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ABSTRACT 

In recent years, the service business of the global turbo-

machinery industry has undergone important changes. Many 

of these changes have been motivated by an increased 

demand for dedicated and systematic approaches to process 

safety, reliability, asset integrity and the overall health of the 

system. This has strengthened the role of key performance 

indicators (KPIs) as a means of providing guidance for the 

system’s health state and improve risk management. In 

order to provide trustable and accurate calculations of these 

performance indicators in an automated fashion, we argue 

for a model-based solution that deals with the complexity of 

diverse configurations and interdependences between 

system components. This paper presents a solution for 

calculating KPIs by a semi-automated process based on 

post-data processing from the site and specific system 

models. The models consist of a combination of system 

descriptions in terms of ontologies and complex event 

processing models. By virtue of our models, state indicator 

rules for KPI calculations can be formulated at different 

levels, identifying performance gaps and indicating 

precisely where action should be taken by the service 

engineers. With the adopted solution, we discuss the 

practical implementation and present results of our success 

story at Siemens AG for the Industrial Gas Turbines. 

Finally, we provide an evaluation and future developments. 

1. INTRODUCTION 

In recent years, the turbo-machinery industry has provided a 

wide range of products and comprehensive services to their 

customers. The industry has evolved in terms of increasing 

product standardization and continues to adopted strategies 

to enhance their value-added services. As part of that 

industry, Siemens AG aims to expand their service business 

to mobilize the additional potential of sustainable growth. 

Keeping up with the technological advances, Siemens 

Corporate Technology (CT) and the turbo-machinery 

portfolio is laying the foundations for next-generation smart 

and efficient solutions in the energy sector. Their focus is to 

enable improved plant operations, lower maintenance costs, 

increased plant lifetime, safety, reliability, asset integrity, 

and mitigation of risks. In general, these objectives can be 

achieved by the adoption of appropriate monitoring, 

diagnosis and maintenance tools that support effective 

decision-making and customer service.  

KPI-based approaches are among the most practical and 

popular ways to describe the state and efficiency of the 

plant. Ceschini (2002) states that KPIs also provide 

guidance for monitoring, availability, maintenance and 

review of the system’s health and help to derive sound 

statistics directly from the operational data. Recently 

automated calculations for machine performance indices 

have been reported by Ding et al (2013) and Odgaard et al 

(2013) which significantly focus on developing engineering 

models of the machine components and drive results using 
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statistical methods. Whereas Márquez et al (2012) describes 

various state-of-the-art techniques including qualitative fault 

tree analysis for performance monitoring of established 

thermodynamic models. These reported techniques require 

greater engineering expertise to build a system model, is 

less transparent and lacks usability. Nevertheless, the 

application of KPIs for industrial turbines still has its 

challenges. Some of the prominent features that introduce 

substantial complexity to the computation of KPIs are as 

follows: 

1. Forsthoffer (2011) shows that industrial turbines may 

have many different sets of configurations and 

topologies depending on design and applications. For 

example, twin-shaft turbines versus single-shaft and 

applications for mechanical drive versus power 

generation. As an example Fig. 1 shows a sample list of 

various configurations occurring in the industry. 

 

Figure 1. Samples of different designs and  

applications of industrial gas turbines. 

2. In addition to the complexity of diverse plant 

descriptions, there is also another dimension of the 

“level” in the plant model. The plant model gives an 

overview of the main components of the plant in a 

hierarchical fashion and comprises many levels. Each 

level consists of number of individual components and 

supports level-specific information. Within one level, 

each component contains its physical parameters 

relevant to computations. Fig. 2 gives an overview of a 

generic plant model at site level, plant level, system 

level and so on.  

 

Figure 2. Hierarchical structure of a plant model.  

3. It is important to note that the interaction and 

dependences of components within one level as well as 

between levels may be quite complex and hence 

creating the model requires greater expertise. 

4. Available off-the-shelf statistical approaches as 

discussed by Ceschini (2002) and Márquez et al (2012) 

are based entirely on manual data gathering and manual 

assessment of scenarios for asset downtime. Such data 

is often contaminated by human factors and potentially 

by forced business incentives. Even today, service 

engineers still need to spend considerable time and 

effort calculating KPIs for a single site. 

Considering all the challenges described above in terms of 

complexity, diverse configurations, interdependences of the 

plant model and data acquisition, the key idea is to simplify 

the computation of KPIs in two steps. Firstly, rather than 

addressing the KPIs of a plant at each level of its hierarchy 

in isolation, we introduce dedicated level-oriented rules that 

re-use KPIs already computed on one level for the 

computation of related KPIs on another. Secondly, in order 

to avoid re-phrasing KPI computation rules for each of the 

numerous different turbine configurations, we introduce an 

abstraction layer hiding the different configurations and 

define our KPI computation rules against the abstraction 

layer rather than the actual machine configurations. The 

abstraction layer will be based on a domain ontology 

describing turbines, their components and functions. The 

level-based KPI computation rules mentioned above will 

equally make use of the ontology providing the abstraction 

layer but will be encoded as Complex Event Processing 

(CEP) rules. 

For a given specific plant the computation of actual KPIs 

does not utilize the abstract CEP rules expressed in terms of 

the ontology-based abstraction layer but rather depends on 

an instantiation step in which the abstract rule-base is 

instantiated for the specific plant and its  configuration. This 

instantiation step is based on mappings between the 

concrete plants and the abstraction layer. The key 

observation here is that maintaining these mappings for a 

variety of different plants and configurations is a small task 

in comparison to maintaining the entire rule base for each 

plant and configuration. The paper follows with Section 2 

describing the basic standards and KPI definitions used in 

the model for Industrial Turbines. Section 3 presents our 

case study and the proposed model-based solution 

architecture Section 4 introduces the basic concepts and 

application of ontology and complex event processing 

technology used for KPI computations. Section 5 presents 

results and serves for the evaluation and future 

developments. Finally, we conclude in Section 6. 

2. KEY PERFORMANCE INDICATOR STANDARDS 

Performance measurement is important to the management 

of industrial turbines. It identifies performance gaps 
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between the desired and actual state and provides 

indications of the progress to meet those gaps. While KPIs 

are common tools for the measurement of system 

performance, the choice and definition of specific KPIs for a 

given system is not trivial.  

For our KPI solution framework, we have revised and 

adopted definitions from the IEEE (2006) and ISO (1999) 

standards. Since we will rely on historic data in our 

computations, we introduce an additional parameter, 

“NoData”, that deals with possible data gaps. The following 

is a list of basic KPIs used in our solution.  

Period Hours (PH) – Time, in hours, in the period under 

consideration. 

No Data Hours (NoData) – Time, in hours, where not all 

required data is available, here we use the term PH* for 

Period hours excluding the no data hours. 

Available Hours (AH) – Time, in hours, during which the 

unit was capable of providing service, whether or not it was 

actually in-service, regardless of the capacity level that it 

can provide.  

Service Hours (SH) – Time, in hours, during which the unit 

was in-service, i.e., it is electrically connected to the system 

and performing generation function. For gas turbines, this 

covers from main flame ignition through to flame 

extinction.  

Reserve Shutdown/Service Hours (RSH) – Time, in 

hours, during which the unit was available, but not in 

service (Number of hours when the gas turbine is available 

but there is no demand). 

Unavailable Hours (UH) – Time, in hours, during which 

the unit was not capable of operation. The unavailable state 

persists until the unit is made available for operation, either 

by being synchronized to the system (in-service state) or by 

being placed in the reserve shutdown state. 

Planned Outage Hours (POH) – Time, in hours, during 

which the unit (or a major item of equipment) was originally 

scheduled for a planned outage with a pre-determined 

duration plus the extension of planned work beyond this 

pre-determined duration. Note that the extension due to 

either a condition discovered during a planned outage or a 

startup failure would result in a forced (unplanned) outage. 

Forced Outage Hours (FOH) – Time, in hours, during 

which the unit was unavailable due to a component failure 

or another condition that requires the unit to be removed 

from service immediately or before the next planned outage.  

Fig. 3 shows a hierarchical overview of these definitions 

that forms the basis of the solution framework. 

 

 
Figure 3. Overview of adopted KPI definitions 

 

Using the four KPIs defined above, we can compute the 

following factor KPIs: 

 

Availability Factor (AF) – Probability that the unit will be 

usable at a point in time based on past experience: 

 

AF = [AH / (PH*)] x 100% 

 

Unavailability Factor (UF) – Probability that the unit will 

be unusable at a point in time based on past experience: 

 

UF = [UH / (PH*)] x 100%  

 

Reliability Factor (RF) – Probability that the unit will not 

be in a forced outage condition based on past experience: 

 

RF = [(PH* – FOH) / (PH*)] x 100%  

 

Service Factor (SF) - Probability that the unit will be in an 

 

Figure 4. Use-case of an industrial plant model 
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operating condition based on the past experience: 

 

SF = [SH / (PH*)] x 100%  

 

Forced Outage Factor (FOF) – Probability that the unit 

will be in a forced outage condition based on past 

experience: 

 

FOF = [FOH / (PH*)] x 100% 

 

Mean Time Between Failures (MTBF) – Average time 

between failures initiating a forced outage based on the past 

experience. Here, FON is the number of forced outages: 

 

MTBF = SH / FON 

 

For simplicity, we also use N/A for indicating the case 

where the KPI value cannot be correctly computed, e.g.,  

PH == 0, PH == NoData or FON == 0. 

3. A NOVEL APPROACH FOR KPI WITH APPLICATION TO 

INDUSTRIAL GAS TURBINES 

The proposed approach has been applied to a fleet of 

Siemens industrial gas turbines located at different sites 

around the globe.  

3.1. Case Description 

At any given site, see Fig. 4, the plant system consist of two 

subsystems, namely drive train and balance of plant. Based 

on the configuration, each drive train subsystem comprises 

i) a driver package (for example, gas turbines or steam 

turbines), ii) driven equipment (for example, a compressor 

or pump), and iii) gearbox. Furthermore, within a driver 

package, a turbine component may consist of a gas 

generator, power turbine and auxiliary system. Each 

functional component includes physical parameters and 

threshold values, for example, speed, load, temperature etc. 

Each of this physical parameter needs to be configured. This 

configuration is a mapping of parameters to one or several 

sensors (for example, Two-out-of-three) and a setting 

threshold values. 

The following section describes the solution architecture. 

Details on the models used for our approach will be 

introduced in Sections 4 and 5.  

3.2. Solution Architecture 

Modeling a plant system is a critical step for constructing 

KPIs that accurately reflect the impact of actions taken to 

manage the plant. The proposed approach uses two well-

established paradigms from AI, namely ontology and 

complex event processing, to be discussed separately in the 

following sections. 

In Fig. 5 we present the overall solution architecture: a 

domain ontology is used to represent turbine configurations 

and the relationships between different physical components 

in the plant and their function and performance variables 

(such as speed, main flame, active power, etc.). The 

performance parameters describe the primary behavior of 

the plant at different levels. We store these configurations in 

a separate database (turbine configuration database) for easy 

access. In the next step, we model complex events and 

formulate abstract state indicators rules and update rules for 

each node. These rules are abstract in that they are defined 

w.r.t. the ontology-based vocabulary from the configuration 

database rather than data specific to any individual plant 

coming from the remote monitoring service database. 

In order to actually compute KPIs for a specific plant 

however, i.e., apply the rules, we instantiate the abstract set 

of CEP rules with the concrete plant information using a 

semantic mapping mechanism. Once the instantiation is 

completed, we proceed with the KPI computation 

procedure.  

 

Figure 5. KPI System Architecture 

The computation framework uses operational sensor data as 

well as event streams for its state evaluation. Because of the 

large amount of data, we use a data cache for storing and 

post-processing. 

4. ONTOLOGY 

As described above, our approach to KPI computation rests 

on an abstraction layer by means of which a comparatively 

small set of abstract rules can be instantiated to match a very 

large set of turbines and their various concrete 

configurations. At the core of this abstraction layer lies a 

domain ontology that represents basic knowledge about the 

compositional structure of plants, types of its components, 

and their function.  

Ontologies are logic-based knowledge representation (KR) 

formalisms that evolved from frame-systems, see Baader 

(2003). Chandrasekaran and others. (1999) characterize 

ontologies as “a formal, explicit specification of a shared 
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conceptualization”. They usually represent the core notions 

of a domain of discourse and the relations existing among 

them. A key advantage of ontologies over many other KR 

formalisms is their formally well-defined semantics. These 

enable so-called reasoners to derive implicit knowledge 

from the explicit ontology statements, detect redundancies 

and inconsistencies, and discover relationships that may not 

have been clear to the author of the ontology in the first 

place. Currently, the most commonly used ontology 

formalism is OWL
1
 and its sublanguages. 

Some additional characteristics of Ontology, which address 

the key challenges in the turbo-machinery domain, are as 

follows as stated by Ming and Jie (2002): 

 Ontologies clarify the structure of knowledge and 

devices for an effective KR system. 

 They separate factual knowledge about the domain 

from problem-solving knowledge. 

 They facilitate sharing and re-using knowledge as 

well as interoperability of information resources 

between humans and software agents. 

For the purpose of computing KPIs we have developed a 

domain ontology of turbines, their components and 

functions. Note that multiple kinds of relationships different 

from ‘is-a’ can easily be expressed in OWL. Fig. 6 

illustrates a basic example with Driver and Driven 

equipment as classes, Gas turbine as a subclass and SGT-

800 as an object, called ‘individual’ in OWL. Object 

properties, such as ‘provides power’ in the example, 

establish links between classes or individuals. The 

combination of object properties and subclass relationships 

now give rise to additional implicit relationships, for 

example: “If SGT-800 provides power” then this implies 

“Generator requires power”. A key advantage of OWL is 

that all implicit knowledge is fully automatically taken into 

account by the reasoner. Hence, redundancies and inherent 

contradictions are detected automatically, leading ultimately 

to smaller and more easily maintainable models. 

 

Figure 6. Ontology example to Turbines 

4.1. Domain Ontology Design 

Our domain ontology comprises several ontology modules 

of which the largest two are the following: 

                                                           
1
 www.w3.org/2004/OWL 

 Train Ontology: This describes the internal structure of 

the plant i.e. its components and sub-components. For 

example: Burner is a component of a combustor in a 

Gas Turbine. In addition to this, the ontology also 

specifies the functional purpose of each component. For 

example: Main flame is in hot gas path. The ontology is 

expressed in OWL 2 DL. 

 Sensor Ontology: This ontology lists the sensor 

information, its measured values, sensor type and its 

location. For example: GT speed sensor measures the 

shaft rotor speed of the turbine. It also accompanies the 

observational characteristics (such as measurement 

range etc.) and measurement characteristics (such as 

measurement unit etc.) of each sensor. Sensor ontology 

is also expressed in OWL 2 DL. 

In this way, we developed a comprehensive model of the 

domain by combining the above mentioned ontologies. Fig. 

7 depicts the consolidated ontology used for accessing data 

based solely on the domain model and use them in the rule 

based component as a knowledge-base. 

 

Figure 7. Train ontology design 

5. COMPLEX EVENT PROCESSING 

Complex Event Processing (CEP) is a paradigm of choice 

for many monitoring and reactive applications. It supports 

decentralized information sources by deploying tagging and 

sensing technology along with integration to real-world 

objects. CEP helps to build highly scalable and dynamic 

systems by decoupling the provider and receiver of the 

information and mediates in form of events. Temporal 

relations can also be specified by using correlation rules 

(often called Event Patterns) as mentioned by Robins 

(2010). CEP also benefits the scalability of the system by 

reducing the massive event load through stepwise 

correlation of events. 

In general, CEP is used to generate new set of complex 

events by aggregation and composition. Its processing 

promotes detection of a plant-significant situation, which 

typically involves a collection of evaluation conditions and 

constraints over an event set as founded by Wasserkrug, S., 

Gal, A., Etzion, O., & Turchin, Y. (2008).  Another 
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characteristic of CEP is event transformation, filtering, 

enrichment, pattern recognition, routing, validation etc. 

Figure 5. serves as an example of constructing new signal 

event processing rules for speed and load of turbines by 

using sensor data and events. 

 

Figure 8. Alarms for high speed and low load using CEP 

Rules 

 

For our solution, we have devised two set of abstract rules 

that are encoded as CEP rules to identify the state of a plant 

at different levels. The following sections briefly discuss the 

implementation and purpose of these rules. 

5.1. State Indicator Rules 

The state indicator rules define how a given state of a plant 

is acquired that is useful for our computation. These states 

are determined using physical parameters, such speed, load, 

temperature etc. Every plant has its own set of threshold 

values and specific events from the control system to 

indicate its performance. These features in our case study is 

encoded in the abstraction layer i.e. domain ontology. By 

using expert knowledge, here we formulate abstract set of 

state rules that can incorporate all configurations of turbines. 

The three important state indicators are; i) State of Service 

Hours (SH), ii) State of Outage Hours (OH), and iii) State of 

Start Attempt (SA) / Start Failure (SF) / Start Success (SS). 

 

Figure 9. State Indicator Rules 

In Figure 9, we have a KPI state machine with State 

indicator rules on edges, for example. a drive train can move 

from “start-success” state to “service hours” state if the rotor 

speed is greater than #value1 RPM and generator load is 

greater than #value2 MW. Here the tags value1and value2 

will be replaced upon instantiation. 

Figure 10 gives an overview of the states required for 

computation. For outage hours (OH), we can define more 

specifiers. For example: reserve shut down (RSH), forced 

outage (FOH), and planned outage (POH). For our 

implementation, we do not go into the details of the outage 

hours at the moment. Though the solution is flexible enough 

to identify these states based on the manual entries by the 

service engineers. 

 

Figure 10. Overview of State Specifiers 

5.2. Level Update Rules 

The level update rules are formulated to capture the state 

dependencies at one level of the plant to the other. For 

example, any entry of outage specifier interval on one 

system level will lead to the respective “updates” of the 

outage specifier intervals on the other system levels. One 

concrete case would be entering a forced outage interval in 

the gear box. This will lead to a forced outage interval in the 

drive train, but will be treated as a reserve shutdown interval 

in the driver package. 

This indicates that as soon as an outage specifier, e.g., RSH 

or FOH, is added to one component, we have to perform so-

called Level Update Rules. Figure 11 shows the update 

mechanism for a drive train at level 1 and gas turbine and 

generator at level 2. The rules can be:  

 If Drive Train is in reserve shutdown state, then 

gas turbine and generator at level 2 are updated to 

reserve shutdown state as well. 

 If Generator is in forced outage state, then driver 

train at level 1 is updated to the same state whereas 

the gas turbine at the same level is updated as 

reserve shutdown. 

 

Figure 11. Example of level update rules (Part I) 

Figure 12. gives an another view of the above mentioned 

example. This is a visualization of the state for every level 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

7 

and unit as identified by state CEP rules and its updated 

version as specified manually by the engineer.  

 

 

Figure 12. Example of level update rules (Part II) 

6. RESULTS 

The first set of results using our KPI application provide an 

availability and reliability comparisons between three 

design model of gas turbine by year. These indicators play 

an important role in decision making and put a real 

challenge when the system model is complex and involves 

large set of engineering rules. In comparison to the manual 

calculations, our results are more reliable and accurate 

because of the adoption of ontology based configurations 

and reusable rule production system. 

 

 

Figure 13. Availability and Reliability Comparison by 

turbine type and year 

Another visualization of results is with respect to a specific 

drive train and its respective units within the hierarchy. 

Most of the recent methodologies do not consider the 

component and system level setup. Whereas our approach 

facilitates the engineers and managers to look up for indices 

at any given hierarchy and package level. Another highlight 

is the use of sensor data and events together to detect the 

state of the machine. Therefore, our results are more 

accurate, reliable and justifiable than any other traditional 

approaches. 

 

Figure 14. KPIs per drive train and its units. 

 

Here we incorporate the high level performance indices at 

the train level where we specifically visualize for the 

unavailability, availability and no data states for a specific 

unit. Such kind of visualization is readily available at the 

dashboard for high level managers and is also helpful to 

detect malfunctions of the data collectors on site. 

 

 
Figure 15. KPI per unit 

 

Similarly, using our approach and generated KPI result 

database, we can provide different views based on site 

region or country, customer, driver, driven unit, etc. We 

claim that our approach is unique and fits best for 

calculating KPIs in different fashions and provides 

customized visualization of results that could be integrated 
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as a part of monitoring dashboard services. Fig. 16 shows 

another view of KPI results filtered for a service region.  

 
Figure 16. KPI results based on ServiceRegion 

7. CONCLUSION 

We demonstrated a KPI systems approach using an 

abstraction layer based on a domain ontology and complex 

event processing technology. This allows us to adopt our 

KPI computations for different turbine types, different 

control system types and incorporate additional information 

available from the external systems. We extended the 

standard definitions from IEEE and ISO to be used for our 

case-study. The solution makes use of the sensor data and 

events from the control system to identify turbine states and 

perform the computations. The solution also provides 

different visualization of the results. The presented 

architecture is distributed, extensible and scalable. The 

computations are automated and have minimum dependency 

on user-interaction. Hence, they provide reliable and 

trustable results for decision-making. By including the 

maintenance calendar, we can also automate the 

computation for the reserve shutdown and planned outage 

hours. Also the inclusion of events from the control system 

that specify for the internal and external outage would add 

value to the application. For the future, the KPI application 

can be integrated with the remote diagnostic solution 

framework to evaluate its potential.  

ACKNOWLEDGEMENT 

We would like to acknowledge Mr. Michal Skubacz for the 

support and encouragement. Their valuable feedback 

sessions were important in development of rule-base and 

software system. 

REFERENCES 

Ceschini, G. F., & Saccardi, D. (2002). Availability centered 

maintenance (ACM), an integrated approach. 

In Reliability and Maintainability Symposium, 2002. 

Proceedings. Annual (pp. 26-31). IEEE. 

Ding, S. X., Yin, S., Peng, K., Hao, H., & Shen, B. (2013). 

A novel scheme for key performance indicator 

prediction and diagnosis with application to an 

industrial hot strip mill. Industrial Informatics, IEEE 

Transactions on, 9(4), 2239-2247. 

Odgaard, P. F., Stoustrup, J., & Kinnaert, M. (2013). Fault-

tolerant control of wind turbines: A benchmark model. 

Control Systems Technology, IEEE Transactions on, 

21(4), 1168-1182. 

Márquez, F. P. G., Tobias, A. M., Pérez, J. M. P., & 

Papaelias, M. (2012). Condition monitoring of wind 

turbines: Techniques and methods. Renewable Energy, 

46, 169-178. 

Forsthoffer, W. E. (2011). Forsthoffer's Best Practice 

Handbook for Rotating Machinery. Elsevier. 

Ceschini, G. F., & Carlevaro, F. (2002, January). Gas 

turbine maintenance policy: a statistical methodology to 

prove interdependency between number of starts and 

running hours. In ASME Turbo Expo 2002: Power for 

Land, Sea, and Air (pp. 1137-1142). American Society 

of Mechanical Engineers. 

IEEE Standard Definitions for Use in Reporting Electric 

Generating Unit Reliability, Availability, and 

Productivity. IEEE Std 762™-2006. IEEE Power 

Engineering Soc. 

Gas turbines - Procurement - Part 9: Reliability, availability, 

maintainability and safety. BS ISO 3977-9:1999. 

British Standards. 

Baader, F, & Calvanese, D., & McGuinness, D., &. Nardi, 

D., & Patel-Schneider, P., (2003) The Description 

Logic Handbook. Cambridge University Press. 

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. 

(1999). What are ontologies, and why do we need 

them?. IEEE Intelligent systems, 14(1), 20-26. 

Ming, D. Z. T. S. Z., & Jie, Y. D. C. (2002). Overview of 

Ontology. Acta Scicentiarum Naturalum Universitis 

Pekinesis, 38(9), 728-730. 

Robins, D. (2010, February). Complex event processing. 

In Second International Workshop on Education 

Technology and Computer Science. Wuhan. 

Wasserkrug, S., Gal, A., Etzion, O., & Turchin, Y. (2008, 

July). Complex event processing over uncertain data. 

In Proceedings of the second international conference 

on Distributed event-based systems (pp. 253-264). 

ACM. 

Luckham, D. (2002). The power of events (Vol. 204). 

Reading: Addison-Wesley. 

 

 


