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ABSTRACT 

Hydraulic systems are widely used as power source for 
several different applications. Servovalves are critical 
components and often subjected to failures. Estimating 
degradations from these components requires dynamic 
analysis of their behavior and consequently advanced 
monitoring techniques. This article proposes an on line 
monitoring method to estimate a degradation parameter of 
the servovalve using an interactive multiple-model 
technique considering a bank of Extended Kalman Filters 
that models not only the valve itself but also the degradation 
trend. A single failure mode was considered related to the 
nozzle line clogging. The degradation estimates and the 
likelihood of the correctness of each model were analyzed in 
order to evaluate the proposed method. 

1. INTRODUCTION 

Hydraulic servovalve health monitoring have been 
addressed in several works, including (Samadani., Kwuimy 
& Nataraj, 2014), (Borello, Vedova, Jacazio & Sorli, 2009), 
(Mussi & Góes 2009) and (Sepasi 2005). Most failure 
modes from these components require dynamic analysis of 
its behavior and consequently advanced monitoring 
techniques. One commonly used method is the Kalman filter 
applied as parameter identification and examples of 
application include (Hajiyev & Caliskan, 2003) and (Sepasi 
2005). These applications consider an augmented state 
model including the variable of the model associated with 
the degradation. Eq. (1) and Eq. (2) give an example from 
(Hajiyev & Caliskan, 2003) where the parameter a  of the 
system is the desired value to be estimated. 

Linear system: 
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Augmented system:  
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This augmented state-space model considers the parameter 
a  constant and may not address properly its estimation if 
the system presents variations of a  specially when 
submitted to abrupt degradation variations and when quick 
decisions are required such as applications in 
reconfiguration systems. Alternatives include modeling the 
dynamic of the parameter being estimated and including it at 
the augmented state model. An example is given in (Keong, 
Lim & Mbab, 2014) where a Helicopter tail gearbox bearing 
is monitored considering three possible degradation 
dynamics: stationary trend, linear trend and polynomial 
trend. Figure 1 illustrates these dynamics. 

 

Figure 1: Degradation trends extracted from (Keong, Lim & 
Mbab, 2014) 
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Estimation of parameter a  may be useful when it is related 
to a degradation, for example a friction or orifice diameter 
in hydraulic line  whose variation may indicate clogging of 
the line. 

Each possible degradation dynamic model included at the 
augmented state model result in a different Kalman Filter 
(KF) and consequently an estimation of the degradation 
parameter as well as other state variables. The technique 
that combines different models using KF are called 
Switching Kalman Filter (SKF). The methods used in SKF 
applications include Autonomous Multiple Model (AMM), 
Generalized Pseudo-Bayesian of first-order (GPB1), 
Generalized Pseudo-Bayesian of second-order (GPB2), 
Interacting MM (IMM) among others. An implementation 
and comparison of several of these method is presented in 
(Pitre, 2004) with application in Target Tracking. From 
these examples, the most popular one is the IMM (Pitre, 
2004), whose main advantage is the lower computation cost 
(Chze & Inseok, 2008), but by using more complex “mixing 
techniques”, it is more difficult to analyze its results (Chze 
& Inseok, 2008). 

This paper proposes a method to monitor a hydraulic 
servovalve using an IMM algorithm combined with a bank 
of Extended Kalman Filter containing some augmented 
state-space models similar to Eq. (2), modeling not only the 
dynamics of the valve itself but also the dynamics of the 
degradation. 

2. HYDRAULIC SERVOVALVE MODEL 

This article considered a two stage servo valve as illustrated 
in Figure 2. 

 

Figure 2. Schematic of a two stage electro hydraulic 
servovalve with force feedback (Merrit, 1976). 

The first stage of the servo valve comprises the permanent 
magnet, pole piece, armature, flapper, nozzle, leaf type 

feedback spring and the spool. The equation relating the 
current input and the spool and flapper position is given by 
Eq. (3) (Merrit, 1976). 









++++=∆ v

f
f

f
at x

r

x
brKbr

r

x
sJiK )()(2

 
(3) 

in which: 

tK  is the torque constant of the torque motor; 

i∆  is the current input; 

aJ  is the inertia of armature; 

fx  is the flapper position; 

r  is the distance between center of armature and flapper; 
b  is the distance between flapper and spool; 

fK  is the spring constant feedback at free end; 

vx  is the spool position. 

The equation relating spool and flapper position is given by 
Eq. (4) (Merrit, 1976). 
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In which: 

qpK  is the flow gain of flapper valve; 

vA  is the area of spool; 

hpω  is the hydraulic natural frequency of pilot stage. 

hpδ  is the pilot stage damping ratio 

The parameters values used in this work are: 

malbsinKt /.025.0= ; 

inr 015.0= ; 

inb 0012.0= ; 
2026.0 inAv = ; 

sec./9.3 ininKqp = ; 

inlbsinK f /.93= . 

In order to simulate the time varying input current i∆ , a 
sinusoidal wave form was adopted. The system response for 
this input is given in Figure 3. 
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Figure 3: Model response to a sinusoidal input 
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3. BANK OF STATE-SPACE MODELS 

The first step to build the bank of filters is to obtain the state 
space model of the first stage servovalve equations given in 
last topic. To accomplish that, discrete time domain 
equations based on Eq. (3) and Eq.(4) and simplifications 
described previously are built using the Euler discretization 
method and then put in the state space model. Eq. (5) shows 
the resulting model. 
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in which: 

[ ]′= vvfk xxxx &
is the state vector; 

[ ]iuk ∆=  is the input; 

[ ]′= vfk xxz
 is the output; 
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; 
ts  is the sampling time; 
and 1−kw , kv are the process and measurement noise.  

In order to present the proposed method, the procedures are 
illustrated using three augmented models similar to those in 
(Chze & Inseok, 2014) associated to stationary trend, linear 
trend and second order polynomial trend of the degradation 
parameter. The degradation parameter chosen to be 
evaluated is the flow gain of the flapper valve (qpK ) and 

its decrease relates to clogging of the nozzle line. In order to 
estimate this parameter, some augmented state space system 
are considered. Notice that by putting the degradation 
parameter in the state vector, the model becomes non linear, 
since this parameter multiplies a state parameter (fx ) 

requiring the implementation of a modified version of the 
Kalman Filter. To accomplish that a bank of Extended 
Kalman Filter was implemented. The three augmented 
models are given in what follows: 
 
1) Stationary degradation (

1−
=

kqpkqp KK ): 

[ ]′= qpvvfkstat Kxxxx &
 

kkstat zz =  
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2) Linear degradation (
1−

=
kqpkqp KK && ): 

[ ]′= qpqpvvfklin KKxxxx &&
 

kklin zz =  
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3) Polynomial degradation (
1−

=
kqpkqp KK &&&& ): 

[ ]′= qpqpqpvvfkpol KKKxxxx &&&&
 

kkpol zz =
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The Jacobian matrices (required for the Extended Kalman 
Filter process) containing the partial derivatives of A are 
given below. 
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4. INTERACTIVE MULTIPLE-MODEL ALGORITHM 

The IMM algorithm (Blom & Bar-Shalom, 1988) 
reinitializes each model with a weighted sum of the updated 
estimates from every model based on probabilities 
estimations of each model. This process is called merging 
and it reduces its computational complexity to M where M 
is the number of models used in the algorithm, which in this 
case is 3. An illustration of the IMM model switching 
process is described in Figure 4. The interaction between the 
models depends on the switching probabilities and the 
likelihood of each of the model. The IMM result is a 
combined state vector that is the sum of the state vectors for 
each of the modes weighted by their model probabilities. 

 

Figure 4: IMM model switching process (Farmer, Hsu & 
Jain, 2002). 

The estimation of each switching probability and model 
likelihood is described below where a single cycle of the 
IMM algorithm is given (Eq.(6) to Eq.(14)). It consists of 4 
steps: reinitialization where mixing estimates and variances 
are estimated for each model; the filtering process itself also 
for each model and considering the mixed estimates; 
probabilities and likelihood updates and finally estimate 
fusion resulting in a single state estimation. 

1) Model-conditioned reinitialization (for Mi ...2,1= ): 

1a. Predicted mode probability: 
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1c. Mixing estimate:  
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1d. Mixing covariance: 
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2)Model-conditioned filtering (for Mi ...2,1= ): 
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i
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3)Mode probability update: 

3a. Model likelihood:  
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3b. Model probability  
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4)Estimate fusion: 

4a. Overall estimate:  

i
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4b. Overall covariance:  
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in which: 

jiπ
is the model transition probability; 

kµ  is the probability of each model; 

kL is the likelihood of each model; 

M is the number of models, which in this case is 3. 

A summary of the IMM algorithm is illustrated in Figure 5. 

 

Figure 5: IMM process 

Eq. (10) represents the Extended Kalman filter detailed by 
the following process: 

1) Time Update: 

kkaugkaugkaugkaug uBxAx +=
−

−
1

ˆˆ  (15) 

kaugkaugkaugkaugkaug QdAPdAP +=
−

− '
1

 (16) 

2) Measurement Update: 

kaugkaugkaug
kaugkaug RHPHS += − '

 
(17) 
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( )kaug
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(19) 

( ) kaug
kaugkaugkaug PHKIP −−=

 
(20) 

in which: 

kaugK
 is the Kalman gain; 

kaugP
 is the covariance matrix of the state estimates. 

As an example, the estimations of the EKF states with 
stationary trend of the degradation parameter and the same 
sinusoidal input current in Figure 3 is given in Figure 6. 

0 200 400 600 800
-5

0

5x 10
-4 xf

xf
(i

n)

 

 

Simulated
Estimated

0 200 400 600 800
-0.04

-0.02

0

0.02
xv

xv
(i

n)

 

 

Simulated
Estimated

0 200 400 600 800
-2

0

2
current

Time(10ms)

cu
rr

(A
)

0 500 1000
2

3

4

5
Kqp Estimation

Time

K
qp

 

 

Simulated
Estimated

 

Figure 6: EKF estimations 

5. RESULTS 

In order to evaluate the IMM method, four degradation 
trends were evaluated, a stationary one, a linear one, a 
polynomial one and another containing a combination of the 
three last ones. Figure 7 shows these input trends.  
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Figure 7: Degradation trends 

All these trends were combined with the same sinusoidal 
current input from Figure 3 and submitted to all three filters 
(stationary, linear and polynomial) described previously 
using the conventional EKF as well as the IMM described in 
last topic. For all simulations the IMM transition probability 
matrix used is: 
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The degradation parameter estimations are given in Figure 
8, Figure 9 and Figure 10. 
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Figure 8: Estimations for linear degradation 
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 Figure 9: Estimations for polynomial degradation 
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 Figure 10: Estimations for combined degradation trends 

It is possible to see from these results how lower order 
models could not estimate properly degradations submitted 
to higher order variations (i.e. red dashed line). 

The probability of each trend estimated in the IMM method 
are given in Figure 11, Figure 12, Figure 13 and Figure 14. 
As mentioned before these probabilities are used in the 
IMM fusion step in Eq. (13) and Eq. (14) as weighting 
factors to estimate the resulting states from all three models 
estimations. 
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Figure11: Probabilities for stationary degradation simulation 
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Figure 12: Probabilities for linear degradation simulation 
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 Figure 13: Probabilities for polynomial degradation 
simulation 
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simulation 

Figure 11 (stationary simulation) shows as expected a 
predominance of the stationary model probability for 
stationary simulation. Figure 12 (linear degradation 
simulation) shows a predominance of the linear model, 
although during some small intervals the stationary model 
had higher probability. Figure 13 (2nd order degradation 
simulation) could predict correctly the increased probability 
in only some intervals at the 2nd half of the simulation. 
Figure 14 (combined trend) could predict correctly the 
stationary trend (higher probability for the initial interval) 
but could not distinguish properly between linear and 
polynomial trend for the 2nd half of the simulation. From all 
these results it is possible to observe that higher the order of 
the degradation trend, more difficult is to distinguish 
between them. 

In order to compare the precision of all filters from all 
degradation trends, the mean square error (MSE) between 
the simulated degradation parameter and its estimation from 
all simulation frame were estimated. Table 1 shows the 
results, where each row contain the filtering model 
(stationary, linear, polynomial and the IMM respectively) 
and each column the simulation performed (stationary, 
linear, polynomial and the combination trend as in Figure 
6). 

 

As expected, the MSE corresponding to the stationary trend 
was lower for the stationary model, the MSE of the linear 
trend for the linear model and the MSE of the polynomial 
trend for the polynomial model. For the combined trend, the 
IMM had the lowest MSE proving its effectiveness to deal 
with multiple evolutionary degradation trends. Also it 
performed well for the other non-combined trends. 

6. CONCLUSIONS 

The present work showed an application of an Interactive 
Multiple Model for on-line degradation estimation of a 
single failure (nozzle clogging) of the first stage of a two 
stage flapper nozzle hydraulic servovalve. To accomplish 
that, three augmented states models were built from the 
valve model considering stationary, linear and polynomial 
trend of the degradation parameter. After building these 
models the IMM could be implemented. 

The evaluation of the IMM was done considering four 
different degradation trends: stationary, linear, polynomial 
and combination of all previous ones. Together with the 
IMM, conventional EKF was applied to all simulations 
considering all three models. Results showed that the IMM 
had a better estimation for the combination trend while the 
stationary model for the stationary trend, linear model for 
the linear trend and the polynomial model for polynomial 
trend. 

It is possible to conclude from this work that the IMM 
algorithm successfully estimated degradations from the 
servovalve model relating correctly the probabilities of each 
model, specially when dealing to a combination of different 
degradation trends. 

The main benefit of using the method proposed in this paper 
is the possibility to have an on line health monitoring of the 
component with fast response to degradation variations. 
Applications may include systems that requires quick 
decisions for fast degradation evolutions such as 
reconfiguration systems for transmission lines power grids, 
flight controls reconfiguration systems and launch vehicle 
abort trigger. 

Improvements in this work includes investigating this 
method with different components (i.e. actuators) as well as 
other failure modes, also evaluating other multiple models 
algorithms such as the Generalized Pseudo-Bayesian of 
second-order (GPB2) and applications using field data. 

Table 1. MSE summary. 
 Simulation 

 Stationary Linear Polynomial Combined 

Stationary 0.0568 0.3865 0.4674 0.4498 

Linear 0.1011 0.0895 0.1014 0.1426 

Polynomial 0.1816 0.1602 0.0806 0.1832 M
od

el
 

IMM 0.0643 0.0939 0.0929 0.0835 
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