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ABSTRACT

This paper presents a comparison of a number of prognos-
tic methods with regard to algorithm complexity and perfor-
mance based on prognostic metrics. This information serves
as a guide for selection and design of prognostic systems
for real-time condition monitoring of technical systems. The
methods are evaluated on ability to estimate the remaining
useful life of rolling element bearing. Run-to failure vibra-
tion and temperature data is used in the analysis. The sam-
pled prognostic methods include wear-temperature correla-
tion method, health state estimation using temperature mea-
surement, a multi-model particle filter approach with state
equation parameter adaptation utilizing temperature measure-
ments, prognostics through health state estimation and map-
ping extracted features to the remaining useful life through re-
gression approach. Although the performance of the methods
utilizing the vibration measurements is much better than the
methods using temperature measurements, the methods using
temperature measurements are quite promising in terms of re-
ducing the overall cost of the condition monitoring system as
well as the computational time. An ensemble of the presented
methods through weighted average is also introduced. The re-
sults show that the methods are able to estimate the remaining
useful life within error bounds of±15%, which can be further
reduced to ±5% with the ensemble approach.

1. INTRODUCTION

In the last decade, maintenance focus has shifted towards
prognostic health management where maintenance action is
taken based on the current health state of a system and its
estimated remaining useful life. In addition, new technical
systems, referred to as self-optimizing mechatronic systems
with the ability to adaptively control reliability have been de-
veloped (Sondermann-Wölke & Sextro, 2010; Meyer & Sex-
tro, 2014). These systems are able to react to changed oper-
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ating conditions or faults within the system through behavior
adaptation based on multi-objective optimization and conse-
quently require accurate estimation of the current health state
and the remaining useful life. The overall objective of this
approach is to increase reliability, availability and safety of
technical systems.

A number of methods for estimating the remaining useful life
(RUL) have been proposed. These methods can be divided
into three broad categories: 1) reliability based, which rely
on failure times of similar units, 2) model based, which rely
on mathematical models based on physics of failure and 3)
data driven methods, which rely on raw sensory data obtained
from a system during operation (Tobon-Mejia, Medjaher, &
Zerhouni, 2011). Reliability based methods are the simplest
to employ since they do not require condition monitoring
data. However, their accuracy is relatively low, especially for
systems subjected to varying operating conditions and conse-
quently displaying varying lifetimes. Model-based methods
though found to be very accurate, are system or component
specific and are not easily adaptable to different systems. In
addition, due to the complexity of modern day systems, the
system models are very complex and computationally inten-
sive. Data driven methods have received considerable efforts
since they can be adapted to different systems. Data driven
methods employ mainly statistical based algorithms such as
support vector machines (SVM) and hidden Markov mod-
els (HMM) or artificial intelligence methods such as artificial
neural networks (ANN) (Tobon-Mejia et al., 2011). These al-
gorithms require a lot of data for training and this involves
conducting run-to-failure tests to generate the training and
validating data. The performance of these algorithms also
depend on suitability of the features extracted from the raw
data (Kimotho & Sextro, 2014a). For classification of health
states, good features should demonstrate separability between
different health states while for regression approach where
the features are mapped to a function (either a health index or
RUL), then the features should have the ability to capture the
degradation trend, preferably monotonic change. For rotat-
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ing machinery, the most common condition monitoring data
utilized are vibration signals.

Temperature measurements have been recognized as a con-
dition monitoring tool but their application in estimating the
remaining useful life has not been fully realized. One of the
identified limitations of temperature in machinery diagnosis
and prognosis is the inability to identify faults at the devel-
opment stage. However, this limitation can be overcome by
strategic positioning of the temperature sensors. A number
of sensors for condition monitoring of technical systems have
been developed. A wireless temperature sensor for condition
monitoring of bearings operating through thick metal plates
was proposed by (Gupta & Peroulis, 2013). The sensor con-
sists of a temperature-sensitive permanent magnet which is
attached to the inner ring of the bearing, thus allowing the
bearing temperature to modulate the produced magnetic field.
Joshi et al, (Joshi, Marble, & Sadeghi, 2001) demonstrated
the application of radio telemetry for bearing cage tempera-
ture measurement for use in condition monitoring of bearings.
The cage telemetry was found to capture faults such as loss of
lubrication much faster than housing thermocouple. Brecher
et al, (Brecher, Fey, Hassis, & Bonerz, 2014) demonstrated
the use of a customized telemetry system for measuring a
bearing’s inner ring temperature for high speed applications.
The analysis showed that the inner ring temperature was vi-
tal in accurately monitoring the health of the bearing. These
developments could prove useful in enhancing fault identifi-
cation and estimation of remaining useful life in bearings as
well as reducing the overall cost of the condition monitoring
system.

In this paper, five methods for estimating the remaining use-
ful life of bearings are evaluated and compared in terms of
performance based on prognostic metrics and computational
time. The first approach involves correlating wear with tem-
perature rise due to frictional heating. The method uses run-
to failure temperature measurements to obtain coefficients
which can be used with the temperature measurements at
any given time to estimate the remaining useful life. The
second approach involves estimating the health states of a
bearing from the temperature measurements and deducing
the remaining useful life from the current health state. The
third approach involves the application of multi-model par-
ticle filter with model parameter adaptation to propagate a
health index derived from temperature measurements to a
predetermined threshold. The fourth approach involves es-
timating the health states of a degrading component using
features extracted from vibration measurements (Kimotho,
Sondermann-Wölke, Meyer, & Sextro, 2013). Classification
algorithms are used to identify the current health state. The
probability of each health state together with the percentage
remaining useful life at each health state of similar units are
utilized in estimating the remaining useful life. The last ap-
proach involves mapping features extracted from vibration

measurements to the remaining useful life at any given time.
Regression algorithms are used in this approach (Kimotho
& Sextro, 2014a). The last two methods based on vibra-
tion signals have been previously discussed in (Kimotho,
Sondermann-Wölke, et al., 2013; Kimotho & Sextro, 2014a)
and are only briefly introduced for comparison and ensemble
purposes.

All the methods are evaluated using ball bearing run-
to-failure data for training and truncated run-to-failure
data for testing obtained from the 2012 PHM data chal-
lenge (Nectoux, Medjaher, Ramasso, Morello, & Zerhouni,
2012). The data is obtained through highly accelerated run-
to-failure experiments conducted at three different operating
conditions shown in Table 1. Due to the highly accelerated

Table 1. Operating conditions of the test bearings

Test Speed (rpm) Load (kN)
1 1800 4.0
2 1650 4.2
3 1500 5.0

degradation, the data sets are characterized by high variabil-
ity in experiment durations, ranging from 1 to 8 hours. In this
work, only data sets from test 1 are analyzed.

2. PROGNOSTIC METHODOLOGIES

The following subsections outline different methodologies
that have been evaluated on their suitability to estimate the
remaining useful life of technical systems. An ensemble ap-
proach of combining the estimations of different approaches
is also explored.

2.1. Wear - Temperature Correlation - Method 1

During operation, rolling element bearings encounter resis-
tance to rotation which consist of rolling and sliding fric-
tion. This resistance occurs at the rolling contacts, contact
areas between the rolling elements and the cage, as well as
the guiding races (Harris & Kotzalas, 2006). The frictional
forces perform work which is dissipated in form of heat, con-
sequently increasing the bearing temperature. The frictional
heat generated depends on the applied load, rotational speed,
the type and size of bearing, properties and quantity of lubri-
cant as well as the rate of heat dissipation. The rise in tem-
perature reduces the viscosity of the lubricant which leads to
a reduction in the lubricant film thickness. This results to
higher asperity contact, increased heat generation due to in-
creased friction and consequently increased wear (Joshi et al.,
2001). Wear results to continued loss of geometric accuracy
of the rolling and gradual development of other faults such as
micro-pitting (Harris & Kotzalas, 2006). Since it is assumed
that wear can be prevented by proper attention to the bearing,
no considerable effort has been made to estimate the remain-
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ing useful life of bearings related to wear and change in tem-
perature (Harris & Kotzalas, 2006). Johnson (Johnson, 1985)
investigated the temperature produced by frictional heating
in sliding contact by examining the temperature produced
in a half space by a heat source which moves on the sur-
face. The maximum temperature occurs towards the rear of
the heated zone which has the longest exposure, as shown in
Figure 1 (Johnson, 1985). For a bearing rotating at constant
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Figure 1. Temperature distribution due to uniform moving
heat source, where q is the heat source, ∆T is the temperature
difference, a is the half contact length and v is the velocity.

speed, frictional heat is generated at all contact points lead-
ing to an overlap in the maximum temperature throughout the
bearing. This would result to an almost constant temperature
distribution. Therefore, the temperature will not be a func-
tion of position but the factors mentioned previously. The
bearing operating temperature will also depend on the bal-
ance between the heat generated and the heat removed from
the bearing through conduction, convection and radiation. In
most cases the temperature of the bearing increases rapidly
during initial operation and then increases slowly to a steady
state temperature as shown in Figure 2. The rate of rise de-
pends on the rate of heat removal. When a bearing is run con-
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Figure 2. Typical run-to-failure temperature curve of a rolling
element bearing.

tinuously to failure, at constant speed, the rate of temperature
rise changes rapidly initially, and then decreases to an almost
constant value. Just before failure, the temperature rise again
changes rapidly. This behavior is shown in Figure 2. The be-
havior is also consistent with degradation of bearings, where

degradation is high initially, followed by gradual degradation
and finally high degradation towards failure. This indicates
that temperature can be used to effectively track degradation
of components occasioned by wear.

Assuming that the heat removal rate is constant for a given
system, then it is possible to track bearing degradation from
temperature measurements. Since wear is approximately pro-
portional to the work done by the frictional forces which give
rise to frictional heat, then it may be assumed to be directly
proportional to the temperature rise in the component. This
relationship can be formulated as shown below:

∆ṁ

∆A
∝ ∆PR

∆A
(T (t)− To), (1)

where ∆ṁ is the material removal rate, ∆PR is frictional
power, T (t) is the current temperature, Ti is the room tem-
perature and ∆A is the contact area. Taking the initial tem-
perature as the datum for temperature change and considering
that wear is approximated by the material removal rate yields

mEOL = ρ∆A∆z =

∫ tEOL

0

ṁ(t)dt = k

∫ tEOL

0

∆T (t)dt,

(2)
where ρ is the density of the material, ∆A is the contact area,
∆z is the approximate wear depth, tEOL is the time at the
end of life of the component, k is proportionality constant,
mEOL, is the allowable mass that can be removed through
wear before a component is considered to have failed. The
ratio of allowable mass to the proportional constant can be
obtained from the training data as by

mEOL

k
=

∫ tEOL

0

∆T (t)dt. (3)

Considering the current time, tc, Eq. (3) can be rewritten in
cumulative form as:

mEOL

k
=

∫ tc

0

∆T (t)dt+

∫ tEOL

tc

∆T (t)dt. (4)

During testing or online prognosis, the second term of Eq. (4)
is unknown. This term is proportional to the remaining allow-
able wear before the component fails. Therefore this factor
can be referred to as the remaining wear coefficient. Eq. (4)
can be rearranged as:∫ tEOL

tc

∆T (t)dt =
mEOL

k
−
∫ tc

0

∆T (t)dt. (5)

The term
∫ tEOL

tc
∆T (t)dt can be used as a health index HI ,

defined as follows

HI =

∫ tEOL

tc
∆T (t)dt

mEOL

k

. (6)

Division by mEOL

k normalizes the health index such that HI

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

is within the range 0 ≤ HI ≤ 1, with HI = 1 for a healthy
component and HI = 0 for a failed component. Figure 3
shows the health index of the two bearings used to gener-
ate the training data sets. The term mEOL

k is computed from
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Figure 3. Health index computed from the training bearings.

the training data sets which contain run-to-failure tempera-
ture measurements. The health index of the test bearing at
the current time is computed using Eq. (6), with mEOL

k ob-
tained from the training data sets. To obtain the time to end
of life, tEOL of the test bearing, a polynomial curve of or-
der 2 is fitted to the calculated health index and extrapolated
to the point where the health index is zero. The RUL can
then be calculated as shown in Figure 4. The performance of
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Figure 4. RUL prediction of bearing 1 7.

the method can be evaluated through prognostic performance
metrics such as percentage error computed as follows

Error =
RULactual − RUL

RULactual
× 100, (7)

where RULactual is the actual remaining useful life and RUL
is the estimated RUL. Table 2 shows the % Error computed
for the different test bearings. The results show that the pro-
posed method is a promising approach in prognostics with the
estimation error below 15%.

Table 2. % Error of RUL estimation of the proposed method.

Test bearing Actual
RUL (h)

Estimated
RUL (h)

Error (%)

Bearing 1 4 0.094 0.083 11.82
Bearing 1 5 0.446 0.400 10.45
Bearing 1 6 0.392 0.334 14.89
Bearing 1 7 2.103 1.983 5.71

2.2. Health State Estimation using Temperature Mea-
surements - Method 2

This method involves estimating the health states of a degrad-
ing component using temperature measurements. Based on
the current health state, a health index can be defined from
which the remaining useful life can be estimated. k-means
clustering algorithm is employed to discretize the tempera-
ture data into a number of clusters and an energy factor for
each health state is calculated from the temperature change
using Eq. (8)(∆mEOL

k

)
HSi

=

∫ tHSi

tHSi−1

∆T (t)dt. (8)

A health index at each health state is then obtained as follows

(HI)HSi = 1−

∫ tc
tHSi−1

∆T (t) dt(
∆mEOL

k

)
HSi

. (9)

A total of 4 health states were identified from the training
data. For test data, the current health state is estimated us-
ing classification algorithms such as support vector machines,
which output the health state probability. Figure 5 shows a
plot of the correlation coefficient for bearing 1 6. The right
hand axis shows the normalized temperature change curve.
To obtain the time to end of the current health state, a poly-
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Figure 5. Health states of bearing 1 6

nomial curve of order 2 is fitted to the calculated health index
and extrapolated to the point where the health index is zero.
This point signifies the transition to the next health state or
end of life if the current health state is the last health state
(HS4 in this case). The remaining useful life can then be cal-
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culated using Eq. (10)

RUL = (tHSi − tci) +

n∑
j=i+1

RLj

1−RLj
· tHSi, (10)

where tci is the current time in health state i, tHSi is the time
at the end of health state i, RLj is the percentage of remain-
ing useful life of health state j, obtained from the training
data and n is the total number of health states. If the current
health state is the last health state, thenRLj = 0 and Eq. (11)
reduces to

RUL = (tHSi − tci). (11)

Figure 6 shows the plot of the calculated health index and fit-
ted health index for bearing 1 6, which was identified to be
in health state 4. Table 3 shows the performance evaluation
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Figure 6. The estimated RUL at health state 4 for bearing 1 6.

of this method based on the percentage error, calculated from
Eq. (7). One advantage of this method is the ability to iden-
tify current health state, which would be important for main-
tenance action recommendation or for adaptive systems uti-
lizing discrete health states to adapt the operating regime. In
addition, the method can be adapted to systems with varying
operating conditions by defining different wear factors based
on the operating regime and health state.

Table 3. % Error of RUL estimation of the proposed method.

Test bearing Actual
RUL (h)

Estimated
RUL (h)

Error (%)

Bearing 1 4 0.094 0.083 12.70
Bearing 1 5 0.446 0.485 -8.74
Bearing 1 6 0.392 0.343 12.53
Bearing 1 7 2.103 2.162 -2.79

2.3. Temperature based Particle Filter Approach with
Parameter and Model Adaptation - Method 3

Particle filter is a general Monte Carlo (Sampling) method for
estimating the state of a system that changes over time using

a sequence of noisy measurements obtained from the system
(Arulampalam, Maskell, N., & T., 2002). The state of the
system is considered to evolve according to

xk = f(xk−1, tk−1, tk) + nk, (12)

where xk is the state of the system at time k and f is the
transition function that propagates xk−1 to xk−1, and nk is
the process noise. The state vector is assumed to be unob-
servable and its information is only obtained through noisy
measurements of its observation zk which is obtained by

zk = g(xk) + νk, (13)

where g is the observation model and νk is the measurement
noise. The filtering process involves the estimation of the
state vector at time k, given all the measurements up to time
k, denoted by z1:k. From a Bayesian setting, this problem
involves recursively calculating the distribution p(xk|z1:k)
which is done in two steps (Arulampalam et al., 2002).

1. Prediction Step, where p(xk|z1:k−1) is computed from
the filtering distribution p(xk−1|z1:k−1) at time k − 1 as
follows:

p(xk|z1:k−1) =

∫
p(xk|x1:k−1)p(xk−1|z1:k−1)dxk−1,

(14)
where p(xk−1|z1:k−1) is assumed to be known
due to recursion and p(xk|xk−1) is given in
Eq. (12) (Arulampalam et al., 2002). The distribu-
tion p(xk|z1:k−1) is known as a prior over xk before
receiving the most recent measurement zk.

2. Update step, where the prior is updated with the new
measurement zk using Bayes’ rule to obtain the poste-
rior over xk

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (15)

The computations in the prediction and update steps Eqs. (14-
15) can be done using approximation methods such as Monte
Carlo sampling (Arulampalam et al., 2002). A detailed de-
scription of this approach can be found in (Arulampalam et
al., 2002).

When using this approach for prognostics, there is no new
measurement available and hence the update step is not car-
ried out. The system state is propagated until a predefined
threshold is reached. This approach has been employed in
prognostics of various technical systems such as batteries
(Lee, Cui, Rezvanizaniani, & Ni, 2012; Xing, Miao, Tsui,
& Petch, 2011), fuel cells (Jouin, Gouriveau, Hissel, Pera, &
Zerhouni, 2014; Kimotho & Sextro, 2014b), gears (He, Bech-
hoefer, Dempsey, & Ma, 2012) and bearings (Wang & Gao,
2013).
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In the context of this work, a health index is selected as the
state of the system (xk = HIk) and defined by normaliz-
ing the temperature change such that 0 ≤ HI ≤ 1 based
on the maximum and minimum values of the training data
which consists of run-to-failure temperature measurements as
shown in Eq (16)

HI =
∆T −∆Tmin

∆Tmax −∆Tmin
. (16)

Two state equation were selected based on the temperature
trend. The first part of the curve was approximated using
a logarithmic equation while the second part was approxi-
mated using an exponential equation. The transition point
was taken as the point where the rate of change of the health
index (filtered using a kernel-based smoother) is zero, that is,
dHI
dt = 0. Figure 7 shows the selection of state equations

based on training data set from bearing 1 1. The selected
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Figure 7. Health index with different state models.

state equations are shown below

f1 = α · ln
( tk
tk−1

)
+HIk−1, (17)

f2 = HIk−1 · exp(β(tk − tk−1)), (18)

where, α and β are state equation parameters to be fitted from
the training data.

To evaluate the performance of the approach on the training
data and the suitability of the selected state equation param-
eters, the available training data is truncated at different frac-
tions of the component’s lifetime. The health index is then
computed and propagated until it reaches a threshold. The
RUL is then calculated as shown in Figure 8. The process
is done for several runs and a statistical value such as mean
or median is taken as the overall RUL as shown in Figure 8.
Figure 9 shows the performance of the approach based on the
training data at different truncation intervals. Most of the par-
ticle filter approaches employed in literature use single state
equation parameters when propagating the state of the sys-
tem. However, as seen in Figure 9, due to the non-linearity
of the degradation trend, it is difficult to obtain parameters
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Figure 8. RUL estimation for bearing 1 1 at tc = 0.4tEOL.
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Figure 9. Estimated RUL at different fractions of lifetime
without parameter adaptation.

that are able to track degradation of the systems accurately
throughout its lifetime. The parameters are accurate at cer-
tain degradation stages and inaccurate at others. This limita-
tion can be addressed by adapting the parameters to the rate of
degradation. Figure 10 shows the RUL estimation with state
equation parameter adaptation based on the rate of change
of the health index. With this approach, the estimated RUL
is approximately within ±10 confidence bounds at all degra-
dation stages. Once suitable state equation parameters have
been identified, the method is then applied to truncated test
data or data acquired in real-time. This involves normaliz-
ing the change in temperature of the test data using Eq. (16)
together with the maximum and minimum values obtained
from the training data. The particles are propagated with re-
sampling until the available data is exhausted after which the
model is used to propagate the health index up to the thresh-
old. Figure 11 shows estimation of RUL through this ap-
proach for bearing 1 7. The method was applied to other test
bearings and a performance analysis conducted and presented
in Table 4. With this approach, errors less than 15% can be at-
tained. The approach is more robust since measurement and
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with parameter adaptation.
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Figure 11. RUL estimation for bearing 1 7.

state propagation uncertainties are taken into account. The
prediction accuracy also increases as the component nears
failure due to resampling.

Table 4. % Error of RUL estimation using particle filter ap-
proach

Test bearing Actual
RUL (h)

Estimated
RUL (h)

Error (%)

Bearing 1 4 0.094 0.106 -12.50
Bearing 1 5 0.446 0.433 2.99
Bearing 1 6 0.392 0.417 -6.38
Bearing 1 7 2.103 2.008 4.52

2.4. Prognostic Approach based on Health State Estima-
tion - Method 4

Most technical systems undergo through a series of discrete
health states before failure, with east health state indicating
the severity of faults or degradation. RUL estimation based
on this approach involves extracting relevant features from
the raw run-to-failure data and discretizing the features into a
number of clusters representing different health states within

the lifetime of the system. This can be done by employ-
ing clustering algorithms to identify the classes within the
features. Algorithms such as k-means and self-organizing
maps (SOM) neural networks can be employed to identify
the health states in the features. Figure 12 is a feature plot
(skewness and clearance factor) showing clustering of data
for different health states during degradation of a ball bearing.
Machine learning algorithms are then trained to map the input
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Figure 12. Clustering of data according to the health state.

features to the fault classes (health states). The workflow of
this approach is summarized in Figure 13. The probability of
a data point belonging to a given class is then computed from
which the remaining useful life is calculated as follows:

RULc =
tc

1−
∑N

i=1 Pi ·RLi

N∑
i=1

Pi ·RLi − dc, (19)

where tc is the current time, Pi is the probability of the sys-
tem being in health state i, such that

∑N
i=1 Pi = 1, N is the

total number of health states, RLi is the historical fractional
RUL of similar systems and dcj is the duration of stay in the
current health state. Various classification algorithms such as
support vector machines (SVM), random forests (RF), neural
networks (NN) can be employed with this approach. A data
point is assigned the class with the highest probability. Fig-
ure 14 shows the health state probability for training bearing
1 1 as it degrades with time. Table 5 presents the performance
analysis of this approach based on the works of the authors
in (Kimotho, Sondermann-Woelke, et al., 2013; Kimotho &
Sextro, 2014b).

Table 5. % Error of RUL estimation of the proposed method

Test bearing Actual
RUL (h)

Estimated
RUL (h)

Error (%)

Bearing 1 4 0.094 0.086 9.03
Bearing 1 5 0.446 0.438 1.87
Bearing 1 6 0.392 0.411 -4.81
Bearing 1 7 2.103 2.123 -0.97
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Figure 13. Health state approach to estimating RUL.
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Figure 14. Health state probability of a bearing as it wears
with time.

2.5. Mapping Extracted Features to RUL - Method 5

If the run-to-failure data condition monitoring data and cor-
responding failure times of similar units are available, then
machine learning algorithms can be applied to map the ex-
tracted feature to the remaining useful life as shown in Fig-
ure 15. Machine learning algorithms such as support vector
regression, regression trees, neural networks, extreme learn-
ing machines, etc, using regression approach can be em-
ployed. This approach is very sensitive to the trendability of
the data and as such data processing approaches and feature
selection to obtain monotonically changing features should
be employed (Kimotho & Sextro, 2014a).

Kimotho et al (Kimotho & Sextro, 2014a) developed a prog-
nostic approach for non-trending data. The approach involves
applying an autoregressive model to the extracted features to
obtain a monotonically changing feature which is used as the
input to extreme learning machine (ELM) algorithm. Nor-
malized RUL of similar units is used as the target in order to
carter for units with varying lifetimes. The RUL at the cur-
rent time is then computed through Eq. (20) which is derived

from Figure 16. Given the current time, tc, and the normal-
ized RUL, Fc, the estimated remaining useful life RUL can
be obtained by similar triangles as follows

RUL = tEOL − tc =
tc

1− Fc
Fc. (20)
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Figure 16. Estimating the RUL from the current time and
normalized RUL.

ELM is a single layer feedforward neural network that utilize
generalized inverse matrix operation to compute the weights
output weights in a single calculation while the input weights
are randomly generated (Huang, Zhu, & Siew, 2006). As a
consequence, it does not require adaptation of weights and bi-
ases thus significantly reduces the computation time for both
training and testing. Table 6 shows the performance analysis
of this approach based on the works of (Kimotho & Sextro,
2014a).
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Figure 15. Mapping of extracted features to RUL using extreme learning machines (ELM)

Table 6. % Error of RUL estimation of the proposed method

Test bearing Actual
RUL (h)

Estimated
RUL (h)

Error (%)

Bearing 1 4 0.094 0.09 5.31
Bearing 1 5 0.446 0.467 -4.63
Bearing 1 6 0.392 0.425 -8.41
Bearing 1 7 2.103 2.025 3.71

3. DISCUSSION

Results show that all the presented approaches estimate the
RUL of ball bearings within error bounds of±20%. However
in prognostics, late estimations are usually undesirable since
the system may fail before scheduled maintenance. There-
fore when computing performance weights of different ap-
proaches, a method of penalizing late predictions more than
early predictions should be employed. One such method
is using the exponential weighting method shown below
(Gouriveau et al., 2014) with

w =
{

exp(− ln(0.5) · ( Error
5 )) if Error < 0

exp(ln(0.5) · ( Error
20 )) if Error ≥ 0.

(21)

The maximum score is 1 for the case when Error = 0. Based
on this performance evaluation criteria, the performance of
the discussed methods (methods 1-5 in subsections 2.1-2.5) is
presented in Table 7. Also in Table 7 is the computation time
for each method. The computation time includes time taken
to extract relevant features and to estimate the remaining use-
ful life but does not include time for feature selection and al-
gorithm training or parameter identification. This is because
during testing or real-time prognostics, the trained model or
model parameters depending on the algorithm have already
been obtained. Table 7 shows that machine learning algo-
rithms utilizing vibration measurements yield the best per-
formance. In particular, method 4 that involves health state
estimation is suitable for systems that undergo through var-
ious stages of degradation before failure. This method can

further be coupled with diagnosis to identify the fault type,
location and size at each health state. This information would
be of great importance in selecting the most suitable model to
use as well as reducing the maintenance time. However, the
method requires much longer computation time compared to
the wear-temperature correlation methods as well as the com-
plexity of the algorithms involved, both for feature extraction
and for machine learning algorithms. Diagnosis is much more
difficult to conduct with temperature measurements.

RUL estimation can be improved by sensor data fusion or
ensemble of several methods either through simple mean or
weighted mean of the RUL as shown in Eq. (22)

RULens =

∑n
i=1 wiRULi∑n

i=1 wi
, (22)

where RULi is the RUL estimated by method i and wi is the
weight of method i, which can be taken as the mean score
of each method in Table 7. For the case of simple mean,
wi = 1. Table 8 shows the effect of combining all or a num-
ber of the methods described using weighted mean and sim-
ple mean. All possible combinations of the algorithms were
evaluated and a combination of three methods (2-3-4) yielded
the best results. This shows that an ensemble of a number of
algorithms, especially with data fusion from different sensors
yields a more robust prognostic approach. Combination of all
temperature-based methods yields predictions within a 10%
error bound, with all the results being early predictions.

4. CONCLUSION

Five approaches to prognostics of technical systems have
been presented. Three methods are empirical based and uti-
lize temperature measurements for prognosis while two meth-
ods are data-driven and utilize vibration measurements for
prognosis. The methods have been evaluated on their accura-
cies to estimate the remaining useful life as well as their suit-
ability for real-time prognostics based on temperature and vi-
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Table 7. Performance evaluation of the presented methods

Method Method 1 Method 2 Method 3 Method 4 Method 5
Bearing w Time (s) w Time (s) w Time (s) w Time (s) w Time (s)
1 4 0.64 1.65 0.64 1.74 0.18 55 0.73 74 0.83 72
1 5 0.30 1.68 0.30 1.85 0.90 111 0.94 160 0.53 158
1 6 0.65 1.68 0.65 1.87 0.41 110 0.51 159 0.31 157
1 7 0.68 1.64 0.68 1.78 0.86 190 0.87 145 0.88 143
mean w 0.69 0.56 0.58 0.76 0.63

Table 8. Performance evaluation of ensemble of prognostic methods using weighted mean

Applied Method 1-2-3-4-5 1-2-3 2-3-4
Bearing Error (%) w Error (%) w Error (%) w

1 4 4.37 0.86 5.27 0.83 3.53 0.88
1 5 2.19 0.93 0.34 0.98 -0.93 0.88
1 6 7.41 0.77 1.56 0.95 -0.16 0.98
1 7 2.72 0.91 2.04 0.93 0.17 0.99

mean 0.87 0.92 0.93

bration measurements. Vibration measurements yield better
results and can be used for diagnosis and prognosis simul-
taneously. However, vibration analysis is computationally
intensive and calls for relatively complex data driven algo-
rithms for estimating remaining useful life. In addition, data
acquisition and processing requirements for temperature sen-
sors are less complex than those of vibration sensors such as
accelerometers. With a multifunctional data acquisition sys-
tem, it is possible to combine sensor information in order to
build a low cost as well as a more robust condition monitor-
ing system. This would give rise to the possibility of reducing
the number of accelerometers within the system. A condition
monitoring system utilizing a single accelerometer for each
bearing and two temperature sensors, one as a reference sen-
sor and the other to track the temperature rise of the bearing
should be explored. For a more robust prognostic approach,
ensemble of different prognostic approaches and in particu-
lar the use of sensor data fusion is necessary. The presented
results show that fusion of methods utilizing the different sen-
sor data improves the RUL prediction accuracy significantly.
Some remaining issues that can be explored include the pos-
sibility of using dynamic weights during ensemble. Since the
methods perform differently at different time intervals, an en-
semble approach utilizing the higher weights at different es-
timation time intervals should be explored. Integration of un-
certainties such as future loading conditions, uncertainty in
measurements and uncertainty in model selection and prop-
agation need to be incorporated in the proposed methods.
The possibility of reducing the number of vibration sensors
in a condition monitoring system for rotating machinery and
having a temperature sensor on each component subjected to
wear should also be explored. This way the vibration data
can be used both for detecting faults and for prognosis while
the temperature sensor can be used in locating the faulty com-
ponent. The end result would be a robust, low cost condition
monitoring system for rotating machinery as well as technical
systems with wear related failures.
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