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ABSTRACT

In visual binary stars, mass estimation can be accomplished
through the study of their orbital parameters –Kepler’s Third
Law establishes a strict mathematical relation between orbital
period, orbit size (semi-major axis) and the system total mass.
Although, in theory, few observations on the plane of the sky
may be enough to obtain a decent estimate for binary star
orbits, astronomers must frequently deal with the problem
of partial measurements (i.e.; observations having one com-
ponent missing, either in (X,Y ) or (ρ, θ) representation),
which are often discarded. This article presents a particle-
filter-based method to perform the estimation and uncertainty
characterization of these orbital parameters in the context of
partial measurements. The proposed method uses a multi-
ple imputation strategy to cope with the problem of missing
data. The algorithm is tested on synthetic data of relative po-
sition of binary stars. The following cases are studied: i) fully
available data (ground truth); ii) incomplete observations are
discarded; iii) multiple imputation approach is used. In com-
parison to a situation where partial observations are ignored,
a significant reduction in the empirical estimation variance is
observed when using multiple imputation schemes; with no
numerically significant decrease on estimate accuracy.

1. INTRODUCTION

Mass is arguably the most important property of a star, since
it determines to a great extent the structure and evolution of
the celestial body. Visual binaries, defined as gravitationally
bound pairs of stars whose components can be individually
resolved with the aid of a telescope, are probably the main
source of data on stellar masses, since Kepler’s Third Law
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establishes a strict relation between orbital parameters and
the system total mass:

a3

P 2
=

G

4π2
(m1 +m2), (1)

where P , a and G are the orbital period, orbit semi-major
axis1, and the gravitational constant, respectively. Individual
masses are denoted m1 (primary star) and m2 (companion
star). Observations of visual binaries are expressed in terms
of the relative position of the companion star with respect to
the primary star in the plane of the sky, using either Carte-
sian or polar coordinates. It must be noted that, unless other
measurements are incorporated (for example, radial velocity),
observations of visual binaries are samples from the apparent
orbit, that is, the projection of the real, three-dimensional or-
bit in the plane of the sky.

Theoretically, few observations are enough to determine the
orbital parameters of a double star. Docobo’s analytic method
requires as few as three observations of the apparent orbit
(Docobo, 1985). However, those must be high quality ob-
servations in well-chosen points of the orbit. In (Lucy, 2014),
the author uses 15 observations with varying degrees of qual-
ity and orbit coverage. Performing simulation-driven test-
ing of estimation methods allows researchers to control most
aspects of the algorithm input, from the underlying orbital
configuration to the quality and quantity of the observations.
However, when data is obtained from real sources, astronomers
have to deal with several issues: noisy observations, diversity
of sources, incomplete measures, poor orbit coverage. As
most algorithms require a full set of measurements, partial
observations –i.e.; those having one component missing, ei-
ther in (X,Y ) or (ρ, θ) representation– are often discarded.

1Half of the longest diameter of an ellipse. This work is focused on systems
whose specific energy is less than zero, so each of their components follows
an elliptical path.
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As a means to cope with the aforementioned difficulties, this
work addresses the task of estimating the orbital parameters
and characterizing their uncertainty from a Bayesian stand-
point and merging empirical, theoretical, and statistical knowl-
edge (represented by observations, the dynamical model of
binary stars, and prior knowledge of orbital parameters, re-
spectively). Moreover, knowledge hidden in incomplete ob-
servations is incorporated through the implementation of a
multiple-imputation scheme.

Although this research has been motivated by the problem of
orbital estimation, the proposed method may be applicable to
a variety of parameter estimation problems. Moreover, its im-
plementation only requires the statistical characterization of a
merit function (e.g., Mean Square Error). Since this method
does not focus on finding minima/maxima of a fitness func-
tion, but in assigning a degree of likelihood to each candi-
date solution according to a Bayesian approach, it provides a
sound theoretical framework for uncertainty characterization.

The article is structured as follows. In Section 2, a theoretical
background is presented, reviewing the underlying concepts
of particle filters, artificial evolution of parameters and the
multiple imputation approach. Section 3 presents the dynam-
ical model of binary stars, the observational aspects related to
this problem, and the application of the multiple-imputation
particle filter to the estimation of orbital parameters. In Sec-
tion 4, the algorithm is tested on a synthetic data set with
some incomplete observations, analyzing its performance in
comparison to the scenarios where data is fully available and
where partial observations are discarded. Finally, conclusions
and future work are presented in Section 5.

2. THEORETICAL BACKGROUND

Real world systems are commonly dynamic, nonlinear, and
may involve a high dimensionality relationship between vari-
ables. In this regard, state-space models offer a good treat-
ment for these systems; for example, when monitoring criti-
cal system components which physical phenomenology may
be modeled directly under the state-space form. Moreover,
uncertainty due to noisy measurements associated with sen-
sors constraints or other sources of disturbances such as the
lack of knowledge about the actual system dynamics, can be
incorporated into the state-space form with ease. This allows
us to adopt a Bayesian approach, where the main objective is
to estimate the underlying probability distribution in order to
perform statistical inferences. Since the analytical solutions
may be founded under certain conditions, the real problem
to be addressed is that of evaluating complex integrals where
numerical methods tend to breakdown, even more when high
dimensional systems are involved. An alternative to address
this problem is the use of particle filters, which is presented
in the following section. Finally, we present the multiple im-
putation particle filter.

2.1. Particle Filters

Due to the use of digital computers for signal processing, it is
of interest to develop a Bayesian processor in which measure-
ments arrive sequentially in time. The recursive estimation
of the evolving posterior distribution is the so called optimal
filtering problem. A mathematical framework is provided be-
low for solving this problem using particle filters.

Let X = {Xt, t ∈ N} be a first order Markov process denot-
ing a nx-dimensional system state vector with initial distri-
bution p(x0) and transition probability p(xt|xt−1). Also, let
Y = {Yt, t ∈ N \ {0}} denote ny-dimensional conditionally
independent noisy observations. The whole system is repre-
sented in state-space form as

xt = f(xt−1, wt−1), (2)
yt = g(xt, vt), (3)

where wt and vt denote independent random variables whose
distributions are not necessarily Gaussian. Since it is difficult
to compute the filtering posterior distribution p(xt|y1:t) di-
rectly, Bayesian estimators are constructed from Bayes’ rule.

Under Markovian assumptions, the filtering posterior distri-
bution can be decomposed into

p(xt|y1:t) =
p(yt|xt) · p(xt|y1:t−1)

p(yt|y1:t−1)
. (4)

In this context, sequential Monte Carlo methods (SMC) of-
fer an alternative to numerical integration techniques that fail
due to high computation. SMC methods, also called parti-
cle filters, are stochastic computational techniques designed
for simulating highly complex systems in an efficient way.
In Bayesian estimation, these techniques simulate probability
distributions by using a collection of N weighted samples or
particles, {x(i)t ,W(i)

t }Ni=1, that yields to discrete mass proba-
bility distributions, as shown in Equation 5.

p̂(xt|y1:t) ≈
N∑
i=1

W(i)
t δ(xt − x(i)t ). (5)

The weighting process is made by applying the sequential
importance resampling (SIR) algorithm, which is explained
in the following subsections.

2.1.1. Sequential Importance Sampling

Importance sampling is used to simulate samples from a pro-
posed distribution, all to obtain Monte Carlo (MC) estimates
of complex expressions such as Eq. 6. The method heavily
depends on choosing an appropriate importance distribution.
However, this task may be computationally intensive.

f̂(xt) = EX|Y {f(xt)} =

∫
X

f(xt)p(xt|y1:t)dxt. (6)
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Drawing N independent identical distributed random sam-
ples from p(xt|y1:t), the integral may be approximated by a
sum of Dirac delta functions.

f̂(xt) ≈ 1

N

N∑
i=1

f(xt)δ(xt − x(i)t ), (7)

=
1

N

N∑
i=1

f(x
(i)
t ). (8)

These approximations may not hold when it is not possible
to sample directly from p(xt|y1:t). The sequetial importance
sampling (SIS) algorithm avoids these difficulties by drawing
samples from an importance distribution and approximating
the posterior distribution by appropriate weights. Weights are
recursively defined as

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)t ) · p(x̃(i)t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1, y1:t)

, (9)

where {x̃(i)t }Ni=1 is a set ofN random samples drawn from the
importance distribution π(x̃

(i)
t |x̃

(i)
0:t−1, y1:t). Also, by defin-

ing normalized weights

W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

, (10)

then the posterior distribution can be approximated by the ex-
pression described in Equation 5.

2.1.2. Resampling

When the updating process begins, a tendency to increase
the variance of particles is seen, setting negligible weights to
some of them. These particles become useless as they track
low probability paths of the state vector. In order to solve
this problem, a resampling step is incorporated, which leads
to the SIR algorithm.

An analytical expression for measuring how degenerated are
the particles is given by the effective particle sample size
showed in Equation 11.

Neff (t) =
N

1 + V arp(·|y1:t)(w(xt))
. (11)

As it is not possible to calculateNeff , an estimate is given by

N̂eff (t) =
1∑N

i=1(W(i)
t )2

. (12)

In other words, the resampling step consists of removing small
weighted particles while retaining and replicating those of
large weights. Thus, whenever N̂eff ≤ Nthres, with Nthres
a fixed threshold, the depletion of the particles is imminent
and resampling must be applied.

Algorithm 1 SIR Particle Filter
1. Importance Sampling

for i = 1, . . . , N do
• Sample x̃(i)t ∼ π(xt|x(i)0:t−1, y1:t) and
set x̃(i)0:t , (x

(i)
0:t, x̃

(i)
t )

• Compute the importance weights

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,y1:t)

• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for

2. Resampling
if N̂eff ≥ Nthres then

for i = 1, . . . , N do
• x(i)0:t = x̃

(i)
0:t

end for
else

for i = 1, . . . , N do
• Sample an index j(i) distributed according to the
discrete distribution satisfying P (j(i) = l) = W(i)

t
for l = 1, . . . , N

• x(i)0:t = x̃
j(i)
0:t and w(i)

t = 1
N

end for
end if

In general, the SIR particle filter is divided into two steps.
Firstly, a prediction is done using the state transition model
to generate the prior distribution p(xk|xk−1). Then an update
step is done to modify the particle weights through the like-
lihood p(yk|xk). If the resulting particles are degenerated, a
resampling step is added, as it was shown previously.

2.1.3. Online Parameter Estimation with Particle Filter

In the context of state estimation, it is sometimes necessary
to handle an online estimation scheme for a model parame-
ter vector. Although parameters are considered as fixed in a
wide range of problems, this approach is not always adequate,
since parameters of a system might be time-varying or simply
unknown.

To understand the problems of parameter estimation outside a
Bayesian context, let θ be a vector parameter. The maximum
likelihood estimate of θ is obtained by maximizing the log-
likelihood function (Kitagawa & Sato, 2001):

l(θ) = log[L(θ)] =

T∑
t=1

log[p(yt|y1:t−1, θ)], (13)

where the term

p(yt|y1:t−1, θ) =

∫
p(yt|xt, θ)p(xt|y1:t−1, θ)dxt (14)

needs to be approximated via Monte Carlo methods.
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The maximization of Expression 13 for the estimation of θ
is not always direct, and approximations over Eq. 14 make
this method impractical, due to the high computational costs
involved if parameter estimation is intended for every time
step. Thus, a different perspective is necessary to approach
the online parameter estimation problem. This idea is at-
tacked through the artificial evolution of parameters.

The first ideas about introducing random disturbances to par-
ticles were proposed by (Gordon, Salmond, & Smith, 2002).
In their work, the authors propose to introduce random distur-
bances to the positions of particles (called roughening penal-
ties) in order to combat degeneracy. This idea has been ex-
tended in order to estimate online a vector of fixed model
parameters, which is referred to as artificial evolution(Liu &
West, 2001). Artificial evolution of parameters is a simple
and powerful idea, nevertheless, it requires careful handling
because of the inherent model information loss given by the
consideration of time-varying parameters that are fixed.

Instead of estimating the vector parameter θ through maxi-
mum likelihood, the Bayesian framework may be introduced
to estimate θ online. This is achieved by augmenting the state
vector xt with unknown parameters θ as:

xt =

[
xt
θt

]
. (15)

Where θt = θ implies the consideration of an extended model
where parameters are time-varying. Then, an independent,
zero-mean normal increment is added to the parameter at each
time step (Liu & West, 2001):

θt = θt−1 + εt, (16)

εt ∼ N (0,Wt), (17)

where Wt is a variance matrix and θt and εt are conditionally
independent given Σt. The key motivation is that the artificial
evolution of parameters gives new values for each iteration,
and thus, weight assignment in Particle Filters considers the
likelihood of the state and parameter values.

2.2. Multiple imputations

Missing data is a problem that may be treated mainly from
two perspectives. On the one hand, single imputation tech-
niques fill the incomplete data set imputing single values at
each missing datum. The advantage of this perspective is that
it allows standard complete data methods to be used. How-
ever, these techniques fail due to the lack of uncertainty char-
acterization of both, the sampling variability and the uncer-
tainty associated with the imputation model. On the other
hand, the idea of multiple imputations retains the advantages
of single imputation techniques and also accounts for the un-
certainty of the missing mechanism. Multiple imputations
(Rubin, 1987) consist of creating multiple complete data sets

imputing m values for each missing datum so that sampling
variability around the actual values is incorporated for per-
forming valid inferences. Nevertheless, multiple imputations
has disadvantages like the need of drawing more imputations
and larger memory space for storing and processing multiple-
imputed data sets.

It is important to choose the right number of imputations
(Graham, Olchowski, & Gilreath, 2007). Obviously, the com-
putational cost is higher as the number of imputations in-
creases. In this regard, (Rubin, 1987, p. 114) shows that an
approximation of efficiency for an estimate is given by

(1 +
γ

m
)−1/2, (18)

in units of standard errors, where m is the number of im-
putations and γ is the fraction of missing information in the
estimation. Consequently, excellent results may be obtained
using only few imputations (m = 3, 4, 5).

2.3. Multiple Imputation Particle Filter

Originally introduced by (Housfater, Zhang, & Zhou, 2006),
the Multiple Imputation Particle Filter extends the PF algo-
rithm by incorporating a multiple imputation (MI) procedure
for cases where measurement data is not available, so that the
algorithm can include the corresponding uncertainty into the
estimation process. The main statistical assumption in this
approach is that the missing mechanism is Missing at Ran-
dom (MAR), thus, it does not depend on the missing measures
given the observed ones.

For readability, a change in notation is necessary. As it was
stated in (Housfater et al., 2006), lets denote now the mea-
surements as a partitioned vector Ut = (Zt, Yt), where Zt
corresponds to the missing part and Yt is from now on the
observed part. Then, the MI PF algorithm performs the same
as the SIR PF except that there are missing measures. In this
case, a MI strategy is adopted.

An imputation model expressed as a probability distribution
φ is required for drawing m samples -imputations-, that is

zjt ∼ φ(zt|y1:t), (19)

where j = {1, . . . ,m} denotes the imputation index. Sim-
ilarly to importance sampling, each imputation is associated
with a weight pjt holding the condition

∑m
j=1 p

j
t = 1. The

filtering posterior distribution is (Liu, Kong, & Wong, 1994):

p(xt|y1:t) =

∫
p(xt|u1:t−1, yt)p(zt|y1:t)dzt. (20)

By performing a Monte Carlo approximation,

p(xt|y1:t) '
m∑
j=1

pjtp(xt|u1:t−1, u
j
t ), (21)
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where ujt = (zjt , yt) are complete data sets formed from im-
puted values. Additionally, by particle filtering each of these
data sets yields

p(xt|u1:t−1, ujt ) ≈
N∑
i=1

w
(i,j)
t δ(xt − x(i,j)t ), (22)

where the indexes i and j indicate the particle and the im-
putation, respectively. Thus, an approximation of the desired
posterior distribution is

p(xt|y1:t) ≈
m∑
j=1

N∑
i=1

pjtw
(i,j)
t δ(xt − x(i,j)t ). (23)

3. MULTIPLE-IMPUTATION-BASED UNCERTAINTY
CHARACTERIZATION FOR ORBITAL PARAMETERS
ESTIMATION

3.1. Binary Stars Dynamics

Under some basic assumptions, the dynamics of a binary stel-
lar system is reduced to the two-body problem, whose solu-
tion is the well-known Keplerian orbit. Keplerian orbits de-
scribe the motion of orbiting celestial bodies in terms of an
ellipse, parabola or hyperbola. The specific geometry of the
orbit depends on the underlying physical properties (i.e., en-
ergy) of the system under study. In this work, we are inter-
ested in systems with periodic elliptical orbits.

An ellipse is fully described by its eccentricity, e, and its
semi-major axis, a. It can be demonstrated that both the in-
dividual bodies of the binary system and the relative position
vector follow elliptical paths with the same eccentricity and
period (P ), but different phase angles (companion star is al-
ways 180◦ ahead of primary star). Figure 1 illustrates the
individual paths of the binary system (primary star in blue,
companion star in red); the relative position is represented by
the black line that joins both components. Individual semi-
major axes comply the following relations:

a = a1 + a2, (24)
a1 ·m1 = a2 ·m2, (25)

where a1, a2 and a are the semi-major axis of the primary
star, the companion star and the relative orbit, respectively.
Thus, determination of the parameters of the relative orbit be-
tween the primary and companion star is enough to calculate
the total mass of the system.

For a given epoch τ , the value of the relative position be-
tween stars is computed as follows. Let be T the epoch when
separation between primary and companion star reaches its
minimum value. This value is known as time of periastron
passage. Then, the expression known as Kepler’s equation

Figure 1. Elliptical orbits of a binary system.

can be written:

M = π(τ − T )/P = E − e sinE. (26)

where termsM andE are called mean anomaly and eccentric
anomaly, respectively2. Equation 26 doesn’t have analytical
solution, and must be solved through numerical methods (in
this work we use Newton-Raphson algorithm). Once E(τ) is
obtained, the term known as true anomaly is directly deter-
mined by:

tan
ν

2
=

√
1 + e

1− e
tan

E

2
. (27)

True anomaly ν corresponds to the angle between the main
focus of the ellipse and the companion star, provided that the
periastron is aligned with the X axis and the primary star
occupies the main focus of the ellipse (Figure 2). Evaluating
ν(τ) in the following expression:

r(ν) =
a(1− e2)

1 + e cos ν
, (28)

yields the position (r, ν) (polar coordinates) at a given instant
τ .

3.2. Observational aspects

In the previous subsection, the reference system has been cho-
sen so that the plane of motion of the binary system (orbital
plane) coincides with the XY plane. However, the orbit of
a real system may have an arbitrary orientation in the space.
What telescopes show is the projection of the real orbit in
the reference plane (plane of the sky), known as the apparent
orbit (Figure 3 provides a graphical insight of the aformen-
tioned orbits). In order to explain the mathematical relation

2The geometrical meaning of this terms, although important in the context of
Astronomy or Physics, is not relevant in this article, and therefore won’t be
explained in detail.
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Figure 2. Diagram with mean and eccentric anomaly. F is the
focus of the ellipse from which the angle ν is measured; S is
an arbitrary point of the orbit and S′ its perpendicular projec-
tion to auxiliary circumference (i.e., that with same center O
and radius equal to a).

between real and apparent orbit, the following quantities must
be defined:

• i or Orbital inclination: The angle between the reference
plane and the orbital plane.

• ω or Argument of the periapsis: The angle from the body’s
ascending node to its periapsis, measured in the direction
of motion.

• Ω or Longitude of the ascending node: The angle from
a reference direction (usually the north celestial pole),
called the origin of longitude, to the direction of the as-
cending node, measured in the reference plane.

Let O = {T, P, e, a, ω,Ω, i} be an arbitrary orbital configu-
ration. Then, the apparent orbit is computed as follows:

• Calculate the Thiele-Innes constants:

A = a(cosω cos Ω− sinω sin Ω cos i),

B = a(cosω sin Ω + sinω cos Ω cos i),

F = a(− sinω cos Ω− cosω sin Ω cos i),

G = a(− sinω sin Ω + cosω cos Ω cos i).

(29)

• For any given epoch τ , determine the eccentric anomaly
E. With this value, calculate the auxiliary variables (x, y).

x(E) = cosE − e,

y(E) =
√

1− e2 sinE.
(30)

• Finally, obtain the position in the plane of the sky by
evaluating the following expressions:

X = Bx+Gy, (31)
Y = Ax+ Fy,

which define a point in the apparent orbit.

Thiele-Innes constants provide not only a straightforward way
to calculate the apparent from a set of orbital parameters, but

also an alternative mathematical characterization of a binary
system. Indeed, parameters {a, ω,Ω, i} can be substituted by
{A,B, F,G} since they are mutually mapped by the follow-
ing expressions:

tan(ω + Ω) =
B − F
A+G

,

tan(ω − Ω) =
−B − F
A−G

,

a2(1 + cos2 i) = A2 +B2 + F 2 +G2,

a2 cos2 i = AG−BF.

(32)

However, this representation is not free of ambiguity –given a
value of a, different angles ω, Ω, imay yield the same Thiele-
Innes constants. In spite of this, Thiele-Innes representation
is widely used by astronomers, since some algorithms can
take advantage of the linear dependence of the constants with
respect to the values of (x, y).
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Figure 3. Real orbit in 3D space (blue line), observations
(black circumferences) and apparent orbit (red line) in the
plane of the sky.

3.3. Particle-filter-based Estimation of Parameters

Although Particle Filter was conceived as a method for on-
line state estimation, it allows online parameter estimation
as well, by means of Artificial Evolution of Parameters (ex-
plained in Section 2.1.3). Since in the study of visual binaries
the object of interest is the orbital configuration (rather than
the specific position of the stars at each epoch)3, this method
aims to characterize the observed object in terms of a vector
of orbital parameters and its uncertainty, represented by the
posterior probability density function given the observations.

Observations of visual binaries are not acquired at a constant,

3It is the set of parameters what enables the estimation of the mass and energy
of the system.
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less-than-one-second sampling rate. In fact, most of them are
obtained sparsely within long time intervals (e.g., 15 mea-
surements in 20 years). Thus, real-time estimation is not re-
quired and there is no impediment to using all the available
observations at once, instead of the one-measurement, one-
iteration approach that is usually employed in Bayesian fil-
tering.

In order to adapt the Particle Filter to this specific problem,
we propose a design that dispenses with state estimation (namely,
relative position (X,Y ) in the plane of the sky at each epoch
τ ) and focuses in parameter estimation using the Artificial
Evolution of Parameters approach. That design is summa-
rized in the following points:

• State definition: Initially, each particle consists of a vec-
tor of orbital parameters:

x
(i)
t = (T

(i)
t , P

(i)
t , e

(i)
t , a

(i)
t , ω

(i)
t ,Ω

(i)
t , i

(i)
t ). (33)

However, Thiele-Innes representation is preferred, as pa-
rameters A, B, G, F can be estimated by a least-squares
method provided that both parameters T, P, e and the set
of observations {τk, Xk, Yk}k=1,...,N are known4. Thus,
each particle is reduced to x(i)

t = (T
(i)
t , P

(i)
t , e

(i)
t ). Vari-

able i is used as an index for the particles and t indicates
the current iteration of the filter.

• Evolution equation: Since none of components of a par-
ticle is, properly speaking, a state variable5, they evolve
according to the Artificial Evolution of Parameters ap-
proach:

x
(i)
t+1 = x

(i)
t + ε

(i)
t , (34)

where ε(i)t is the artificial evolution noise. Each realiza-
tion of ε is drawn from a multivariate Gaussian distribu-
tion of the same dimension of xt.

• Weight update routine: In this scheme, all available ob-
servations are used at once and no new measurements are
received at the beginning of a iteration. Because of this,
a novel weight update criterion is proposed. For each
particle x(i)t , we calculate the Mean Squared Error with
respect to the set of observations {τk, Xk, Yk}k=1,...,N :

Y(i)
t =

1

N

( N∑
k=1

1

σ2
x(k)

[Xk −Xk,t,i
comp]

2+

N∑
k=1

1

σ2
y(k)

[Yk − Y k,t,icomp]
2
)
,

(35)

where the triplet (k, t, i) indicates epoch τk, filter itera-
tion t and particle index i. Ordered pairs (Xk,t,i

comp, Y
k,t,i
comp)

are the relative positions at epoch τk computed according

4The least-square method for the estimation of Thiele-Innes constants is ex-
plained in detail in (Lucy, 2014).

5In the sense of the state-space representation widely used in Control Theory.

to the T , P and e values of particle x(i)t .
Assuming that observations in the plane of the sky are
affected by Gaussian noise (that is, Xobs = Xreal + n,
where n ∼ N ), variable Y must follow a Gamma distri-
bution (details in Appendix A). Thus, by evaluating the
value of Y(i)

t in the p.d.f. of Gamma distribution, we ob-
tain a measure on how likely is the particle x(i)t . That
enables to perform the weight update step as follows:

w
(i)
t = w

(i)
t−1 · LY(x

(i)
t |Y

(i)
t ), (36)

where the likelihood function LY has the analytical form
of Gamma p.d.f.:

LY(Θ|x) = PY(x|Θ) =
1

Γ(α)θα
xα−1e−

x
θ . (37)

Equation 37 uses the traditional notation of Statistics:
likelihood function has parameters Θ (in uppercase in or-
der to avoid confusion with parameter θ of Gamma dis-
tribution) and outcomes x (observations). In this case,
x = Y(i)

t and Θ = x
(i)
t . Values of parameters α and θ

are specified in Appendix A;

Algorithm 2 summarizes the implementation of the method
proposed.

Algorithm 2 Particle Filter for Estimation of Orbital Param-
eters

for t = 1 : Nit do
for i = 1 : Npart do

if t = 1 then
• Particle initialization
xt(i) ∼ initDist

else
• Evolution equation
xt(i)← xt−1(i) +Wt(i), Wt(i) ∼ N (0,Σε)
• Thiele-Innes constants calculation (E : epochs)
[B,A,G, F ]← leastSquaresEstimate(. . .
E , Xobs, Yobs, Tt(i), Pt(i), et(i),Wobs)
•MSE calculation (Wobs: observation weight)
Yt(i)←MSE(E , Xobs, Yobs, · · ·
Wobs, xt(i), B,A,G, F,Wobs)
•Weight update
wt(i)← wt−1(i) · LY(Yt(i))

end if
end for
•Weight normalization
wt(1 : Npart)← wt(1 : Npart)/

∑Npart
i=1 wt(i)

• Resampling
if 1/

∑Npart
i=1 w2

t (i) < Rth then
[xt(1 : Npart), wt(1 : Npart)]← resampling(. . .
xt(1 : Npart), wt(1 : Npart))

end if
end for
• Final values of particles and weights
return xN (1 : Npart), wN (1 : Npart)

7
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3.4. Implementation of a Multiple Imputation Strategy

In Section 3.3 a Particle Filter-based approach for estimation
of orbital parameters is proposed, but nothing is said about in-
complete measurements. This section puts forward a strategy
to address that problem.

Astronomers must often deal with the problem of partial ob-
servations. Given an image of a visual pair (obtained by
means of an optical telescope or interferometric techniques),
the two stars are expected to be individually resolved, so their
positions in the plane of the sky can be clearly identified. The
most usual situation of incomplete observations occurs when
the bodies of a binary system are too close to be individually
resolved in an image. In this cases, a blob-like shape appears
instead of a pair of sharp points, but a slope is still noticeable.
In mathematical terms, it can be said that θ is known but ρ
isn’t. In this article, Cartesian coordinates are used instead
of (ρ, θ) representation, so incomplete observations have the
form of (X, missing) or (missing, Y ). Coping with polar
coordinates representation is part of the future work.

The estimation method detailed in Section 3.3 requires a set
of complete observations to compute Equation 35. If partial
observations (i.e., only X or only Y is known for a given
epoch) are incorporated into the sum, the statistical charac-
terization of term Y could not be accomplished in the way
presented in Appendix A. Multiple Imputation Particle Filter,
summarized in Algorithm 3, is used as a means of integrat-
ing the knowledge contained in incomplete observation in the
estimation routine.

The basic idea of the Multiple Imputation Particle Filter is
to fill the set of observations by imputing values where ei-
ther X or Y is missing. Thus, there are as many complete
data sets as imputations generated, and those sets are eval-
uated in a similar way to that presented in Section 3.3: for
each particle, the Y value is computed and then weight up-
date is performed according to Equation 36. Let m denotes
the number of imputations (and number of different data sets
as well) and N the number of particles at the beginning of
an iteration. Since each combination of particle and imputa-
tion results in a different vector of orbital parameters (P, T, e)
and a different weight, the total number of particles would in-
crease to m × N . In order to avoid an exponential increase
in the size of the particle population, number of particles is
fixed at N by adding a reduction stage in which Rubin’s rule
is applied(Rubin, 1987).

According to multiple imputation theory, imputed values must
be drawn from a proposal distribution φ. In this case, in
absence of additional information of star position at certain
epoch of observation, values ofX , Y are drawn from the prior
distribution p(xt|yt−1) (in the context of Bayesian filtering,
the posterior distribution obtained by the filter after the itera-
tion t− 1 is used as prior in the next iteration).

Algorithm 3 Multiple Imputation Particle Filter
1. MI Importance Sampling

for j′ = 1, . . . ,m do
for i = 1, . . . , N do
• Sample x̃(i,j

′)
t ∼ π(xt|x(i)0:t−1, ỹ

j′

t−1) and

set x̃(i,j
′)

0:t , (x
(i)
0:t−1, x̃

(i,j′)
t )

end for
end for
• Compute m imputations yjt ∼ φ({x̃(i,j

′)
t , w

(i,j′)
t }, ηt)

and its associated weights pjt .
• Reduce the particle population from N ·m to N .
x̃
(i,j)
t → x̃

(i)
t

• Defining the importance weights

w
(i,j)
t = w

(i)
t−1 ·

p(yjt |x̃
(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,ỹ

j
1:t)

for i = 1, . . . , N do
• Apply Rubin’s rule
w

(i)
t =

∑m
j=1 w

(i,j)
t

x
(i)
t = 1

w
(i)
t

∑m
j=1 w

(i,j)
t x

(i,j)
t

end for
for i = 1, . . . , N do
• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for

4. EXPERIMENTAL RESULTS

This article uses model-based, computer-generated data to
test the algorithms proposed, being the incorporation of real
data an important part of the future research. Both data syn-
thesis and filtering algorithms were implemented in MAT-
LAB. The specific experimental setup is detailed as follows:

• Orbital parameters of the visual binary known as Sirius
were used to generate synthetic data, by means of equa-
tions 29, 30 and 31. Specific values of Sirius system are
specified in Table 1. Observation noise has standard de-
viation σ = 0.075 [arcsec] for both X and Y axes.

• An alternative representation of parameter T is used, in
order to bound its range of acceptable values. Let be
t0 the time when the observation campaign begins (it
may be the epoch of the first observation, but an arbi-
trary value may be chosen as well). Instead of being ex-
pressed as an explicit year (year 1894.130 in the case of
Sirius, for example), time of periastron passage is repre-
sented as a fraction of the orbital period P , with value
Talt = 0 being t0 and Talt = 1 corresponding to the
year t0 + P . Through different combinations of P and
Talt (in fraction representation), arbitrary values of T (in
the explicit year representation) can be achieved, so this
re-expression does not leave out any feasible solution.
In other words, both representations are equally expres-
sive, but the fractional one is more convenient in terms
of the search algorithm: the random walk induced by

8
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the Artificial Evolution of Parameters is performed in the
range [0, 1) instead of the possibly wider range of years
[t0,∞). From this point on, the alternative representa-
tion Talt will be referred to simply as T .

• Particle Filter is run withN = 500 particles duringNit =
40 iterations, which proved to produce good results in
practice 6. However, more rigorous termination crite-
ria (e.g., convergence conditions) must be investigated
in future work. In Section 4.2 the multiple imputations
approach is applied, with the first 20 iterations being
run without taking into account the incomplete observa-
tions (no data is imputed), and the following ones with
m = 20 imputations per cycle. This may be seen as
a way of calculating a decent prior for the parameters,
before the application of the Multiple Imputation Parti-
cle Filter. Particles are sampled from the a valid prior
(obtained from the last iteration of the filter). In other
words, the prior p.d.f. is used as importance sampling
distribution. The transition model is set according to the
Artificial Evolution approach (Equation 34). In MI PF,
imputations are also sampled from the current prior.

4.1. Uncertainty characterization of orbital parameters

The scope of this section is limited to show the results of par-
ticular realizations of the algorithm, in order to deliver an
intuitive idea of how the method performs. The evaluation
of the method according to statistical criteria is performed in
Section 4.2.

Figure 4 depicts the marginal p.d.f. of parameters (T, P, e)
obtained after one execution of the method proposed with
complete data and, therefore, no imputations. That scenario
is fully detailed in Section 4.2 and illustrated in Figure 5. Re-
sults obtained in the Data Discarding and the Multiple Im-
putation scenarios (Figures 6a and 6b, respectively) are quite
similar in form, but with obvious differences in accuracy and
precision. Figure 4 shows that, although close to the real val-
ues, the estimates obtained may present some degree of bias7.

What allows Particle Filter to use as few as 500 particles is
the dimensionality reduction accomplished by using Thiele-
Innes representation. Since parameters (a, ω,Ω, i) are not di-
rectly estimated with Artificial Evolution of Parameters, their
probability density functions are not shown in Figure 4, al-
though they can be estimated through the application of the
expressions shown in Equation 32 to the (A,B, F,G) values
calculated for each particle.

The main conclusion of this section is that uncertainty char-
acterization of orbital parameters can be achieved with our
Particle-Filter-based implementation. On the one hand, it
6This means that an increase in either N or Nit shows no significant im-
provement in terms of accuracy or precision of estimation.

7Regardless of how that estimate is being calculated –both maximum like-
lihood points and average values of the p.d.f. may yield values which are
different from the real parameter.
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Figure 4. Marginal p.d.f. of parameters (T, P, e). Red bars
denote real parameter values whereas blue lines indicate their
estimated p.d.f., obtained by applying the Epanechnikov ker-
nel on set of particles.

may be possible that other algorithms (gradient-based meth-
ods, for example) may perform better in terms of accuracy,
since Particle Filters have at least two key limitations: 1. it is
a sample-based representation, which may fail to characterize
the real p.d.f., specially when a limited number of particles is
used; 2. it utilizes the concept of Artificial Evolution, which
limits the achievable precision, since particles keep being per-
turbed even when they have reached a point of high (or even
maximum) likelihood (an adaptive variance of the evolution
noise may be investigated in future work). On the other hand,
it must be noted that most methods found in the literature do
not offer uncertainty characterization of orbital parameters,
but a single point estimate.

Another advantage of this method is that, in presence of mul-
tiple feasible solutions8 (that appear in the form of multi-
ple and not mutually close high likelihood points in the pa-
rameter space), Particle Filters will incorporate them possi-
ble modes of the posterior p.d.f. instead just of discarding
them. Gradient-based methods usually converge to the maxi-
mum/minimum solution found during the execution (regard-
less of whether it is a global maximum/minimum or not),
discarding other feasible solutions. However, like gradient-

8It is not infrequent that a number of different orbital configurations fit the
same set of observations, specially when the binary system is poorly ob-
served in terms of orbital coverage.
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based methods, Particle Filters do not guarantee that all fea-
sible solutions will be explored, since it is conditioned by the
initial particle distribution.

The importance of keeping multiple feasible solutions relies
in the fact that, when estimating orbital parameters, points of
high likelihood do not necessarily coincide with actual pa-
rameter values. In fact, sometimes the orbital parameters es-
timates change dramatically when new information is incor-
porated (like other points of the orbit or radial velocity data).
In this regard, future work will be focused on the use the un-
certainty characterization to determine, given the information
available, what kind of observations is needed to improve the
quality of the estimation (in terms of accuracy and precision,
but also in terms of amount of feasible solutions considered
in the analysis).

4.2. Incomplete observations and MI PF

This section compares the performance of the method under
three different scenarios, which are detailed as follows:

1. Full data set is available (Figure 5). The data set consists
ofNobs = 11 observations, with the first one (first epoch)
approximately at (X1, Y1) = (6.8, 7.8) [arcsec] and the
last one at (X11, Y11) = (4.2, 10.2) (this system traces a
clockwise orbit). Algorithm 2 is executed.

2. Data Discarding (Figure 6a). Observations at epochs 10
and 11 are incomplete: (X10, Y10) = (missing, Y ),
(X11, Y11) = (X, missing). Those data records are
discarded, and then Algorithm 2 is executed.

3. Multiple Imputations (Figure 6b). Same data set as the
previous point, but Multiple Imputation Particle Filter is
executed (Algorithm 3).

Figures 5, 6 depict the estimated orbit for particular, though
representative, executions of the algorithm under certain sce-
narios but are not valid as an evaluation of the methods pro-
posed. Table 1, on the other hand, presents the average and
standard deviation values obtained after 10 repetitions of each
of the scenarios described previously (standard deviation is
shown between parentheses).

In Figure 5, actual and estimated orbits are almost overlapped,
which suggests that the estimation is quite satisfactory. Al-
though that figure provides just a visual insight of the method
output (moreover, a particular realization of it), it is also true
that the “Complete Data” row in Table 1 supports the idea
that, just as theory predicts, better results are obtained when
more information is available. In particular, results are better
in terms of precision (lower standard deviations), since the
average value is worse than some of the values obtained in
Scenarios 2 and 3 (check parameter P , for example). The
quality of those results may be originated by particular val-
ues associated with this specific set of realizations, and by no
means implies that this particular setup generates more biased

estimates.
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Figure 5. Orbit estimation with complete data set. Real orbit
in blue, orbit estimated in green, observations as red rings.
Observations affected by data loss in scenarios 2 and 3 are
represented as green-filled circles.

By contrast, the orbit estimate in Figure 6a shows signifi-
cant differences with the actual orbit in the fraction that is
not covered by observations, whereas it is quite more concor-
dant where complete measurements are available. When the
multiple imputation approach is used (Figure 6b), the esti-
mated orbit shows significant coherence with the actual orbit
(though not as much as in Figure 5), suggesting that the in-
corporation of partial measurements improves the quality of
estimates. Table 1 supports this statement, since the estima-
tion variance decreases when using the Multiple Imputation
scheme (for most of the parameters), although not achieving
the values of the “Complete Data” scenario.

Although according to Table 1 the “Data Discarding” sce-
nario may not, in average, produce biased results, it presents
higher estimation variance, specially for parameters P and a.
That occurs because, by ignoring partial measurements, the
method has fewer restrictions and therefore more degrees of
freedom. Thus, a larger number of orbital configurations can
satisfy the observations available (as in Figure 6a), whereas
in the study cases 1 and 3 those combinations are discarded.

The effects of having a larger number of incomplete observa-
tions would depend on the number of complete observations.
Although a large number of observations would theoretically
provide more precision and accuracy on estimates, it is also
true that a few, well placed, complete observations would be
enough to obtain decent estimates of the orbit. Docobo’s an-
alytic method uses 3 measurements (although those measure-
ments are required to be: i. reliable; ii. well spaced along the
orbit); in (Lucy, 2014), 15 observations with more than 40%
of orbital coverage provide satisfactory orbital estimates. Re-
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Table 1. Average value of estimated parameters (standard deviation in parentheses)

T P [yr] e a [arcsec] ω [rad] Ω [rad] i [rad]
Real Parameters 0.2839 50.09 0.5923 7.5000 2.5703 0.7779 2.3829
Complete data 0.2820 (0.0033) 50.4178 (0.5571) 0.5961 (0.0045) 7.5030 (0.0289) 2.5639 (0.0234) 0.7735 (0.0201) 2.3766 (0.0075)
Data Discarding 0.2859 (0.0144) 49.8637 (2.3624) 0.5909 (0.0153) 7.4874 (0.1129) 2.5669 (0.0239) 0.7717 (0.0213) 2.3823 (0.0128)
Multiple Imputations 0.2830 (0.0059) 50.2793 (0.9475) 0.5949 (0.0122) 7.5035 (0.0354) 2.5670 (0.0397) 0.7740 (0.0316) 2.3770 (0.0072)
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(b) PF with multiple imputations

Figure 6. Comparison of observations, real and estimated or-
bit. a) PF with discarding of incomplete observations. b) MI
PF

garding incomplete measurements, they are relevant as long
as they provide information not supplied by complete obser-
vations. For example, incomplete measurements around the
periastron or being the only available datum in an orbital seg-
ment not covered by complete observations (the latter being
the case addressed in this work) would be more valuable that a
partial observation the “repeats” the information provided by
the complete data. Thus, the ratio of complete vs. incomplete

data is not as important as the relevance9 of the observations
available (both partial and complete).

From a computational point of view, the MI PF adds signifi-
cant increase to execution times, since the particle population
grows from N to N × m, increasing the number of opera-
tions performed on each iteration. All algorithms were run
on a personal computer with the following specifications: i5
processor (2.6 GHz), 8GB RAM, Windows 8 Operating Sys-
tem. Average execution times are on the order of 10 seconds
for “Complete Data” and “Data Discarding” cases, whereas
MI PF has execution times on the order of 3 minutes. Al-
though computational costs of these methods are not espe-
cially large, switching from the unoptimized MATLAB code
used in this work to a more computationally efficient imple-
mentation would bring some benefit when dealing with real
data (e.g., data from an astronomical catalogue or an astro-
nomical campaign, where the objects of interest may not be
one but many binary stars).

5. CONCLUSION AND FUTURE WORK

A new particle-filter-based method for estimation of orbital
parameters is presented. Also, a Multiple-Imputation Parti-
cle Filter is proposed to incorporate incomplete observations,
as an extension of the method described in Algorithm 2. The
contribution of this article is twofold: first, it adds uncertainty
characterization to the problem of orbital parameters estima-
tion; secondly, it provides a strategy to cope with incomplete
observations. Preliminary results suggest that the incorpora-
tion of incomplete observations can increase the precision of
the estimation without noticeable decrease in the accuracy.
Potentially, it may help discard feasible solutions that would
be otherwise included in the posterior p.d.f. Furthermore,
the methodology here presented may be applied to other sys-
tems, as long as statistical characterization of a merit function
(Mean Square Error in this work) can be accomplished.

The long-term aim of this research is the incorporation of
uncertainty characterization in the planning of astronomical
campaigns –given an orbit with certain parameters and the
uncertainty associated, which epoch of observation would be
useful in order to reduce estimation variance? Would certain
observation contribute to discard a feasible solution? How-
ever, there are a number secondary aspects to be addressed
as well: investigating alternative convergence criteria for the

9Evaluated as their informative potential. High orbital coverage and obser-
vational precision of individual measurements are the traits desirable of a
visual binary data set.
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particle filter, incorporating adaptive evolution noise, study-
ing a mapping between the observational error of polar and
Cartesian representations.
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APPENDIX A

This appendix shows a proof for the likelihood function used
in Section 3.3. The restriction on the observation weights
aims at simplifying the statistical characterization of the Mean
Squared Error Y of Equation 35.

• Let be nx ∼ N (0, σx) and ny ∼ N (0, σy). We assume
that the observed position satisfies the following equa-
tions:

Xobs = Xreal + nx

Yobs = Yreal + ny,

so differences between observed and real positions are
Gaussian distributed.

• Recall the equation for Mean Squared Error:

Y(i)
t =

1

N

( N∑
k=1

1

σ2
x(k)

[Xk −Xk,t,i
comp]

2+

N∑
k=1

1

σ2
y(k)

[Yk − Y k,t,icomp]
2
)
,

Each difference is squared and weighted by the inverse of
its observation standard deviation σx or σy (assummed to
be known). Rearranging the term 1

σ2 (Pobs − Pcomp)2 as(
1
σ (Pobs − Pcomp)

)2
, it is easy to see that, for a given

epoch τk, term 1
σ (Pobs − Pcomp) ∼ N (0, 1), being P =

X,Y and σ = σx, σy . As 1
σ (Pobs − Pcomp) follows a

standard normal distribution, its square yields a χ2
1 ran-

dom variable.

• For a given k index, the expression within the sum ( 1
σ2
x

(Xobs−
Ycomp)

2+ 1
σ2
y
(Xobs−Ycomp)2) is the addition of two χ2

1,

which follows a χ2
2 distribution.

• Thus, Y is reduced to the arithmetic mean of N random
variables with χ2

2 distribution.

Y =
1

N

N∑
k=1

Rk, with Rk ∼ χ2
deg, deg = 2. (38)

It can be proved that that expressions constructed as Equa-
tion 38 follow a Gamma distribution with parameters:

α = N · deg
2
, θ =

2

N
.
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