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ABSTRACT

The data acquisition of run to failure data by means of de-
grading components is one of the most delicate tasks in eval-
uating new diagnostic and prognostic approaches, since it is
cost-intensive and time-consuming. Therefore, a test rig for
a cost-efficient generation of artificial bearing damages is de-
scribed below. The test rig is thereby based on an ordinary
asynchronous motor.
This paper mainly concentrates on the description of the test
rig’s setup and first diagnostic findings. One aim of the exper-
iments is the investigation of several variations of the applied
loads for the artificially accelerated bearing aging. Thus, ra-
dial force and fluting are examined. The latter causes a dam-
age triggered by a current flow through the test bearing. Both
load types reduce the overall lifespan of bearings to about few
weeks.
The generated faults are a broken cage and chattermarks due
to a radial force higher than the design point. The bearings
are diagnosed by means of frequency analysis of the phase
current signal, which is produced in the stator of the motor.
Beside the current signal, also temperature, vibration and rev-
olution of the shaft are measured, whereas the vibration sig-
nal is used only for the comparison to the current signal. The
comprehensive measurement concept allows a performance
evaluation of diagnostic and prognostic algorithms based on
different physical indicators.
It can be shown that especially the current frequency spec-
trum of a faulty bearing differs significantly from a healthy
one. In order to face the high amount of measurement data,
the Principal Component Analysis is used for data reduction
to generate features for the diagnosis and prognosis. Thus, a
classification of different fault modes and loading conditions
is possible.
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terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Figure 1. CAD sketch of the test rig

1. INTRODUCTION

In recent researches three different approaches for the diag-
nosis of bearing faults are widely used for the validation of
diagnosis methods. They can be classified as offline faults,
when the tested bearings are removed from their in situ po-
sition, and online faults, which are generated by means of
measures for the accelerated bearing aging.
The authors in (Blödt, Granjon, Raison, & Rostaing, 2008)
describe the usage of bearings, which are issued from indus-
trial maintenance, for the verification of their bearing fault
modeling. Others like in (Bellini, Immovilli, Rubini, & Tas-
soni, 2008) examine new bearings which are artificially dam-
aged. They introduce a mechanical load of 40 kN to simulate
brinelling and roughen the surface of the outer ring to pro-
duce a single defect on the raceway. Another methode is also
the drilling of holes into the raceways of the bearings, which
is used in the approach of (Blödt et al., 2008).
In (Stack, Habetler, & Harley, 2005) the problems of both of-
fline approaches are discussed. They state, since the changes
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to the probed machine during the removal and mounting of
the bearings lead to differing test conditions, the experimental
data is corrupted. Thus, to avoid these problems the third ap-
proach is to produce an artificially accelerated bearing dam-
age by the application of loads which are higher than the ap-
proved design point of the bearing. In (Janjarasjitt, Ocak, &
Loparo, 2008) it is described that bearing failure can be gen-
erated by a combination of axial load (about 154 kg) and a
high operating temperature (about 260F). The overall lifes-
pan of new bearings are thereby reduced to approximately
one month.
Another approach to generate online bearing failures is the
application of a current, which flows directly through the test
bearing. This method is called fluting and the phenomenon
is rarely discovered. The authors in (Boyanton & Hodges,
2002) discuss their observations concerning fluting in case of
paper machines. Here, the control unit of the paper machines
created a potential on the shaft, which led to electrical dis-
charge machining (EDM) in the bearing. Beside the existence
of a potential, whereat about 3 or 4V are enough to produce
first spark erosions, the appearance of fluting also depends
on the lubrication’s state, since the oil film around the rolling
elements has an insulating effect. When the oil film is thin
enough (for example in areas of high load) first spark ero-
sions arise, which generate small pits burned into the races.
Beside the decision between online or offline bearing faults
also the selected load influences the diagnostic methods. In
addition to the aforementioned fluting, many authors like in
(Kim & Parlos, 2002) or in (Raison, Rostaing, Butscher, &
Maroni, 2002) concentrate on an applied moment. Mostly,
this load is generated by a second electric motor with
adjustable torque and speed. Only few authors like in
(McFadden & Smith, 1985) choose radial force for online
bearing faults, although it is a realistic and common load of a
bearing.
The implementation and evaluation of diagnostic and prog-
nostic algorithms demand signal processing and data reduc-
tion techniques. (Jardine, Lin, & Banjevic, 2006) suggest dif-
ferent signal processing methods aiming at the extraction of
features from the signal, which cover vital information about
the motor. The authors distinguish between time domain, fre-
quency domain and time-frequency signal processing meth-
ods. Each obtained feature can be sensitive to different fault
mode.
One main problem of using multiple feature extraction meth-
ods is the resulting high amount of data, which is hard to deal
with in case of fault diagnostics (Aye, Heyns, & Thiart, 2014).
Thus, the need of data reduction methods arises. One way
to identify pattern and transform the data into fewer princi-
pal components is the Principal Component Analysis (PCA).
The method is widely used with a broad application field like
face recognition and data compression, but also for fault de-
tection and classification. For instance (Chirico, Kolodziej, &
Hall, 2012) use the PCA for detection and isolation of electro-

mechanical actuator faults and (Malhi & Gao, 2004) for a fea-
ture selection scheme for a bearing test bed.
The test bench described in the next section provides the ap-
plication of the two loads for the generation of online bear-
ing faults: Fluting and radial force. After the explanation of
the test bed setup, the data reduction and processing part is
shortly introduced in section 3. First experimental results of
the radial force and fluting concerning the frequency spec-
trum and the PCA are presented in sections 4 and 5, respec-
tively. The paper ends with a conclusion and a short outlook
on upcoming steps.

2. TEST BED SETUP

One main topic of this paper is the description of the test
bench, which is used for the generation of run to failure data
of bearings. Therefore, the platform with its mechanical parts
and the components for the different types of applied loads
are presented in the first part. The measurement concept for
the data acquisition with the plugged sensors is explained af-
terwards and the last subsection will be a compilation of the
different types of test bearings.

2.1. Mechanical parts and types of applied load

Asynchroneous motor 
Force 

application

Bearing for radial force

Shaft coupling

Test bearing

Hybrid bearing

Figure 2. Cross section of the test bench

A cross section of the CAD sketch in Figure 1 is presented in
Figure 2. Core piece of the test bench is a simple three-phase
a.c. motor of type 80S/2 of the manufacturer Emod Motoren.
The standard power of this motor is 0.75 kW at a line to line
voltage of 115V. The supply frequency is fs = 50Hz, it has
two terminal pairs and for most of the experiments a slip of
s · fs ≈ 0.3Hz. The motor is depicted on the left of Fig-
ure 2. The power supply is provided by three type 1001SL of
the manufacturer Elgar, which enable a variable supply fre-
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quency and voltage.
One main change in comparison to the delivery status of the
motor is the displacement of the loose bearing (which is also
the test bearing) out of the casing into a separate bearing
bracket (see right side of Figure 2) for a more time-efficient
disassembly. Therefore, the motor shaft is extended by a sec-
ond shaft, whereat both are connected by a stiff coupling.
This ensures that vibrations of the test bearing are directly
transmitted to the motor shaft and, thus, are detected by the
analysis of the stator current.
Three different types of load are chosen for an artificially ac-
celerated bearing aging: Radial force, fluting of the test bear-
ing and the contamination of the lubrication. The radial force
is introduced by a ball joint bearing, which ensures a free
angular movement of the shafts. By turning the crank lever
(see Figure 1) in combination with a threaded rod and a bear-
ing sleeve, the joint ball bearing is deflected. A spring in
the force flow ensures a linear increase of the applied force,
which is proportional to the number of revolutions (each revo-
lution corresponds to 140N). The maximum force that can be
provided is 3320N until the spring runs onto block. Since the
distance between test bearing and joint ball bearing is small
(≈ 32mm), the effective load of the test bearing is approxi-
mately 3 kN.

Figure 3. Carbon brush for fluting

Another change to the motor is caused by the application of
fluting. As a current is supposed to flow through the test bear-
ing, the motor shaft has to be insulated. Thus, the original
fixed bearing of the motor is exchanged by a hybrid bearing
to circumvent a current flow through the motor casing. Also
the ball joint bearing is in an insulated hull to prevent a flow
through this bearing instead of the tested one. As depicted in
Figure 3 the current is introduced by a carbon brush, which is
pressed on the shaft near the test bearing. To imitate the influ-
ences of high frequency switching motor drives, the current
is rotary with a supply frequency of 50Hz and a voltage of

up to 9V. A DSPACE system provides the signal for the volt-
age, whereat it is amplified by an op-amp (OPA541 by Burr-
Brown). The op-amp and the voltage is designed to generate a
resulting current through the bearing with a maximum ampli-
tude of about 3A; a cutout of this signal is plotted in Figure 4.
It can be seen that the current shows a hysteresis behavior es-
pecially in the voltage area near null. It is assumed that this
behavior is caused by the lubrication which varies the over-
all resistance between the outer and inner ring. Especially in
areas of low voltage, the lubrication increases the overall re-
sistance so that the current flow is blocked. Finally, the circuit
is closed by connecting the bearing bracket first with a load
resistor which prevents a real short-circuit. The load resistor
is then connected to the ground of the motor.
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Figure 4. Current through test bearing

On the basis of this test bed the generation of run to failure
data in a time duration of few days until several weeks with
respect to the applied amount and type of load is possible.

2.2. Data acquisition

The data acquisition system is based on a DSPACE 1103 con-
troller board and a comprehensive sensor suite, which is listed
in Table 1. The phase currents of the motor are measured by
three closed loop sensors. Another current sensor determines
the applied load of the test bearing during a fluting experi-
ment by recording the output of the op-amp.
In order to compare and especially assess the performance
of current based diagnostic methods, an accelerometer is
mounted on the bearing bracket next to the test bearing in ra-
dial direction. The vibration and current signals are sampled
with a frequency of 25 kHz, before the signals are filtered by
means of a 10 kHz low-pass filter. The ambient and bearing
temperature as well as the rotation speed of the shaft are cap-
tured once per second. The recording of measurement data is
performed every two minutes and lasts 10 seconds.
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Table 1. Sensor suite of the test rig

Sensor Type Qty Measurement

Current
sensor

LEM LA
25-NP

3 Motor phase

Current
sensor

LEM LA
25-NP

1 Fluting
current

Accelerometer Kistler 8702 1 Radial
vibration

Temperature
sensor

National
Semiconduc-
tor LM35

2 Bearing
and ambient
temperature

Position
sensor

Honeywell
SS495A1

1 Shaft rotation

2.3. Examined bearing types

The test bearing in the bearing bracket is mounted in a hull
which can be exchanged. Depending on the diameter D, dif-
ferent types of bearings can be examined. Other differenti-
ating factors are manufacturer, rolling element, dynamic and
static load C and C0, the designation and the price per bear-
ing (exclusive VAT). A small listing of the employed bearings
is given in Table 2.

Table 2. Listing of the examined bearings

OEM D

[mm]
Rolling
element

C/C0

[kN]
Type
No.

Price
[C]

SKF 32 Balls 4.03/ 61804 8,73
2.32

SKF 42 Balls 7.28/ 16004 5,81
4.05

ISB 32 Balls 3.95/ 61804 2,46
2.30

ISB 42 Balls 7.14/ 16004 2,35
4.00

ISB 47 Cylinder 25.00/ NU204 8,30
22.00

3. DATA PROCESSING AND REDUCTION METHOD

For the evaluation and interpretation of the measured current
data a signal processing and reduction method is applied. The
applied approach is based on the current signal of one mo-
tor phase. The performance of the motor diagnostic depends
highly on the extraction of an appropriate feature set. In order
to make sure that important information of the motor condi-
tion is covered a comprehensive set of features is prepared,
which is discussed in section 3.1. As a result each measure-
ment record is transformed into a high dimensional feature
vector.
Though the resulting feature vector includes much vital in-

formation of the motor, a drawback is that the generated high
dimensional vector is not suitable for many data driven diag-
nostic methods. Hence, the principal component technique
is executed in order to map the condition information of the
motor in a fewer dimensional vector. Section 3.2 gives a short
introduction of this method.

3.1. Signal processing

Given the total amount of N measurements, which are ob-
tained from one experiment, each record n is transferred to
a feature vector. The resulting vector is defined as fn =
(fn1, fn2, fni, ..., fnI), where fni is the ith feature of over-
all I characteristic values. In our case all in all 46 features
are generated and summarized in the vector. The condition of
the motor is described by means of a set of statistical time do-
main and frequency domain values. The features were taken
from the reference (Delgado, Garcia, & Ortega, 2011), where
a detailed explanation and the equations of the features can
be found.
The statistical information of the temporal signal is deter-
mined by six features: Root mean square, peak to peak, stan-
dard deviation, crest factor, skewness and kurtosis.
For the frequency domain features the amplitudes of each
record’s Power Spectral Density (PSD) up to a frequency
of 400Hz is investigated. Higher frequencies are neglected,
since fault phenomenons, e.g. characteristic bearing fault fre-
quencies, are expected below this limit (see section 4.1). The
relevant frequency range is divided into ten equal bands. The
amplitudes within each band are the basis for the calculation
of four features: Mean value of the band, standard deviation
of the band, skewness and kurtosis of the band. Alltogether
40 features are obtained from the frequency domain.
Finally, all vectors fn of an experiment are combined into a
N × I feature matrix F. Since the PCA is very sensitive to
outlines, a moving average filter is applied, which smoothes
the trend of each feature value over the time.

3.2. Principal Component Analysis

The PCA is a widely accepted technique for data compres-
sion and feature extraction. A detailed description of the
method including the mathematical equations can be found
in (Jolliffe, 2002) or (Alpaydin, 2014).
In general, the PCA is used to transform the feature matrix
F in a new N × J matrix G. One aim of the method is that
J < I is valid without much loss of information. For this
purpose correlated variables of the data set F are combined
by the PCA into a set of linearly uncorrelated variables. The
PCA identifies the so-called principal components of the fea-
ture matrix, which emphasize variation and patterns in the
data set. Each feature vector fn is mapped to a new vector
gn = (gn1, gn2, gnj , ..., gnJ), where gnj is the jth of a total
of J principal components. The transformation is done by the
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following equation:

gnj = ej1fn1 + ej2fn2 + ej3fn3 + ...+ eJIfnI (1)

The coefficients eji are eigenvector components, which are
obtained from the covariance matrix of the feature matrix
F. Performing the transformation for j = 1...J by using
equation 1 gives the principal components in order of sig-
nificance (highest to lowest). In other words, the first com-
ponent (j = 1) describes the most variance of the training
data set, whereas the second component explains the second
most variance, and so forth. Hence, the former components
give the most insight into a change of the motor condition.
On the other hand, discarding the last components in order to
reduce the dimension is possible, since the loss of informa-
tion is insignificant. However, the rate of reduction depends
on the data set F and the level of variance, which is covered
from the remaining components, see section 4.2.

4. EXPERIMENTAL RESULTS WITH RADIAL FORCE

The application of radial force as a load of the tested bear-
ing provides several experimental possibilities, which will be
discussed in this section. Most of the trials focus on the gen-
eration of run to failure data by means of a variable applied
force. The data set which is the basis for the investigations
in this section has e.g. five different load states: first state is
nearly with no force at the beginning of the trial (corresponds
to 16 revolutions of the crank lever; at this point, the spring
is still unstressed). The second state is an increased load of
about 1680N or 28 revolutions. In case of the third, forth and
fifth state the crank lever is turned once at each time (every
revolution introduces an increase of 140N) so that the fifth
state corresponds to a load of 2100N and 31 revolutions, re-
spectively.
The results in the next sections are based on the analysis of
the stator current signal and its variations due to the radial
load only. The mechanism behind these variations can be ex-
plained as follows: an increase in the load of the shaft results
in a higher displacement of the shaft’s rotation axis. Thus,
a varying load also leads to a changing air gap in the asyn-
chronous motor which can be detected in the stator current.
The influences of this varying radial force concerning the
PSD and the resulting damage cases are presented in a first
part. Afterwards, the data reduction to distinguish the single
load states by means of the PCA is shown.

4.1. Influences and damage cases

In Figure 5 the PSD spectrum of the current signal during
two load changes is depicted over about 1200 measurement
cycles, whereat one cycle corresponds to 2min. For the re-
duction of noise, the PSD values over the time are low-pass
filtered. The first load change is in cycle 420 from about
1680N to 1820N (corresponds to one revolution) and the sec-
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Figure 5. Different levels of load at characteristic frequen-
cies in the PSD spectrum of the stator current (dashed black
vertical lines mark the changes in load).

ond change is another turn in cycle 1180 to about 1960N. The
corresponding deflection of the shaft inside the motor is about
0.13 mm (about 0.067mm/kN). Although the differences in
the deflections are small, they can be detected in the PSD
spectrum by comparing the amplitudes of frequency 155Hz
(≡ 1680N), 162Hz (≡ 1820N) and 191Hz (≡ 1960N) over
the time. Although these frequencies result from a graphical
investigation only, it can be seen in Figure 5 that e.g. the am-
plitudes of frequency 162Hz and 191Hz in the left part of the
plot are comparatively small in contrast to those of frequency
155Hz and vice versa. Thus, the amount of load can be spot-
ted by means of the stator current signal.
The cases of damage which are produced by a radial force
higher than the approved load are mainly broken cages and
chattermarks, which are located in the upper half of the outer
ring (area of highest load). The corresponding characteristic
fault frequencies in the outer raceway, which are presented
e.g. in (Blödt et al., 2008), could not be varified during our
experiments, since there were no changes in comparison to a
healthy bearing.
Although the diagnosis of faulty bearings are in the focus of
the investigations, also the failure of the shaft can be detected
by analyzing the stator current. One consequence of the high
radial load is also a high stress in the shaft which led to a
crack in the feather key groove during one of the experiments.
Since this fault was not recognized, the crack grew over sev-
eral hours, which is depicted by means of the PSD spectrum
in Figure 6. The exponential behavior of the amplitudes is
clearly visible which is characteristic for a crack growth con-
cerning assumptions like the Paris law. However, it must be
mentioned that the data base for a certain statement about the
cause of damage is too small so that the depicted rise of the
amplitudes can also refer to a bearing fault.
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Figure 6. PSD values of the stator current at a frequency of
212Hz over the last cycles before the shaft breaks down

4.2. Determination of load conditions using PCA

In this section the focus is on the distinction between the
load conditions applying the data processing and reduction
method, described in section 3. Therefore 100 records of
the current signal for each five load conditions are used to
generate a 46× 500 feature matrix F. By means of the reduc-
tion method the feature matrix is transformed into a 3 × 500
matrix G. The remaining components cover about 94 percent
of the variance of the original data set. This means, instead of
46 features only the first three principal components are used
for the load determination. The data of the resulting matrix is
illustrated in Figure 7.
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Figure 7. The first three principal components of the data set
using five different radial forces as a load of the tested bearing

It is evident that the resulting data is clustered according to
the load conditions. Thus, investigating the first three princi-
pal components of the data makes an easy distinction possi-
ble.
In a next step the reduced feature matrix G and the corre-
sponding eigenvectors could be used as training data for a
data driven classification of different load conditions. Thus,
this trained classifier could distinguish between different load
levels in case of new test data.

5. EXPERIMENTAL RESULTS WITH FLUTING

The influences of fluting on the degradation of a bearing is
rarely discovered as mentioned in section 1. Especially a con-
venient magnitude of the applied current through the bearing
is hardly discussed or the recommended values vary in recent
researches.
Similarly to section 4 the influences of fluting on the fre-
quency spectrum of the current signal and the generated cases
of damage are presented first. An approach for the extraction
of a health indicator representing the current state of the bear-
ing by means of the PCA is described afterwards. Since the
application of fluting in this test bench is new, only three run
to failure data sets are available for the comparison.

5.1. Influences and damage cases

One of the main challenges for the application of fluting is
to provide a voltage so that a current flow through the bear-
ing is possible. This aim is complicated, since the resistance
between the outer and the inner ring of the bearing varies
strongly, as discussed in section 2.1. Especially at the be-
ginning of a new run to failure test this phenomenon can lead
to a delayed start of the current flow, since the lubrication of a
new bearing insulated the rolling elements from the outer and
inner ring. Consequently, the current is too small for the exis-
tence of EDM. After a certain period of time (between hours
and approximately one day) it is assumed that the thickness
of lubrication decreases so that EDM is possible and the cur-
rent begins to flow through the test bearing.
The beginning of a new test is depicted in Figure 8. Beside
the measured bearing current given as the effective value also
the PSD values at a frequency of 28Hz is plotted, since the
beginning of the current flow is also visible in the frequency
range of the stator current in measure cycle 40. One expla-
nation for this might be that a first EDM produces a pitting
in the outer or inner ring of the bearing which leads to a dis-
placement of the shaft’s rotation axis. Thus, this movement
of the shaft can be detected by the analysis of the stator cur-
rent signal. Another reason could be that a small current flow
through the shaft and the hybrid bearing directly corrupts the
stator current.
The PSD spectra of three different instants of time during a
life cycle of a bearing are pictured in Figure 9. It is obvi-
ous that especially the amplitudes in the frequency domain
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Figure 8. The beginning of fluting both in measured bearing
current signal (right axis) and the PSD analysis of the stator
current signal of the motor (left axis)
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Figure 9. Different states of damage due to fluting repre-
sented by the PSD spectra of the stator current signal.

between 20 and 50Hz increase with proceeding degradation
of the bearing. It is important to mention that the supply fre-
quency of 50Hz is notch filtered and the frequency domain
between 50 and 80Hz is the result of mirroring the afore-
mentioned frequency domain at the supply frequency.
A cross section of all PSD spectra over the time at a frequency
of 29Hz is depicted in Figure 10. The failure mode during
this trial was a broken cage, which led to a nearly instant
breakdown of the bearing at the end of its life cycle, although
the slightly increased amplitudes in the middle of the lifetime
is also visible. The overall lifetime was about two days.
The damage which is produced by fluting is material removal.
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Figure 10. Run to failure data set represented by the PSD am-
plitudes of the stator current at a frequency of 29Hz. The fail-
ure was created by fluting with an voltage of approximately
9V.

(a)

(b)

Figure 11. (a) Completely deformed bearing cage (b) Partly
bent cage on the right of the picture

Thus, a broken cage and an increased clearance of the bearing
are consequences, whereat the latter leads to a direct contact
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of the rotor and the stator. In case of a broken cage, two dif-
ferent failure modes could be observed as depicted in Figure
11a and Figure 11b. In Figure 11a the cage is completely de-
formed and quarried out. In Figure 11b only one link (on the
right of the picture) is bent, which sticks the bearing. Both
led to a nearly abrupt failure of the bearing.

5.2. Extraction of a health indicator using PCA

Since the PCA is suitable to highlight variance of the deter-
mined features over the time (see section 4.2), the described
method is applied to extract a health indicator from the cur-
rent signal of the first three measured run to failure data sets.
For this purpose, the first data set is selected as training data,
which is used to determine the eigenvalue coefficients of the
transformation Equation 1. According to the resulting coeffi-
cients, the first three principal components are determined of
the three run to failure data sets.
The first principal components of the three experiments are
shown in Figure 12. The last 22 hours are displayed before
the failure of the bearing occurred. It can be ascertained that
all three courses differ strongly and no clear tendency of the
bearing’s degradation is visible. Furthermore, the final failure
limit is located on different values. Thus, the first principal
component is not suitable as a health indicator for the motor.
Since the other components reveal a similar behavior a pre-
sentation is neglected at this point.
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Figure 12. Trend of the first principal component of three run
to failure experiments

Another approach to generate a health indicator is to de-
termine the euclidean distance of the first three principal
components:

Gn =
√
g2n1 + g2n2 + g2n3. (2)

The result is illustrated in Figure 13 which reveals the identi-

cal phenomenon of an oscillating trend. A benefit of the gen-
erated trends can be seen in a similar failure limit. However,
two features cross the limit several times without a failure of
the bearing. Thus, a prediction of a failure would be highly
unlikely using the combined feature as a health indicator.
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Figure 13. Combined features (based on the first three princi-
pal components) of three run to failure experiments

For the purpose of comparing vibration and the current data
Figure 14 shows the root mean square values of the corre-
sponding vibration signals. A roughly exponential degrada-
tion trend is visible. However, the variation of the final failure
limit also hinders a precise prediction of the remaining useful
lifetime of the motor.
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Figure 14. Root mean square values of the vibration signals
of three run to failure experiments

6. CONCLUSION

The first diagnostic experimental results of a new test bench
were presented in this paper. The focus of this paper was the
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illustration of the test bed setup and here especially the com-
ponents for the application of fluting and radial force. The
influences of these loads concerning the frequency spectrum
and the achieved bearing failures were discussed, whereat
both can be roughly detected by analyzing the PSD of the
stator current.
First examinations of theses current signals were done by
means of common methods for the post-processing step. The
applied data reduction and processing method was tested both
for the classification of the applied radial force and for the
identification of a health indicator in case of fluting. The
PCA was used to find only those features which correspond
to the current radial force or the effective health indicator. A
data-based classifier trained with these features could distin-
guish between different states in case of new test data. The
classification of the different load levels were successful and
especially in comparison to the graphical analysis of the PSD
spectra more distinct. The extraction of a health indicator
by means of the PCA was more challenging and needs more
data sets for better results. The large variance concerning the
causes of damage in particular complicates this method.
In the future, it is planned to extend the platform for the ra-
dial force by a step motor for an automatic application of pre-
defined loads so that the crank lever will be replaced. An-
other challenge is the investigation of both combined loads,
i.e. fluting and radial force, concerning the lifespan of a bear-
ing. It is expected that this combination reduces the life cycle
dramatically, since the insulating effect of the lubrication will
decrease especially in the areas of high radial load. Another
main issue of the current setting is the high number of bro-
ken cages. Since this case of damage occurs abruptly, the
extraction of degradation courses is challenging. Thus, the
generation of pittings in the raceways or on the rolling ele-
ments, which then can be analyzed by means of the familiar
characteristic fault frequencies, is one main topic.
When the test bench is completed with all the planned
changes, the superior goal will be to generate a data basis
for the evaluation of prognosis and diagnosis algorithms to
estimate the remaining useful lifetime of bearings by using
the current data only.

NOMENCLATURE

C Dynamic bearing load
C0 Static bearing load
D Diameter of the outer ring
F Feature matrix of an experiment
fn Feature vector of record n
fs Supply frequency
G Reduced feature matrix of an experiment
gn Reduced feature vector of record n
I Total number of features
J Total number of principal components
N Total number of measurement records
n Number of a record
s Slip
EDM Electrical Discharge Machining
PCA Principal Component Analysis
PSD Power Spectral Density
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