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ABSTRACT

In some environments where prognostics and health manage-
ment would be beneficial, for example on board U.S. naval
vessels, installation location and accessibility to power sys-
tem must be considered. In this study, we investigate condi-
tion based maintenance and fault diagnosis for hydraulic ac-
tuators in power constrained environments. The experimental
setup for collecting data is outlined, and a data set replicating
multiple types of faults is collected. Several types of machine
learning classifiers, including random forest and classifica-
tion trees, are tested on the data set. Prediction accuracy as
well as training and testing times are compared, which are
used as a surrogate for power consumption in this study. We
find that the random forest algorithm provides the lowest er-
ror rate of the tested classifiers but has some of the highest
training and testing times. Classification trees, on the other
hand, provide a better tradeoff between accuracy and compu-
tation time.

1. INTRODUCTION

Within the U.S. Navy, both surface ships and submarines
can have hundreds of different hydraulic actuators perform-
ing critical and non-critical shipboard functions. Currently,
most of these actuators are maintained according to a time-
based schedule. A shift toward condition-based maintenance
(CBM) strategies has the potential to reduce operations and
maintenance costs in many applications that have relied on
time-based inspection and overhaul cycles. While there is a
significant need for a PHM system, there are physical restric-
tions that must be considered. For one, there are locations
where access to electrical power is limited, or not available.
Sensors that monitor these remotely installed actuators and
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collect data for a fault diagnosis system must be low-power.
Second, there are weight and space restrictions. Therefore in
addition to being low-power, the number of sensors and the
amount of corresponding hardware is limited.

As another application, actuators are widely used in mechan-
ical systems and are an essential part of these systems. For
example, heating, ventilation, and cooling (HVAC) systems
in environmentally friendly smart buildings rely heavily on
the use of remotely controlled actuators. However, unde-
tected failures of these actuators can cause the HVAC sys-
tem to under perform causing poor air quality (Weimer et al.,
2012). The poor air quality and under performance leads to
a bad reputation and a negative view of smart buildings even
when these systems can reduce cost and be environmentally
friendly if maintained properly. Therefore, a prognostics and
health management (PHM) system, and specifically fault di-
agnosis and classification, is imperative for mechanical sys-
tems that use a large number of actuators.

In this paper, we study CBM and fault diagnostics for ac-
tuators in a power constrained environment. There are two
competing evaluation metrics: the accuracy of the diagnos-
tics algorithms and power consumption of that algorithm. At
this stage of the research project, the power consumption on
hardware is not available so computation time is used as a
surrogate for this metric. This work has three primary contri-
butions to the literature:

• A description of the experimental setup used to collect
the data set.

• A comparison of the accuracy and computation time for
several classification algorithms on the collected data.

• The introduction of the idea of fault diagnostics and
CBM in power constrained environments.

This paper is organized as follows. Section 2 contains a brief
survey of the literature on diagnostics for actuators. Section 3
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describes the experimental setup used for collecting the data.
Section 4 gives brief description of the classification algo-
rithms compared in this study. Section 5 provides the ac-
curacy and computation time for the algorithms. Section 6
discusses these results and gives our conclusions.

2. BACKGROUND

Fault diagnosis for actuators has been widely studied. A
method for performing fault detection and diagnosis on actu-
ators specifically for HVAC systems was recently developed
which utilizes a two-tier detection system (Weimer et al.,
2012). The first tier uses a quantitative dynamic model while
the second tier uses a qualitative model that makes assump-
tion about the steady state of the system. Earlier work into
developing fault diagnostics for actuators used fuzzy logic
approaches (Bartyś & Kościelny, 2002) and neural networks
(Patan & Parisini, 2002).

A benchmark actuator fault detection problem was formu-
lated, and a benchmark data set for fault detection and di-
agnosis on actuators was created in order to compare and
contrast multiple techniques (Bartyś & de las Heras, 2003;
Bartyś, Patton, Syfert, de las Heras, & Quevedo, 2006). Data
was generated from a mechanical setup composed of multi-
ple actuators. This data is used for benchmarking as well as
creating a MATLAB Simulink model for the actuator. The
simulator can be used to generate data under multiple types
of faults. Several studies have used this benchmark data set
and the data generation example to test fault diagnostic algo-
rithms including interval dynamic system models (Puig et al.,
2003, 2006), neural networks (Witczak, Korbicz, Mrugalski,
& Patton, 2006), neuro-fuzzy multiple-modeling (Uppal, Pat-
ton, & Witczak, 2006), and model-free approaches (Previdi
& Parisini, 2006). We generate a new data set using the test
bed described in Section 3 because we are studying faults on
a specific type of hydraulic actuator with specific types of
faults.

Low power or energy efficient computation is of interest to
the field of mobile applications. Research has been conducted
into energy efficient machine learning algorithms, specif-
ically in the field of reinforcement learning and planning
use patrially observable Markov decision processes (Grzes,
Poupart, Yang, & Hoey, 2015). In some applications, mobile
devices can be used as sensors to help classify the state or
surroundings of an individual. However, a major limitation is
the battery life of the mobile device. Therefore, low power
sensing is of great interest to this community (Wang et al.,
2009). Further, investigations in the field of power efficient
mobile computing have led to studies which ask questions
about sampling frequency and class specific features with the
objective of finding accurate and low-power resolutions (Yan,
Subbaraju, Chakraborty, Misra, & Aberer, 2012).

In this study, we wish to present the idea of PHM in low

power environments and assess the tradeoffs between accu-
racy and power consumption. In application, questions about
sampling frequency and feature selection, as in (Wang et al.,
2009) and (Yan et al., 2012), will need to be made. We briefly
outline future work and some initial experiments involving
these issues in Section 6. At this point in our research, we
wish to explore how selection of the classifier can affect the
consumption of power and balance this requirement with the
need for accuracy. In the next phase of the project, exper-
iments will be conducted on prototype hardware and power
will be directly measured.

3. EXPERIMENTAL SETUP

In this section, we outline the test stand built for collecting
the data. The system is built around two matched Moog Flo-
Tork 15,000 in.-lbf. rotary actuators that are coupled together
such that one serves as the actuator and the other as the load.
Power is supplied to the actuator by an industrial style hy-
draulic power unit (HPU) using a standard solenoid-actuated
4-way valve to permit rotation in both directions (Figure 1).
The HPU’s reservoir is filled with 15 gallons of ISO 68 grade
Mobil DTE conventional hydraulic fluid. A 5-horsepower
pump is capable of supplying the full 3000 psi pressure at 2
GPM flow rate to produce an actuation stroke time of approx-
imately one second, given the actuator’s stroke volume of 8.4
in3. An adjustable pressure relief valve sets the maximum
system pressure and can be set between 400-3000 psi. A tur-
bine flow meter is located on the inlet to the side of the actu-
ator that produces a counterclockwise (CCW) rotation when
viewed from the actuator end of the machine. Pressure and
temperature sensors are located at each inlet as well as the
gear case relief port. A rotary position sensor tracks the angle
of the actuator through its stroke.

Resistive torque from the matched actuator (i.e., load) is
produced by the backpressure generated when forcing fluid
through a flow restriction. Using a series of one-way check
valves and a steady supply of oil from the reservoir, the
load device accepts fluid from either a low-pressure pump or
forces it through the variable orifice. The check valves pas-
sively direct the flow through an orifice for each rotation di-
rection without user intervention. A bypass valve is included
to remove the load restriction without altering the orifice set-
tings. Analog pressure gauges are included on both sides of
the load to permit accurate adjustment of the orifice settings
during operation.

Friction braking is applied using a manual pump with a pre-
cision pressure gauge. The brake uses opposing hydraulic
cylinders to balance the force to provide resistive torque with-
out significant radial load on the actuator shafts.

Both internal and external leakage due to seal failures are
common faults that should be considered. The test stand is
provisioned to simulate both effects in a controllable manner
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Figure 1. Actuator test stand hydraulic layout, including instrumentation locations (CW, CCW indicate direction of shaft
rotation when pressure is applied)

by redirecting supply fluid according to each type of fault.
The external leak path is positioned so that it redirects flow
out of the CCW side of the hydraulic actuator, between the
flow meter and inlet. This produces some asymmetry in the
actuation response between the clockwise (CW) and counter-
clockwise (CCW) direction, however the response is consis-
tent from one measurement to the next. The actuator gear
case is sealed, but has a relief valve to prevent catastrophic
rupture in the event that it becomes pressurized (e.g., internal
seal failure). A small manifold was developed for the gear
case relief port to integrate a miniature pressure/temperature
sensor and a fluid connection to simulate the leak path, while
maintaining protection from the relief valve. Given that an
internal seal leak can be slight and still contribute to signifi-
cant case pressurization due to the limited free volume within
the case, a highly restrictive leakage path was used to provide
very small fluid additions per actuation cycle. The leakage
path consisted of a stainless steel capillary tube with an inner
diameter of 0.022 inches and a length of 72 inches, wrapped
in a coiled geometry. The capillary tube was connected be-
tween the gear case and a pressure tap machined into the actu-
ator cylinder endcap. The external leakage path was sourced
from the same location, and connected back to the main sump
with a needle valve to adjust external leakage rate (Figure 2).

A series of LabVIEW graphical user interfaces were devel-
oped to automate the testing process to control each of the
main components of the hydraulic test stand. This provided
the ability to generate more expansive datasets that became
beneficial to algorithm development activities. Data from this

test loop was routinely collected, and initial pre-processing
of the data yielded evident trends in process measurements
such as pressure, flow, and vibrations when damage cases
was introduced. Data for two such test cases that simulate
seal damage within the primary hydraulic actuator are shown
in Figure 3. These results show clear trends in how average
flow versus actuator velocity track the presence and extent of
external leaks using a straightforward damage metric such as
slope (Figure 3 left). Conversely, this time dependent differ-
ential pressure measurement can be used as input into more
intensive classification techniques such as random forest or
classification tree algorithms to generate predictors of equip-
ment health by fusing them with other data such as angular
position and average vibration (Figure 3 right). Analogous
results have been seen in vibration data for load related cases
such as binding when simulated in the lab. An array of test
cases have been conducted, with varying operational (HPU
drive frequency, variable reaction load, etc.) and environmen-
tal (hot and cold hydraulic fluid, etc.), conditions, as well as
several damage scenarios that can be implemented using the
existing test loop (Table 1). Variability was designed into the
baseline conditions to ensure that some process conditions
were incorporated into the normal operating modes of the ac-
tuator. In these cases, the severity of response corresponds to
whether damage may be present in the measured response.

3.1. Data Collection

Using the experimental setup, data is generated under the
24 conditions displayed in Table 1 with a column display-
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Figure 2. Detailed view of actuator/load, instrumentation locations, and leakage paths

Table 1. Damage Cases and Class Labels

Cases # Observations Damage Case Class Label 6 Class Label Fault
Baseline 2035 0 1 1 0

40 Hz 120 1 2 2 1
50 Hz 120 1 3 2 1

40 Hz 1000 PSI Backdrive/Opposing Load 20 2 4 3 1
50 Hz 1000 PSI Backdrive/Opposing Load 20 2 5 3 1
60 Hz 1000 PSI Backdrive/Opposing Load 129 2 6 3 1

60 Hz Bypass valve at 10% first turn 130 4 7 5 1
60 Hz Bypass valve at 25% first turn 69 4 8 5 1
60 Hz Bypass valve at 50% first turn 129 4 9 5 1

60 Hz Bypass valve at 100% first turn 129 4 10 5 1
60 Hz Leak Valve into case at 50% 83 5 11 6 1

60 Hz Leak Valve into case at 100% 139 5 12 6 1
60 Hz External load at 1500 PSI 129 3 13 4 1
60 Hz External load at 2500 PSI 130 3 14 4 1
60 Hz Opposing Load 1500 PSI 59 2 15 3 1

60 Hz External Load 250 PSI 62 3 16 4 1
60 Hz External Load 500 PSI 59 3 17 4 1

60 Hz External Load 1000 PSI 60 3 18 4 1
60 Hz Bypass valve at 5% first turn 60 4 19 5 1

60 Hz Bypass valve at 20% first turn 120 4 20 5 1
60 Hz Bypass valve at 150% first turn 59 4 21 5 1

60 Hz Leak Valve into case at 10% 60 5 22 6 1
60 Hz Leak Valve into case at 100% low heat 60 5 23 6 1

60 Hz Leak Valve into case at 100% high heat 60 5 24 6 1
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Figure 3. Data for seal leak scenarios. Metrics can be established by comparing trends between mean velocity and angular
velocity of the shaft (left), as well as features extracted from time Initial results indicate clear trends in how responses change
with escalating damage. CW represents clockwise motion and CCW represents counter clockwise.

ing the number of observations for each condition. There are
5 damage cases (represented by the “Damage Case” column
of Table 1) and each damage case can have multiple sub-
categories. Multiple baseline conditions were used to gen-
erate the baseline or no-fault condition and for classification
purposes are considered the same class. The “Class Label”
column indicates the class number assigned to each condi-
tion. Several of the individual damage classes can be grouped
together to form a smaller set of 6 classes (one baseline class
and 5 damage classes) indicated in the “6 Class Label” col-
umn. The “Fault” column indicates the presence of a fault.

Five data streams are collected and used as features for the
classification algorithms to identify faults: average change in
angle, average differential pressure, average flow rate, aver-
age acceleration, and direction. Direction is a binary feature
representing the actuator moving in either a clockwise (CW)
or counter clockwise (CCW) direction. All the other collected
features are continuous valued. The actuator is repetitively
operated under each damage case. At the beginning stages
of data collection, the acceleration data was not available.
Therefore, some damage cases do not have this feature and
the it is treated as a missing value during classification. In
total, the data set consists of 4041 observations and 436 of
these are missing values for the acceleration feature. Approx-
imately half of the data is the baseline or no-fault case. In
the multi-class problems, this leads to an issue with class im-
balance. For this study, a number of operational conditions
are considered normal and classified as the baseline case. It
was necessary to collect data on each of these normal condi-
tions which causes the imbalance in class distribution in the
multi-class problems.

4. CLASSIFICATION ALGORITHMS

Given the collected data set, we divide the diagnostics prob-
lem into three classification problems. The first is a binary
problem were the objective is to detect any damage case. In

this problem, the baseline case is labeled as a negative re-
sponse and all other conditions are labeled as a positive re-
sponse (“Fault” column in Table 1). The next problem is the
6-class problem were the objective is to classify each obser-
vation into the baseline class or one of five damage classes
(see “6 Class Label” column in Table 1). The third classifi-
cation problem is the 24-class problem where each of the the
individual damage cases is diagnosed.

For the binary problem, eight types of classifiers are tested:
random forest (RF) (Breiman, 2001; Murphy, 2012), classi-
fication trees (Trees) (Bishop, 2006; Duda, Hart, & Stork,
2001; Murphy, 2012), k-nearest-neighbor (KNN) (Bishop,
2006; Duda et al., 2001; Murphy, 2012), linear discrimi-
nant analysis (LDA) (Bishop, 2006; Murphy, 2012), logis-
tic regression (Logistic) (Bishop, 2006; Murphy, 2012), lo-
gistic regression with a probit link function (Probit) (Bishop,
2006; Murphy, 2012), quadratic discriminant analysis (QDA)
(Bishop, 2006; Murphy, 2012), and support vector machines
(SVM) (Bishop, 2006; Duda et al., 2001; Murphy, 2012).
For the 6-class problem, SVM, Logistic, and Probit are elim-
inated because the standard versions of these classifiers are
specific to binary classification (we acknowledge that multi-
class versions of these methods which use one-versus-all
comparison are available but decided not to include them in
this study). For the 24-class problem, only RF, Trees, and
KNN are tested due to the inability of the other classifiers be-
ing able to handle entire classes with missing values. When
RF and KNN are used, the number of trees and the number of
neighbors is varied to assess the affect on the classifier.

These classification algorithms were chosen for this study be-
cause they are considered standard classification algorithms
that can be found outlined in most pattern recognition or ma-
chine learning textbooks. We consider these classifiers as out-
of-the-box algorithms as opposed to customized algorithms
specifically designed for the task of predicting faults in actu-
ators. Further, these algorithms are readily available in MAT-
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LAB. We can therefore assume that the code to train and test
each algorithm is written in a similar fashion and optimized,
and thus the computation time of each classifier is only af-
fected by the mathematical complexity and not the precision
of the code.

For testing, a leave-one-out cross validation (LOOCV) testing
strategy was implemented. A single observation is removed
from the data set and a classifier is trained on the remaining
data. The class label for the the removed observation is then
predicted using the trained classifier. Then the process moves
on to the next observation and repeats until all observations
in the data set have a predicted class label. The classification
error for the classifier is assessed by counting the number of
misclassified observations.

In addition to classification error, the training and testing
times are recorded. The training time is the average clock
time for training the classifier over the LOOCV process. Sim-
ilarly, the testing time is the average clock time for testing the
withheld observation over the entire LOOCV process. All
tests were performed on the same machine with an Intel i7
core.

5. RESULTS

In this section, the classification error, average training time,
and average testing time for each classifier on each of the
three classification problems are presented. The direction fea-
ture may not be available to the classifier during a real-world
application, therefore, models are trained with and without
this feature for comparison. Random forests are trained with
25, 50, 75, and 100 trees. k-nearest neighbor classifiers are
trained using 1, 3, 5, and 10 neighbors. Classification error
is presented as the fraction of incorrectly classified observa-
tions. The testing and training times are in seconds.

Plots of error rate versus the training and testing times are in
Figure 4 for the binary classification problem. Plots for the
binary problem when using the direction features are in Fig-
ure 5. Similar figures for the 6 class (Figures 6 and 7) and the
24 class problems (Figures 8 and 9) are also presented. Note
that the x axis for these plots is in the logarithmic domain.

For a better understanding of misclassification, a confusion
matrix can be calculated for each classifier. In a confusion
matrix, the rows represent the true class while the columns
represent the predicted class. The diagonal cells in the ma-
trix contain the number of observations correctly classified,
and the off-diagonal cells contain the number of observations
misclassified and the class to which they were incorrectly as-
signed. Confusion matrices for the 6-class problem without
direction for RF25, Trees, KNN5 are given as examples in
Tables 2 to 4. The labels of the rows and columns (“C#”)
correspond to the class label in the “6 Class Label” column
of Table 1. These three classifiers where chosen to display

their confusion matrices because they are the top 3 classifiers
in terms of the accuracy/computation time tradeoff and could
require further investigation into their classification abilities
(KNN5 was chosen over the other KNN classifiers because it
generally has the best error rate but not for all problems and
features). For example, one of these classes could have a high
misclassification cost and the confusion matrix would assist
in selecting a classifier under these conditions. A high mis-
classification cost could represent a third objective to consider
during classifier selection.

Table 2. Confusion Matrix for Random Forest with 25 Trees
on 6-Class Problem.

Predicted Class
C1 C2 C3 C4 C5 C6

Tr
ue

C
la

ss

C1 1992 0 3 5 14 21
C2 32 208 0 0 0 0
C3 44 0 183 1 0 0
C4 21 1 0 417 0 1
C5 37 1 0 0 654 4
C6 35 1 0 0 24 342

Table 3. Confusion Matrix for classification trees on 6-Class
Problem.

Predicted Class
C1 C2 C3 C4 C5 C6

Tr
ue

C
la

ss

C1 1933 0 3 12 57 30
C2 8 223 0 0 9 0
C3 4 40 184 0 0 0
C4 16 1 0 421 0 2
C5 11 11 0 0 662 12
C6 24 1 0 0 69 308

Table 4. Confusion Matrix for KNN classifier with 5 Neigh-
bors on 6-Class Problem.

Predicted Class
C1 C2 C3 C4 C5 C6

Tr
ue

C
la

ss

C1 1936 3 2 38 15 41
C2 40 200 0 0 0 0
C3 60 0 168 0 0 0
C4 89 0 0 347 2 2
C5 100 0 0 7 556 33
C6 109 0 0 0 44 249

6. DISCUSSION AND CONCLUSION

The numerical experiments on the binary problem demon-
strate that random forest outperforms the other classifiers in
terms of accuracy but has significantly higher training and
testing times. As the number of trees in the forest increases,
these times increase but with little or no improvement in the
error rate. We can conclude that there is not a significant ben-
efit of building a forest with more than 25 trees on this data
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Figure 4. Left: Error rate and training time for binary problem classifiers. Right: Error rate and testing time for binary problem
classifiers.

Figure 5. Left: Error rate and training time for binary problem classifiers using direction feature. Right: Error rate and testing
time for binary problem classifiers using direction feature.

Figure 6. Left: Error rate and training time for 6 class problem classifiers. Right: Error rate and testing time for 6 class problem
classifiers.
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Figure 7. Left: Error rate and training time for 6 class problem classifiers using direction feature. Right: Error rate and testing
time for 6 class problem classifiers using direction feature.

Figure 8. Left: Error rate and training time for 24 class problem classifiers. Right: Error rate and testing time for 24 class
problem classifiers.

Figure 9. Left: Error rate and training time for 24 class problem classifiers using direction feature. Right: Error rate and testing
time for 24 class problem classifiers using direction feature.
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set. The KNN classifiers have the fastest training times, and
the error rate and times do not appear to be affected by in-
creasing the number of neighbors. The classification tree al-
gorithm has one of the fastest testing times and better predic-
tive ability than all classifiers except the random forest. The
remaining classifiers all have error rates above 30%. When
considering both evaluation metrics, the tree classifier offers
a good balance of accuracy and computational load. Similar
conclusions can be made from the results of the numerical ex-
periments on the 6 class and 24 class problems. The random
forest algorithm is the most accurate, but trees offer a balance
of accuracy and low computational cost.

When the direction feature is added to the data, the accuracy
of the classifiers on the binary problem generally improves.
However, the added feature increases the training and testing
times of some algorithms. We can conclude that the direction
feature can improve the accuracy of some classifiers, but fur-
ther study is needed to conclude if the tradeoff of accuracy
for computation is justified for this feature.

This leads to one question that is not addressed in this study
– feature selection. The features used as inputs into the clas-
sifiers are chosen because the data for these features is easily
collected on the test bed. The computational cost of extract-
ing the features used in this study is relatively the same for
each feature, i.e. no feature is significantly more computa-
tionally expensive than another. In future work, more features
will be generated from the collected data and tested. Further,
feature selection will be considered as a way to reduce com-
putational cost and improve classification performance.

Similarly, an in-depth analysis of sampling rate was excluded
from this study. The sampling rate of the data will greatly af-
fect the computational cost of the entire PHM system. We
did perform initial experiments where the data was down-
sampled and found that this did not significantly affect the er-
ror rate. Given that features are calculated as a pre-processing
step, the sampling rate would not affect the computational
cost of the classifier, which is the subject of this study. An in-
depth study of sampling rate will be included in future work
when experiments on test hardware are performed. Similarly,
data storage and the size of the classification algorithm will
be investigated in future studies.

Future work will also include online training algorithms. This
is the primary reason training time was used to assess the clas-
sifiers in this study. Online algorithms will be useful for up-
dating the classifier in real-world deployment.

In conclusion, we have presented a study of different classi-
fication algorithms applied to the actuator fault detection and
diagnosis problem. We have added a second evaluation met-
ric, power consumption, and used training and testing times
as a surrogate for this metric in our numerical experiments.
Power consumption is an important attribute to assess as these

types of actuators will most likely be installed in a power con-
strained environment.
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