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ABSTRACT 

In this paper, we propose a novel deep learning method for 
feature extraction in prognostics and health management 
applications. The proposed method is based on Extreme 
Learning Machines (ELM) and Auto-Encoders (AE), which 
have demonstrated very good performance and very short 

training time compared to other deep learning methods on 
several applications, including image recognition problems. 
The proposed approach is applied to vibration condition 
monitoring data to extract features from normal operation 
(i.e. fault free conditions) without any additional expert 
knowledge or prior information on the type of signals and 

the information content in the datasets. The approach 
demonstrates a better performance in terms of trendability 
and monotonicity compared to commonly applied feature 
extraction methods. 

1. INTRODUCTION 

The decreasing cost of sensors and data transmission, the 

improved functionality, and reliability of the sensors have 
increased the availability of data on the system condition. 
This development has had a significant impact not only in 
terms of volume but also in terms of velocity, and the 
variety of data streams. Prognostics and health management 
(PHM) attempts to make better use of this information on 

the system condition to provide a holistic view on the health 
state of the system and to enable decision support on the 
optimal preemptive maintenance actions and logistic 
decisions (Lee et al., 2014).  

The increased availability of the condition monitoring data 
has increased the application and development of data-

driven PHM approaches. Particularly, the application of 
machine learning approaches has been increasing. Different 

machine learning approaches have been introduced for the 
classification of the type of fault causing the malfunctioning 
of engineering systems as well as predicting the Remaining 
Useful Life (RUL), including K-Nearest-Neighbor 
Clustering (KNN) (Lei & Zuo, 2009), Artificial Neural 

Networks (ANN) (Mavromatidis, Acha, & Shah, 2013; 
Shao, Zhu, Cao, & Shen, 2014), Support Vector Machines 
(SVM) (Selak, Butala, & Sluga, 2014) and Fuzzy Classifiers 
(FC) (Lemos, Caminhas, & Gomide, 2013). 

In general, machine learning algorithms require as input 
high-level informative features to achieve a good 

performance. These features need to provide a good 
representation of the system health states. However, raw 
signals obtained by condition monitoring sensors are 
typically high dimensional and are often also highly 
redundant, particularly for critical systems that require the 
sensors for control purposes. High dimensional correlated 

signals are very difficult to analyse due to the computational 
burden, curse of dimensionality, and the complexity of the 
required approaches to extract uncorrelated useful 
information, which often results in ill-posed problems 
Therefore, it is not optimal to use the raw condition 
monitoring signals directly as input for machine learning 

algorithms.  

In such case, several signal processing, and feature 
extraction and selection approaches are required to extract 
the relevant information from raw signals. For example, 
numerous approaches have been proposed to extract useful 
features from raw vibration signals of bearings.  The feature 

extraction approaches can be classified in 1) Time Domain 
approaches, such as statistical indicators, autoregressive 
modelling and empirical mode decomposition (Weizhong 
Yan, Qiu, & Iyer, 2008); 2) Frequency Domain approaches, 
such as Spectral Analysis, Envelope Analysis, Higher Order 
Spectrum; 3) Wavelet analysis such as Continuous/Discrete 

Wavelet Transform, Morlet Wavelet, Hilbert-Huang 
Transform (Weizhong Yan et al., 2008). Some recent 
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studies also use more advanced algorithms for feature 
extraction, like iterative envelope analysis and a low-pass 
filtering operation (Ming, Zhang, Qin, & Chu, 2016), 
Empirical Wavelet Transform (EWT) method via data-

driven adaptive Fourier spectrum segment (Pan, Chen, Zi, 
Li, & He, 2016) and sparse representation in wavelet basis 
(Fan et al., 2015). Even with advanced feature extraction 
approaches, the extracted features are in some cases still not 
sufficiently informative, and the feature reduction or 
selection methods are required for processing the features 

further and reduce the dimension of input for saving 
computation burden and improve the robustness of PHM 
models (Benkedjouh, Medjaher, Zerhouni, & Rechak, 2013; 
Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos, 
2015; Emmanouilidis, Hunter, MacIntyre, & Cox, 1999; 
Gowid, Dixon, & Ghani, 2015; Yang, Liao, Meng, & Lee, 

2011).  

Generally, the feature extraction methods mentioned above 
are developed based on domain and engineering knowledge 
of special fields, which can be called “handcrafted” features 
(WZ Yan & Yu, 2015). A major limitation of “handcrafted” 
features is that it is a manual process and an ad-hoc problem, 

which requires extensive expert involvement and interaction 
to develop specific solutions for each individual case. In 
addition, the accuracy of these “handcrafted” features may 
not be optimal. Thereby, the performance of PHM models 
highly depends on the experience and the expertise of the 
experts designing the features. A universally applicable 

feature extraction approach is, therefore, required, that is 
able to process raw condition monitoring signals in an 
automatic and unsupervised way and provides highly 
informative features that are directly applicable to PHM 
modeling. It is threfore very valuable to develop a 
general.approach for feature learning without any 

dependence on the expert experience and knowledge.  

The problem of feature extraction is a type of representation 
learning problems, which has gained a lot of attention and 
also importance in the last decade since deep learning has 
been introduced. Deep learning has become one of the most 
frequently applied approaches for representation learning 

and has been applied in many different applications, 
including image and speech recognition, object tracking and 
language processing. Bengio, Courville, & Vincent (2013) 
provide a review of the  state of the art representation 
learning approaches. Deep learning approaches include 
auto-encoders, restricted Boltzmann machines, semi-

supervised embedding, convolutional neural networks, and 
kernel principal component analysis. Recently, deep 
learning has also been applied in the field of PHM. In (Gan, 
Wang, & Zhu, 2016; Jia, Lei, Lin, Zhou, & Lu, 2016; 
Tamilselvan & Wang, 2013) deep belief networks were 
applied for fault diagnostic modeling. However, those 

applications focused developing a “deep diagnostic models”. 
However, the input features of the models remain 
“handcrafted”. In (WZ Yan & Yu, 2015), the authors use a 

stacked denoising auto-encoder to extract useful features 
from the signals of gas turbine combustors. The models 
based on automatically extracted features shows a better 
detection performance compared to those based on 

“handcrafted” features.  

In this paper, we propose a novel deep learning method for 
feature extraction in PHM applications. The proposed 
method is based on Extreme Learning Machines (ELM) and 
Auto-Encoders (AE), which are very popular machine 
learning approaches with proven performance on many 

openly available classification and regression benchmark 
datasets (G. Bin Huang, 2015; G.-B. Huang, Zhou, Ding, & 
Zhang, 2012). The ELM-AE approach has been applied to 
the image recognition problems with very good 
classification and regression accuracy on benchmark 
datasets and very short training time compared to other deep 

learning methods including deep belief networks, stacked 
AE, deep Boltzmann machine (Cambria et al., 2013). The 
proposed approach is applied to IEEE PHM 2012 Data 
Challenge for extracting health indicators of bearings under 
accelerated testing experiments. 

The remainder of this paper is organized in following way: 

Section 2 and 3 introduce of the methodology of ELM-AE; 
Section 4 shows its application on the bearing dataset and 
Section 5 summarizes the results and provides some 
practical recommendations for industrial users to support the 
application of the proposed methodology in their 
applications. 

2. EXTREME LEARNING MACHINES 

ELM are generalized Single-hidden Layer Feedforward 
Neural networks (SLFNs) (G.-B. Huang, Zhu, & Siew, 
2004). The output 𝑓𝐿(𝐱k) of the ELM with L hidden nodes 

can be written as: 

    
1

L

L k i i i k i

i

f g b


   x β a x Hβ   (1) 

where gi denotes the activation function, 𝛃𝑖  the output 

weight, 𝐚𝑖, 𝑏𝑖 the parameters of the activation function in the 
hidden layer and 𝐱𝑘 the k-th input pattern with k=1,…, 𝑁𝑇. 

𝐇𝛃 is the matrix form of ELM with H as the hidden layer 
output matrix: 
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The weights between the input and hidden layer and the bias 
( 𝐚i ,𝑏i  ) are set randomly sampled from an arbitrary 

distribution. Only the weights between the hidden layer and 
the output(𝛃i ) need to be estimated in the training process 
using the following formulation: 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

  2 2
min C 
β

β Hβ t   (2) 

Equation (2) represents the minimum of the sum of the 𝐿2 

norm of 𝛃 and the training error, where 𝐭  is the training 
target, and C is the trade-off parameter between the training 
error and the generalization ability. Applying ridge 
regression, the solution of 𝛃 is: 

  
1

1 T TC


 β I Η Η Η t   (3) 

The main advantage of ELM is that they don’t require the 
iterative fine-tuning of network parameters, which is an 
extensive calculation. The calculation of 𝛃 is only based on 

matrix multiplication and is very fast compared to methods 
without an analytical solution. .  

3. AUTO-ENCODERS BASED ON ELM 

The basic principle of an AE is to encode the input into a 
hidden layer and decode it back to the original input. If the 

desired reconstruction accuracy is obtained, the encoded 
hidden layer can be used as the representation of the original 
input. The basic structure is shown in Figure 1: 

 

Figure 1. Structure of an Auto-Encoder  
AE can be treated as an Auto-Associative SLFN. The 

network is trained by setting the target output equal to the 
input. This training process is very similar to equation(2), 
with the difference that the training target is equal to the 
input: 
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𝛃 can be solved by: 

  
1

1ˆ T TC


 β I Η Η Η x   (5) 

In the first layer of the stacked auto-encoder, the extracted 
feature vector f of original input x can be written as: 

 ˆf xβ   (6) 

The dimension of f is equal to the number of neurons in the 
hidden layer L. By setting L smaller than the dimension of x, 
a condensed representation of the input is achieved. 
Typically, a single AE cannot fully extract useful features 
from x. Therefore, stacked AE can be applied. The structure 

of stacked AE is shown in Figure 2. 

In this stacked ELM-AE, the input of j-th layer (j > 1) is the 
feature vector extracted by the previous layer, and the 
feature vector extracted by the last layer 𝐟N  is the final 

learned feature vector. By layer-wise stacking the single AE, 
information hidden in the original input x is hierarchically 
extracted by each layer. The most distinguishing 
characteristic of stacked ELM-AE is that all layers in the 

network (each single AE representing a layer) are 
independent of each other. The parameters of each layer 
only need to be learned once, and are then fixed after the 
training. By being trained and stacked independently , this 
network design overcomes the drawback of back-
propagation learning requiring an iterative fine-tuning of the 

parameters in all the layers. Since the learning process is 
reduced to matrix multiplication, the learning process 
becomes computationally very efficient. For more  details 
on ELM-AE, please refer to (Cambria et al., 2013) 

 
Figure 2. Stacked ELM based AE 

 

For PHM applications, the input to the network, x , can be 
set as raw monitoring signals. The feature vector 𝐟N , 
obtained in the last layer is the extracted condensed and 
highly informative representation of x, which can be used as 

health indicators for better understanding the system 
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condition. The extracted health indicator vector, 𝐟N, can also 

be applied to build detection, diagnostic and prognostic 
models. 

4. CASE STUDY  

4.1. Applied dataset 

To verify the added value of the ELM-AE algorithm in 
PHM applications, we apply it to a dataset from IEEE PHM 

2012 Data Challenge. This dataset is recorded using an 
experimental platform called PRONOSTIA, which 
motivates to provide real data related to the accelerated 
degradation of bearings performed under constant/variable 
operating conditions. The details of the experiment design 
are described in (Nectoux et al., 2012).  

This dataset has been used in several research studies for 
predicting the remaining useful life of bearings. As a first 
step, relevant features need to be extracted from the raw 
vibration signals. Different feature extraction approaches 
can be used, including methods like statistical indicators 
(root mean square, standard deviation , crest factor, 

skewness, etc.) (Randall & Antoni, 2011), Wavelet Packet 
Decomposition (WPD) (Medjaher, Tobon-Mejia, & 
Zerhouni, 2012), Power Spectrum Density (PSD) (Nectoux 
et al., 2012) and ISOMAP (Benkedjouh et al., 2013). A 
more comprehensive overview of the different signal 
processing approaches for bearing vibration monitoring 

signals including a review of about 200 papers can be found 
in (Rai & Upadhyay, 2016). 

The features extracted from vibration signals are typically 
developed based on the domain and engineering knowledge 
and are applicable for a specific application. They can, 
therefore, also be referred to as “handcrafted” features.  

Contrary to the application of very specialized feature 

extraction approach, in the following section, we apply 
stacked ELM-AE for feature extraction of bearing vibration 
monitoring signals in a completely unsupervised way, and 
compare the results to some commonly applied “handcrafted” 
features to evaluate the effectiveness of ELM-AE. 

4.2. Results of the case study 

Three degraded bearings are selected for performing the 
experiment, the working condition of them are the same: 
rotation speed of 1800 rpm and loading with 4000 N. The 
recorded durations of these three bearings are 27990, 23740 
and 14270 seconds. The vibration signals are sampled at 
25.6 kHz, and generally, 2560 samples (0.1 seconds) are 

recorded every 10 seconds. However, during the data 
acquisition process, there are some time gaps during which 
the signals were not recorded. The overall dimensions of the 
raw signals of these three selected bearings are 1629 ×
2560, 2375 × 2560, 1428 × 2560 . The first bearing 
degradation trajectory is used as the training set for training 

the ELM-AE, and the remaining two bearings are used to 
test the performance of the algorithm. 

For the purpose of prognostics, the features extracted from 
the vibration signals should have the characteristics of 

monotonicity and trendability. Monotonicity is an important 
characteristic of a health indicator since it is generally 
assumed that industrial components do not undergo self-
healing, which would result in non-monotonic indicator 
trends. Trendability indicates if the degree of the 
degradation has a regular shape and can be described by a 

functional form. If the extracted feature provides good 
monotonicity and trendability, the prognostic model can be 
easily built and good RUL prediction can be achieved.  

In order to extract one feature from 2560 dimension signals, 
we apply an ELM-AE with four layers, with  1000, 100, 10 
and 1 hidden neurons in the respective layers.  

To compare the performance of ELM-AE to that of a feature 
extraction approach with a proven track record, we also 
extract statistical indicator features (standard deviation) and 
the Discrete wavelet transform (DWT) using Sym6 basis at 
level 3. The plots of the raw signals (acceleration) and 
extracted features of the two tested bearings are shown in 

figure 3 to 6. 

 
Figure 3. Raw signals and ELM-AE feature of bearing 2  
 
The selected two bearings have different characters. Bearing 
2 has a relatively gradual degradation process. However, it 
contains a lot of “noise spikes”, especially towards the end 

of the test phase. Bearing 3 has a sudden jump of vibration, 
at the point of time 10,810, and then the degradation 
develops at a very fast speed. The details interpretations are 
stated in the next section. 
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Figure 4. “handcrafted” features of bearing 2 

 
Figure 5. Raw signals and ELM-AE feature of Bearing 3 

 
Figure 6. “handcrafted” features of bearing 3 

 

4.3. Interpretation and Discussion of Results 

For both of bearings, the degradation is presented by the 
increase of acceleration, which means the vibration 

amplitude is large when the bearing is highly degraded. For 
bearing 2, the results of the “handcrafted” extracted features: 
standard deviation and DWT are heavily affected by “noise 
spikes” in the raw signals. This decreases the performance 

of these two indicators in terms of monotonicity and makes 
it difficult to build a reliable   prognostic model based on 
these features. On the contrary, the health indicator 
extracted by ELM-AE is less affected by the “noise spikes” 
and the intensity of the spikes in the in the ELM-AE  
indicator is much smaller. This demonstrates the ability of 

ELM-AE to effectively extract the tendency information 
hidden in the raw signals and eliminate the effects of noise, 
even with a high degree of noise in the signal. The ELM-AE 
are able to extract the relevant information without any 
additional information on the type of signals and the type of 
relevant information content in the signals.   

The raw signals of bearing 3 are not stable towards the end 
phase of the test period. The peak values during time 11,500 
to 12,000 are in fact larger than those during the time from 
12,200 to 12,900. However, it doesn’t mean the health 
status of the bearing has improved. The peak values are not 
the only indicator of the health condition of bearings. This 

kind of non-monotonicity in raw signals cannot be filtered 
by the feature of standard deviation. The health indicators 
extracted by the “handcrafted” feature extraction approaches 
are, therefore, not able to extract monotonous health 
indicators from this dataset and these health indicators are 
therefore not useful for prognostics models. On the contrary, 

ELM-AE are able to extract a monotonous health indicator 
that is able to represent the system health condition and can 
also be used within prognostics models with good results. 
Additionally, the health indicator extracted by ELM-AE is 
smoother than the one extracted by the DWT.  

 

5. CONCLUSIONS 

In this paper, we proposed to apply a deep learning 
approach based on the stacked auto-encoders and extreme 
learning machines to extract health indicators from bearing 
vibration monitoring signals. The obtained results were 
compared to those derived from commonly applied 

“handcrafted” indicators.  

Even though the vibration signals of the two datasets 
applied to test the algorithm showed very different 
characteristics compared to those applied to train the 
algorithm, ELM-AE were able to extract the relevant  
information in an unsupervised way, without any expert 

knowledge integrated into the learning process of the 
algorithm.  

The ELM-AE algorithm is able to achieve a better 
performance compared to the “handcrafted” algorithm.  

ELM-AE can be easily applied to any other type of feature 
extraction problems without integrating additional expert 
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knowledge. The approach provides a general solution to 
feature extraction problems. This general applicability is in 
contrast to the typically applied approach in the PHM 
domain of designing a specific solution for a specific 

application. It is expected that ELM-AE are applicable to 
many different types of condition monitoring signals and 
will be able to effectively extract health indicators from 
these signals. This will not only enable faster and more 
reliable detections and predictions of the remaining useful 
life but will also decrease the costs for algorithm 

development due to the general applicability of the approach 
and a fast training time. 
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NOMENCLATURE 

PHM Prognostics and Health Management 

RUL Remaining Useful Life 

KNN K-Nearest-Neighbor Clustering 

ANN Artificial Neural Networks 

SVM Support Vector Machines 

FC Fuzzy Classifiers 

EWT Empirical Wavelet Transform 

ELM Extreme Learning Machines 

ELM-AE 
Extreme Learning Machines and Auto-

Encoder 

SLFN 
Single-hidden Layer Feedforward Neural 

networks 

PSD Power Spectrum Density  

WPD Wavelet Packet Decomposition  

DWT Discrete wavelet transform  
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