A key activity that th

selection related issues (Lee et al., 2014; An et al., 2015ﬁ1ethodlology must integrat.e is the definiti_on and integratio
However, the addressed techniques are only a subset of tﬁ’é metncs. as a means to mtroducc_e consns_tency for altgrna-
existing approaches for prognostics applications. AsHer t tive techniques. Th|§ standardization prc_)wdes mechagism
classification criteria, the common factors for all the esved [0 COmpare prognostics approaches consistently.
approaches are the data-driven (including Neural NetworkgPeysson et al., 2009) introduced a methodology to per-
reliability, and life-expectancy groups) and model-baged  form prognostics of complex systems using damage trajec-
cluding behavioral and physical groups) techniques. Bssid tory models. The methodology introduces a generic modeling
itis possible to consider experience (knowledge) baséd tec formalism for system specification linking environmentsmi
niques as another group, but there are not many techniqueson and process (or resources) variables. The envirorinent
which can be grouped here other than Fuzzy logic. Theremodel is specified using Fuzzy logic and the damage mod-
fore, for the sake of simplicity, we will not consider it as a els used are abaci. The generalization comes from the formal
separate group (see Section 4 for more details). system specification in order to perform prognostics of com-
plex multi-component systems. However, the methodology
lacks a generalized prognostic model selection process.

Legend MS: Model Selection; ANNs: Artificial Neural Networks

The classification of prognostic approaches is not of praktti
use without a clear connection with the system design pro
cess. It helps the designer to choose a group of approachgsee, Liao, Lapira, Ni, & Li, 2009) presented a methodology

but within the same group further design choices need to bfyr the design of e-manufacturing systems comprised of the
adopted to select a suitable prognostics algorithm acegrdi
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following steps: (1) streamline: identify critical compamts
and sort/filter/prioritize data to ensure quality; (2) strao-
cessing: evaluate degradation, predict performance, and d
agnose the failure; (3) synchronize: use of advanced tech-
nologies (e.g., agents) to introduce transparency; (4)-sta
dardize: systematic prognostics selection, platformgirgte
tion, and maintenance information standardization; () su
tain: closed-loop life cycle design (real-time feedbaehji-
bedded self-learning; and user-friendly development. The
methodology integrates the Watchdog Agent (Djurdjanovic,
Lee, & Ni, 2003) for automated tool selection. It ranks prog-
nostics algorithms based on process properties (staifgnar
expert knowledge, cost, computation, data dimension,er pr

(1)
Fault Coverage

FM of
interest

Engineering
resources
(data, knowledge)

Requirements
Specification

Prognostics
Model

(3)
Transformation
Prognostics ( (4) D
Metrics Validation & Verificatio

Meet

No: reconsider regs. No: reconsider FM

diction span) and implements the highest ranked technique.
However, the prognostics techniques considered in this too
box are a subset of data-driven techniques, and they do not
include model-based and hybrid prognostics techniques.

Table 2 shows the approaches gathered in this subsection
considering relevant design activities and analyses iGhe
proach addresses model selection aspects.

Table 2. Summary of prognostics methodology approaches

Reference Methodology steps MS
FMEA,; health monitoring; baseline
g(lurg&r)se)t definition; anomaly detection; param.| x
" isolation; & PoF-load matching o
Requirements transformation; metric,
gLIJcI;%%g)t fault, sensor and model selection; X
v validation & verification
(Peysson et| System modeling; & prognostics analysis X
al., 2009) (damage evaluation)
(Lee etal., Streamline; smart processing;
v
2009) synchronize; standardize; & sustain

Legend MS: Model Selection; PoF: Physics of Failure

In summary, there is no generally applicable methodology
which suggests a prognostic technique according to the uset
requirements. To aid in this process we introduce a formal
procedure for the design of prognostic systems in order+to ap
proach the task systematically. This should simplify pragn

tic system design, and avoid repetition of redundant pmoces
steps for every application. °

3. METHODOLOGY OVERVIEW

The proposed methodology framework assumes four design

Regs.
es

Validated
Model

Figure 1. Generic methodology for prognostics

formal criticality assessment techniques (e.g., FMECA
(US Department of Defense, 1980), importance mea-
surements (Borgonovo & Apostolakis, 2001)). Applica-

tions may prioritize a single fault type, aging behavior,

or a number of important failure modes.

Systematic prognostics model selection: a prognostic
system must contain a model of degradation. This model
can be simple (e.g. linear decrease of a single param-
eter) or more complex. It could be derived from data,
or based on engineering understanding (e.g. a physics-
of-failure model). According to available engineering
resources, the failure mode of interest, and application
specific requirements, this activity determines which is
the best prognostics model.

Transformation from high-level requirements into appli-
cation specific metrics (e.g., see (Saxena et al., 2012)).
This step introduces consistency by defining a transfor-
mation step to evaluate different prognostics models un-
der the same criteria, i.e., prognostics metrics.

Validation and verification: validate the proposed model
according to the prognostics metrics (e.g., see (L. Tang
etal., 2011)).

stages: (1) fault coverage, (2) model selection, (3) requir 1he choices made throughout the methodology impact the
ments transformation, and (4) validation and verification.immediately connected steps, and may lead to iteration of
Prognostic system developers must consider each in turRfevious steps. For instance, if system requirements dre no
Figure 1 depicts the generic prognostics methodology strudMet, the designer should reconsider the initial systemirequ
turing these activities to meet the design requirements. ~ Ments or the adopted failure mode.

From the literature analysis some of these steps have bedihile all the outlined activities are important for the dgsi

identified (cf. Subsection 2.2). The four stages integrated ©f prognostic applications, the main focus of this papemnis o
the methodology are: prognostics model selection. We plan to address the remain-

der of the design activities in forthcoming publicationsgs
e Fault coverage or Failure Mode (FM) choice throughSection 6).
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4. DESIGN DECISION FRAMEWORK FOR MODEL SE- criteria are used to trace a path through the group-specific
LECTION flowchart, i.e., requirements and failure mode of interest.

To present a comprehensive model selection decision framez1 1. Data-Driven Approaches
work, the applicability of different algorithms must be wel

understood. To synthesize this knowledge, we define a debata-driven prognostics algorithms rely on the availatzad
sign framework based on strategic decision points, deeelop to fit a model of the system behavior. The data must include
by analyzing case study prognostic systems. Enough casesn-to-failure conditions of the component under studyrin o
have to be considered that general guidance can be usefullier to predict the RUL. Generally data-driven approaches ar
extracted, and also that a broad set of differing requirésnen based on statistical pattern recognition and machine dearn
are represented. The framework guides the designer throughg techniques. The maiassumption®f data-driven ap-
the prognostics algorithm selection process illuminatimg  proaches are that (i) the statistical features remain urgdth
trade-offs and cause-effect influences of alternativegmesi until a failure occurs or they change in a predictive way as th
decision points. fault progresses; and (ii) availability of run-to-failudata.
Thereby, the quality of the dataset determines the perfor-
mance of the data-driven prognostic application. In some
fields it is difficult to obtain the run-to-failure data (e.g.
safety-critical or new systems).

The approaches presented in the scientific literature foous
comparing alternative algorithms by implementing quantit
tive metrics (e.g., error, cost) after the development efah
gorithm as post-implementation indicators. This appraaeh
sults in a case-specific analysis that increases the desggn ¢ Assuming that data-driven approaches have been selected
due to the need of implementing alternative algorithmstiert as appropriate solutions for the application under stuuly, t
same application. Interestingly, there is room to guidedite  design decision process starts by examining uncertainty re
signer in the pre-implementation phase towards an adequatpiirements for RUL estimation. Adequate management and
prognostic algorithm by examining relevant design optjonsrepresentation of the uncertainty is necessary to preloct t
e.g., data properties; computational complexity; degiada RUL with confidence, especially for safety-critical syseem
patterns; failure thresholds; or uncertainty management.  (Sankararaman, 2015). The deterministic estimate of the
RUL may not be an adequate indicator because of its lack of
judgment about the inherent uncertainty of the system. &vhil
the confidence intervals over the RUL provide a means to

Existing prognostic approaches are classified into thrgle-hi
level groups: data-driven, model-based, and hybrid pregno

]tc:::;erc;r;rgglu (()efs Eastgrirg/:& i?g?;gliﬁz l:]?;(r)?ic:;gl|t?l:|:_%od_?;$0 bound the estimation, the Probability Density FunctionfpD
y of the RUL estimation not only determines RUL bounds, but

data (see Subsection 4.1)odel-basedechniques require can also be propagated for system level uncertainty assess-
system knowledge in the form of the system’s degradation propag y Y

equations (see Subsection 4.8ybrid approaches emerge in ment. Consequently, the most accurate and potentiallyilsef
different configurations arisiﬁg f'rom the (intra or inteos- prognostics estimation will include the PDF of the RUL esti-

binations of data-driven and model-based techniques.tlnpumatlon'

requirements for thlybrid approaches depend on the hybrid Therefore, the first decision point evaluates if it is neagss
configuration itself (see Subsection 4.3). to include the PDF of the RUL or not (see Figure 2). Accord-

The selection of the high-level prognostics algorithm grou ingly, different prognostics algorithms can be selected.

is driven by the available engineering resources. That islf there is no need to extract the PDF of the RUL accord-
when run-to-failure data or knowledge of system’s degraing to design requirements, there are alternative solstion
dation equation is available, data-driven or model-baged a depending on the complexity of the data, prediction span
proaches are selected respectively. However, when both engshort-term or long-term prediction), system specifiaagio
neering resources are available, the selection of thelleighl- available dataset, and knowledge of reliability distribos.
group incurs a trade-off decision between the availabdity Monotonicity (m) is used as a measure of the data complexity
statistically significant run-to-failure data and comptgxof  calculated as follows (Coble, 2010):

the degradation equation. It may be the case that the degra-

dation equation is too complex to model the system behav-

ior accurately. Accordingly, data-driven techniques can b m = mean(|
selected, provided that statistically significant rurfaddre

data is available. Otherwise, hybrid prognostics techesqu wheren is the number of data windows in the dataset tisd
can be selected if the complexity is manageable and there the time scale. Monotonicity is a relevant degradationipara
enough run-to-failure data. eter under the assumption that an asset will not go through
repair until reaching the system failure.

e d d
#positive g 3 #negativeg;

D@

n n

Once the high-level prognostics group is chosen, othegdesi
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Curve Fitting

Figure 2. Flowchart for data-driven algorithm selection

If the data reflects a simple linear monotonic degradatiorvations. HMMSs hold the Markovian assumption (future
(0.8 < m < 1) Linear Regression is an appropri- states are independent of all past states but the current one
ate solution for RUL estimation (e.g. see (Rudd, Cattersons— independent degradation) which may be too restrictive
McArthur, & Johnstone, 2011)). However, if the data is notfor some systems. To overcome this assumptibaden
clearly monotonic#: < 0.8), more sophisticated techniques semi - Mar kov Mbdel s (HSMV) were proposed assum-
are needed. If the goal is to perform a short-term predicing a general distribution between states (Tobon-Mejid.et a
tion (e.g., 1 step ahead prediction), linear time-seriedeteo  2011). With HMM and HSMM it is possible to calculate con-
provide an easy to implement and accurate prognostics infidence values with the deterministic RUL estimation.

plementation (Ling, 2013)ARMA models are better suited However, if it is not possible to specify the system be-

_for \_/veakly stationary processes, whit MA IS a gengral- havior through state-based approaches, the system’s behav
ization of the ARMA model able to deal with non-stationary . : o0 )
ioral pattern may be inferred from past historical experi-

processes. A weakly stationary process must satisfy twe con

ditions: mean and variance must be constant; and the autocg. oo If multiple run-to-failure datasets of the same com-

variance betweeiX, and X, must only depend on the lag poqent are available, case—bas_ed reasoning approach_es may
. . . . be implemented. These techniques analyze data, define the
7. (Ling, 2013) introduced a Bayesian updating method for, . i
. health index (or baseline) based on data features, and ac-
ARIMA models for uncertainty management. : . )
cordingly evaluate if the new test data is healthy or not and
For long-term prediction models, the next decision point ispredict the RUL. These approaches assume that components
if the designer has knowledge of the system'’s state-spacgsed for testing and training go through the same degra-
specification. State-based models define the system beéation process and require multiple run-to-failure hister
havior through a multi-state specification transiting fram to reuse knowledge and create predictions. If the available
healthy state towards a failed state through multiple degradataset has multiple different featurbat ch Matri x is
dation states. InHi dden Markov Model s ( HMVB) an appropriate solution (J. Liu, Djurdjanovic, Ni, Casoett
(Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2011) the stat & Lee, 2007). Match matrix improves ARMA models for
is not directly observable, but it is deduced from obserdong-term multivariate predictions, but it suffers fromnee
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putational efficiency. Otherwise, if the dataset has a sintations are available for SVR. To provide RUL confidence in-
gle feature, distance based approaches are more efficietgrvals, ANNs have been extended towaf@mfi dence

for online applications. If there is expert knowledge to Predi cti on Neural Networks (CPNN) (Khawaja,
define the similarity or difference among alternative runs,Vachtsevanos, & Wu, 2005).

Fuzzy-Based Sinmlarity (Zio & Maio, 2010) evalu-
ates the distance between alternative run-to-failurefokzgad
on Fuzzy membership functions instead of crisp distanc
evaluations. For online univariate implementations witho
expert knowledge,Traj ectory Based Sinmlarity
(TBS) (Tianyi, 2010) approaches could be implemented.

As for the approaches which estimate the PDF of the
RUL, the first decision point analyses if the system’s state-
%ased specification is available or not. If it is available,
Dynani ¢ Bayesi an Net wor ks (DBN) are a feasible
option (lamsumang, Mosleh, & Modarres, 2014). DBN mod-
els can be specified using graphical models making them
If there is little run-to-failure data and the designer haswl-  an appropriate framework for the prognostic assessment of
edge of reliability models, the next decision point evadgat complex systems. If the state-based specification is not
if it is necessary to take into account covariate influencesvailable, but there are multiple run-to-failure data drigts,
(i.e., external factors). If so, ther oporti onal Hazard an Enhanced TBS approach can be implemented (Lam,
Model (PHM (and its variants) can estimate the RUL con- Sankararaman, & Stewart, 2014).

sidering external environmental influences on the COMPOL.1 o rwise. if the dearadation process can be representied wi
nent's lifetime (Gorjian, Ma, Mittinty, Yarlagadda, & Sun, ' 9 P P

2010). For univariate reliability model$\éi bul | regres- the Markovian memoryless property, there are different op-

: tions depending on the monotonicity of the dataset: if the
sion approaches (Trappey, Trappey, Ma, & Tsao, 2014) A Gataset represents a monotonic degradation patéesn <

well suited for non-monotonic data. Weibull based regessi < 1) ca process based prognostic implementas

approaches require fitting the data according to the Weibulgzms are feasible (Son, Fouladirad, & Barros, 2012); oth-
distribution parameters. Note that the Weibull distributi ; . S ' ) '
erwise, W ener process is more appropriate for non-

can be adapted to a variety of reliability distributions hy fi monotonic degradation patterns (S. Tang, Yu, Wang, Guo,

ting the paramgters _(e.g. _expo_ner_1t|al_, Rayleigh) to pevid & Si, 2014). Both approaches require fitting the data to the
the corresponding failure time distribution. o
process-specific parameters.

If the designer does not have practical knowledge of relia-_. . .
bility distributions, it is still feasible to implement@ur ve Finally, if the degradation process does not adhere to the

S . : : Markovian process, data/function-dependent techniques
Fi tti ng approach in order to fit the data with, for example, : . ) )
i . . . are considered. These techniques require choosing correct
a polynomial function. Otherwise, black-box prognostie ap

proaches estimate the RUL without interpreting the tramsfo parameters and functions to fit the actual data. Namely,

mation process from the input data towards the output datazRggle)VZrngalYSe;t;: pl\ﬁa ;:ésnsesRé;Vé\gsi On(-r('%g';?’

i.e., RUL estimation. These approaches may be useful fo - h .
L . RN, . Rasmussen & Williams, 2006) approaches require choosing
complex applications in which it is difficult to come up with : ) . )
a relationship between the input and output data. an approprlate Kernel and covariance functions respégtive
The final performance of RVM and GPR depends on the cho-
Both Artificial Neural Networks (ANN) sen data and function (Goebel, Saha, & Saxena, 2008). GPR
(Haykin, 1998) andSupport Vector Regression is a Kernel method with Bayesian treatment for regression. |
(SVR) (Smola & Schlkopf, 2004) are semi-parametric integrates multiple variables by fitting a normal distribuat
black-box approaches suitable for prognostics analysesnd then applies Bayes’ rule to predict the future based®n th
ANN is a widely adopted black-box prognostic techniquepast. However, it has relatively expensive memory and CPU
which provides a deterministic estimate of the RUL predic-requirements, and therefore may not be suitable for online
tion. SVR estimates the functional relation between inputperation. One solution to this problem is to distribute the
and output random variables under the assumption that thenplementation as in (Saha, Saha, Saxena, & Goebel, 2010).
joint distribution is completely unknown. The model creahte RVM is a Bayesian-inference inspired implementation of
by SVR depends only on a subset of the training data. Support Vector Machines. See (Yan, Liu, Han, & Qiu, 2013)
For the SVR the kernel function parameters have to be estllgz)rnfl aRr\i/s’\(/l)naliaje?tl\ﬁs:r?nR\a;nMdasnedeG(Sse(gildeAt\l\?ll\.l’) 2008) for a
mated from the data, while for ANNs the architecture needs P '
to be determined. The estimation of these parameters coi-he flowchart for data-driven algorithm selection has been
strain the accuracy of both techniques. Another differenc@esigned symmetrically with respect to the uncertainty re-
is that ANN suffers from the local minimum problem, while quirements for the RUL specification. The majority of ap-
SVR gives globally optimal solutions. Probably, the wider proaches which estimate the probability density functibn o
acceptance of ANN is because there are many software inthe RUL, extend their non-PDF counterpart techniques in-
plementations for ANNs, while fewer easy-to-use implemen-cluding mechanisms for uncertainty analysis and reprasent
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tion, i.e., DBN generalizes HMM; enhanced TBS generalizedf there are no observations and only engineering knowledge
TBS; and RVM generalizes SVR. is available, aPhysics of Failure (PoF) model
The order of the model-selection decision points defines priShOUIOI be cre_ated deflnlng the s_ystem degradation behavior
. . . : through physics of failure equations. PoF approaches use
orities for the prognostics algorithm selection proceshe T ; : . o
ordering is dependent on th@meferenceof the system de- the sxstems degradanon_prop.ernes eg. .matenal,mllgad
conditions, geometry) to identify degradation trends i¢typ

zlé:]n(aer(.eThe;tlgtv;(_:E:;tegl :Igléirl‘?citi%r:\?rwiiﬁstr?gsiiz :(rgvg_cally due to over-stress or wear-out) and estimate the RUL
9 9. b y{:Vachtsevanos et al., 2007).

tem knowledge provides added value compared with generi
prognostics approaches (e.g., curve fitting, black-bohk-tec If observations are available in conjunction with the en-
nigues). In other words, situation-specific prognostics al gineering knowledge, the RUL prediction can be solved
gorithms are prioritized with respect to generally apfliea via Bayesian tracking (or filtering) approaches. These ap-
techniques. Note that other orderings are also possible aproaches use two dependent equations to predict the future
cording to the designer’s preference (e.g., complexityhef t degradation of the system: the measurement equation which
prognostic technique implementation). An interestingeaxt estimates the current state of the system (posterior PDH); a
sion would be to parametrize decision points accordingfto di the process model which predicts the future state of the sys-
ferent properties (e.g., system knowledge, complexig)ite ~ tem using the current state of the system. The raasump-
ing in different algorithm selection flowcharts. This wayet tionsto apply Bayesian tracking methods are: (i) the states
decision points can be rearranged dynamically according téollow a Markov process (the current state depends only on
user-defined preferences (see Section 6). the previous state and actual conditions); and (i) the nlase
tions are independent of the given states.

4.2. Model-Based Approaches Among Bayesian tracking methods, tkal man Fil ter

For some safety-critical systems, and when the new systeffiocuses on the analysis of linear degradation trends. Tlhe fo
has not been produced yet, data-driven approaches are Howing conditions must be satisfied to consider a function
viable because there will not be enough run-to-failure dataf (z) as linear: (1)f(z1 + x2) = f(z1) + f(x2), Vo1, T2;
to apply data-driven techniques — although there are excemnd (2)f (ax) = af (z), Vz.
tions such as the use of high fidelity simulators which ca
produce the necessary run-to-failure data (e.g., see (eGh
Galloway, Catterson, Brown,_& Harrison, 2014)). In thgse tended Kal man Filter (EKF) andUnscent ed
cases model-based prognostic approaches can be con5|der]§ . . ! .

: i : : al man Filter (UKF) bothare non-linear filters which
The selection of model-based prognostic techniques IS'monassume Gaussian distribution for the states and noisel@Dai
vated by the availability of knowledge of the physical degra g

. . et al.,, 2012). Since the UKF provides better accuracy for
dation phenomenon, or both knowledge of the degradatioq. ; . )
. . : ighly non-linear degradation trends compared with the EKF
equation and actual observations (see Figure 3).

(Daigle et al., 2012), in Figure 3 we have not added the EKF
approach. For non-linear systems without the Gaussian dis-
tribution assumptionParticl e Filtering approaches
have been widely implemented with accurate results. (Baigl
et al., 2012) showed in their case study that the accuracy and
computational cost of UKF outperforms Particle Filtering.

nHowever, if these conditions are not satisfied, there are
other alternatives for non-linear degradation trend asisly

Knowledge, Generally, model-based prognostics techniques are mere sp
Observations cific (and complex) than data-driven techniques (e.g., PoF

models). For simplicity, we have not further developed the
Physics of Bayesian flowchart in Figure 3 and we have included a discussion for
Failure Tracking asset-specific model-based approaches in Section 5.
Kalman 4.3. Hybrid Approaches
Filter

Hybrid prognostics approaches combine different tectesqu
to determine the RUL of the system under study. To this end,
orricle model-based and data-driven prognostic techniques ae int
Filter grated through (i) the fusion of their respective result§ipr
using as input the results of complementary prognostic-tech

Unscented
Kalman
Filter

Figure 3. Flowchart for model-based algorithm selection
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nigques. In this subsection we analyze the systematic desighe accuracy of the results, (e.g., see (Soualhi, RazikcCle
of combinations of model-based and data-driven techniques& Doan, 2014) for a combination of HMM with Adaptive

Influenced by the classification of hybrid approaches pre-Neuro Fuzzy Inference System (ANFIS)). Note that the ex-

sented in (Liao & Kottig, 2014), the flowchart for hybrid pert knowledge considered for prognostics applicatioimis

. : - .rﬁ)lemented in the form of Fuzzy logic and not as rule-based or
prognostic approaches focuses on the design decisionspoi . )
. . L ase-based systems used for diagnostics.
which produce automatic combinations of model-based and
data-driven approaches. From this analysis, alternatwve h If there is no expert knowledge, it is feasible to use one
brid configurations arise based on the stated requirements. DD approach as a parameter estimation technique in order

. . O _to implement another DD approach with more accuracy, i.e.,
Hybrid approaches combine Data-Driven (DD) and Model DDy (X) + DDy(y) (e.g., see (Z. Liu, Li, & Mu, 2012) for a

Based (MB) techniques in series and parallel configurations \ N
(Penha & Hines, 2002). Series combinations (denoted Witr(]:omplementary series combination of SVR and HMM).
the symbol ‘+') use the outcome of one approach to feed anFinally, if none of the above conditions are satisfactoty, i
other approach. Possible series combinations includa-intr is possible to fuse alternative DD approaches with the same
combinations (DD + DD) and inter-combinations (DD + MB, dataset (i.e.DD;( x) || DD:( x) , wherex is the available
MB + DD) of prognosis approaches. The first approach ordataset) to improve the accuracy of the RUL estimation (e.g.
the series operation complements the second approach whisee (Hu, Youn, Wang, & Yoon, 2012) for an ensemble of mul-
performs the prognostics evaluation. Parallel intra- awert  tiple algorithms combined with a weighted-sum formulajion

combinations (denoted with the symbaf’) fuse the out- Data-driven and model-based combinationemplement

comes of DD and MB approaches through fusion techniquegach other providing mechanisms to strengthen possible de-
such as (Goebel & Eklund, 2007): bagging and boosting b 9 9 P

fuzzy fusion, or statistics based fusion. As opposed fo thguenmes. If there exists expert knowledge, it is posstble

series configuration, the parallel operation is intercleant tombine data-driven, model-based, and expert knowledge in

without influencing the result, i.e., MB DD = DD || MB. asmgle_ prognostic approa(_:h (e_.g., use fuzzy lOQ'CtO IVpro
data-driven parameter estimation and accordingly, use the

These configurations determine the goal of the combinatioffuzzy + DD configuration to estimate input parameters of
of data-driven and model-based approaches: while series ap model-based algorithm). Surprisingly, we have not come
plications focus on parameter estimation (e.g., initiabpa  up with any example that uses this configuration.

eter estimation or measurement equation estimation)llelra
applications are aimed at improving the accuracy of the prog
nostics application.

If there is no expert knowledge, the typical goal for hybrid
prognostics approaches is the parameter estimation throug
complementary approaches. That is, a data-driven approach
When designing hybrid prognostics applications it is palssi  estimates input or initial parameters of a model-based ap-
to create them by (i) combining previously implemented dataproach PD + MB) and accordingly, improves the accuracy
driven or model-based approaches with other approaches; of the final RUL estimation of the PoF model (e.g., see
(i) implementing hybrid approaches upfront. If the result (Baraldi, Compare, Sauco, & Zio, 2013)).

from _the already |mplemen_ted data-driven (or_moc_ziel-basede)arallel combinations of MB and DD techniquéds(| DD)
algorithm (selected according to the flowchart in Figure 2 or, . : 7
focus on improving the accuracy of the RUL estimation

3) are L_msatlsfactory, it is possible to combine it _thh othe through fusion techniques (e.g., see (Baraldi, MangililaGo
data-driven or model-based approaches. As Figure 4 de- ; X
icts, this is the first decision point for hybrid prognostic ystad, & Zio, 2.014) for an ensemble of Kernel Regression
g ré)aches models fused with PoF models). To the best of our knowl-
PP ' edge, all the fusion configurations between MB and DD ap-
If the designer implements a data-driven approach, gets urproaches are done with different input information due ® th
satisfactory results, and if they do not have PoF knowleitige, dissimilar nature of model-based and data-driven tectasqu

is possible to creatgata-driven combination® improve the , . . .
) - .As for the configurations comprised nfodel-based combi-
accuracy of the results. If the designer has datasets with di’_ ™ . ! . :
) : nations datasets with different features or scenarios of the
ferent features or datasets of different scenarios of theesa : X . .
. o . same system could be combined to improve the final esti-
system, then parallel fusion combinations (i.BDy( x) || . ; -
O . . mation (i.e.,MB1(x) || MBi(y), wherex andy indicate
DDy (y) , wherex andy indicate differentinput datasets) may . ; . . o
: ; - . different input datasets). For instance, (Baraldi, Manéil
improve the system’s prediction accuracy (e.g., see (J. Liw,. . .
I . . i0, 2012) implement an ensemble of Kalman Filter mod-
Vitelli, Seraoui, & Zio, 2014) for an ensemble of SVR mod- : ; . _
els. The other possible configuration for model-based-intra

els). combinations is to add expert knowledge to model-based
Otherwise, if there is some form of expert knowledge it isprognostics predictions in order to manage uncertainties,(
possible to integrate it with the DD approach to improve
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from MB

data knowledge

Run
to Failure
Data

Data-Driven
Combinations

Yes No| Model-Based

Combinations

DD, (x) || DD,(x)

Figure 4. Flowchart for hybrid algorithm selection

see (Rodger, 2012) for Fuzzy multi-sensor data fusion withdischarge accelerates electrical tree growth in the itisnla
Kalman filtering). material, and electrical treeing is one of the main causes of

Series and parallel combinations of model-based appnsxacheelecmcaI breakdown in high voltage cables.

with the same input dataset are scarce due to the lack of cone the best of our knowledge, few attempts have been made
plementary properties between PoF techniques when combite characterize a prognostics model for cables using p&ysic
ing or fusing two different degradation equations of the sam of-failure equations. In one example, (Dodd, 2003) defined a
system. An example of series combination with the sameleterministic model for the growth of electrical tree sttues
dataset configuration (i.eMB;( x) + MB,(x)) is presented and (Nyanteh, Graber, Edrington, Srivastava, & Cartes1p01
in (Yoon & He, 2015) using UKF to estimate the state of theclassified different simulation models for partial disaar
degrading system, and Patrticle Filtering to estimate the.RU and electrical treeing including physics-based and sttaha

The flowchart for hybrid approaches provides a high-leveImOdEIS'
prognostic algorithm combination guide (cf. Figure 4). §hi (Aziz, Catterson, Judd, Rowland, & Bahadoorsingh, 2014)
is done deliberately because low-level decisions should bpursued the modeling of the electrical tree growth using a

adopted according to technique-specific details. Curve Fitting approach. Analyzing the design require-
ments for this application, we end up with the following set
5. APPLICATION OF THE METHODOLOGY of decisions according to the data-driven flowchart in Fégur

In this section we will evaluate the design of three progicest
applications in the field of power systems in order to show thetl)
applicability of the design decision framework. Namele th
following assets will be examined: cables, transformensd, a
circuit breakers. Finally, we will assess the applicapitif
the proposed model selection framework through the argalys

According to the design requirements, there is no need
to extract the PDF of the RUL estimation. However,
confidence bounds are necessary.

I(2) The dataset is not monotonie: = 0.71.

of different design requirements. (3) Theaimis to predictthe RUL at least 1 hour in advance,
i.e., long-term prediction.
5.1. Cable Prognostics (4) There is no information about the states of the system

transiting through the electrical tree growth process be-
fore reaching the electrical breakdown.

In total there are 25 run-to-failure data histories ikl

ing multiple variables.

There are different parameters which can indicate the-fault
to-failure progression of cables such as impedance changes
physical damage, or partial discharge. Particularly,iglart

10
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(6) There is no knowledge of reliability models. (2) The degradation of the transformer aging is not linear.
(7) No black-box approach: explicitly model the transfor- (3) There is no need to assume a Gaussian distribution for
mation from input variables into RUL. the state and noise.

Therefore, the data-driven flowchart suggests to implemenin (Catterson, 2014) a Gaussian distribution was assumed to
aCurve Fitting approach as was taken in (Aziz et al., deal with the lack knowledge of the real behavior. However,

2014). However, if the designer decides to implement aas more information is available, the Gaussian assumption
black-box approach, the only feasible technique would bes no longer needed. According to the approach adopted in
CPNN for uncertainty management. (Catterson, 2014) the model-based flowchart suggests the im

If the run-to-failure histories in the dataset were enough t plementation of #arti cl e Filtering model

consider case-based reasoning techniques, the data-driv

flowchart suggestsht ch nat ri x as an appropriate solu- 5.3. Circuit Breaker Prognostics

tion for prognosis of long-term multivariate systems. Circuit breakers do not have a clearly defined physics-
of-failure equation model. As pointed out recently in
5.2. Transformer Prognostics (Westerlund, Hilber, Lindquist, & Kraftnat, 2014) the atyil

(Abu-Elanien & Salama, 2010) presented a taxonomy fort0 predl_ct the aging (.)f cireuit b_reakers is not fully de\_/eddp
: . : o . Accordingly, data-driven techniques have been considered

transformer physical aging mechanisms divided into two . . ;

o o - . . circuit breaker prognostics.

groups: (i)transitive agingreflects the rapid aging of the

transformer due to abnormal conditions. Its possdadases There are failure precursor variables which indicate the

are: highly distorted loads with harmonics, high ambiemtte degradation of circuit breakers such asgSfensity, PT,

perature, and overloading. It can bssessedhrough the or arc timing. (Rudd et al., 2011) implementednear

measurement of the hot spot temperatureliiijansitive ag- Regr essi on in order to extract a prognostics model based

ing assumes that the insulating material can withstand the den Sk density data samples. These are the considered steps

signed stress. The only possible failgausds the insulation  according to the data-driven flowchart in Figure 2:

deterioration Assessmeiéechniques include: degree of poly-

merization, dissolved gas analysis, detection of furagioc (1) There is no need to extract the PDF of the RUL estima-

pounds, recovery voltage measurement, and measurement of tion. However, RUL confidence bounds are necessary.
retaining tensile strength. (2) The dataset is monotonigr = 0.81.

Different data-driven prognostics techniques have been pr

sented to estimate the remaining life of transformers, e.g.Therefore, we see that the flowchart effectively indicates t
(Zarei, Shasadeghi, & Ramezani, 2014) implemented afame approach as adopted in (Rudd et al., 2011). However,
ANFIS model to estimate the end of life of a transformerif we assume a more strict limit for the monotonic data as-
based on dissolved gas analysis data samples; (Trappey et &€ssment, e.gm > 0.9, the designer will evaluate different
2014) used linear regression and Weibull distribution t> es design decisions (cf. Figure 2):

mate the remaining life of the transformer based on furfural
concentration and combustible gases. (1) Thereis no need to extract the PDF of the RUL.

To the best of our knowledge, only (Catterson, 2014) imple{2) We have assumed that the data is non-monotonic.

mented a model-based prognostics application for tramsfor (3) The aim is to predict the RUL some days ahead (long-
ersusing @article Filteringapproachbased onthe term prediction) for repair purposes.
transformer’s paper aging model. A model for paper aging4) There is no information about the possible states of the
is given in IEEE standard C57.91 (IEEE Power and Energy ~ system transiting before the failure.
Society, 2011). The standard defines an aging acceleratio,
factor based on the hot spot temperature. Accordingly, th

implemented method estimates the RUL of the transformep derth toni tion. d di the final
through the degree of polymerization of the paper at its mos nderthe non-monotonic assumpton, depending on the ina

aged point. According to the model-based flowchart in FiguredeSIgn decisions itwould be feasible to implement the follo

: . ) ing prognostics models: (Wi bul | based prediction (no
3, the design requirements proceed as follows: covariance influence); (ilGur ve Fi t ti ng; or (i) CPNN.

) There are not enough run-to-failure data histories.

(1) The degradation equation is available, and the hot spo% . . :

. .4. Analysis of Changing Requirements
temperature can be calculated from available observa-
tions. Besides, the process is Markovian and thereforéfo demonstrate the applicability of the model selection
Bayesian tracking solutions are considered. framework, in this subsection we will change the design

11
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requirements of the analyzed applications and examine thgort tool, which builds semi-automatically prognosticsdno
techniques suggested by the different flowcharts accolsding els according to input requirements, engineering resayrce
and failure modes of interest. The design decision flowchart

Uncertainty: assume that the PDF of the RUL estimation _ . ) . :
) will benefit from meta-modeling techniques to reuse complex
is needed for all the analyzed assets. The transformer-appli . .

- knowledge through automated design decision tools.

cation in (Catterson, 2014) already meets the stated equir
ment. The cable application in (Aziz et al., 2014) and the cir
cuit breaker application in (Rudd et al., 2011) are rede=igN RerereENCES

according to the data-driven flowchart in Figure 2.
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