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ABSTRACT 

Heavy duty gas turbine engines are not only ingesting the 

air, but also eating a myriad of aerosol particles, which may 

have various negative effects on the turbine operation 

efficiency as well as the component failure. This paper 

attempts to develop predictive degradation models for gas 

turbines by integrating satellite collected atmospheric 

factors, on-site monitoring data, and physics-based 

calculated performance results. Multiple variables are 

analyzed and employed for predictive modeling. The vital 

variables are identified by using data exploratory correlation 

analysis and stepwise regression analysis. The performance 

degradation calculation is obtained from physics based 

thermodynamic heat balance of gas turbine. It requires 

balancing mass and energy of gas turbine to match 

measurement data through thermodynamic cycle matching. 

The performance degradation prior to the offline water wash 

is used as the predictor. Artificial neural network modeling 

is employed to establish the predictive models. A procedure 

is presented to explain the proposed methodology, and 

results are discussed.  This paper provides an effective 

methodology and procedure to apply big data for the 

performance degradation prediction of gas turbines. 

1. INTRODUCTION 

Gas turbine (GT) simple or combined cycle plants are built 

and operated with higher availability, reliability, and 

performance in order to provide the customer with sufficient 

operating revenues and reduced fuel costs meanwhile 

enhancing customer dispatch competitiveness (Jiang and 

Foster 2013 & 2014). The availability of heavy duty gas 

turbines in the plant can be increased through increasing the 

turbine reliability by maintenance enhancement and 

recovering performance degradation by remote efficiency 

monitoring to provide timely corrective recommendations 

(Balevic et al. 2010, Brooks 2000, and Johnston 2000). In 

addition, increasing fuel costs requires maintaining the 

higher efficiency in a gas turbine system. For example, a 

combined cycle plant with the engineered capacity of 

900MW power output can have an annual fuel bill of over 

200 million dollars (Meher-homji et al. 2001). Therefore, 

remote performance degradation monitoring, diagnostics, 

and prognostics of power generation equipment like heavy 

duty gas turbines has become increasingly important and 

popular in the energy industry since its introduction in the 

90’s. 

Heavy duty gas turbine engines, however, are not only 

ingesting the air, but also eating a myriad of aerosol 

particles, which may have various negative effects on the 

turbine operation efficiency including performance 

degradation, compressor fouling, inlet effectiveness and 

cooling-hole plugging, as well as the component failure 

such as compressor blade cracks and corrosion in both cold 

and hot sections. Gas turbine performance is a function of 

many factors including, but not limited to, turbine design, 

component technology upgrade, operating mode, and site 

ambient conditions plus the environmental factors. The 

turbine degradation accumulates as its operating hour 

increases. This study is focused on predictive modeling of 

performance degradation for gas turbines by integration 

operational variables and atmospheric factors, with the 

purpose of enhancing customer specific maintenance 

recommendation, optimal outage planning, asset 

management, and failure prevention.  

The performance degradation can be categorized into two 

types: recoverable and non-recoverable, as illustrated in Fig. 

1. The recoverable degradation can be recovered by proper 

maintenance actions such as cleaning compressor via 

regular water washes and parts replacement or upgrade 
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during major inspection. Usually most of the degradation 

resulted from the equipment operation can be recovered 

through proper offline water wash of its compressor, while 

the degradation resulted from the mechanical deterioration 

(e.g., hot gas path component wear/damage) or parts 

malfunction (e.g., compressor bleed valve open) can be 

recovered from an overhaul. On the other hand, the non-

recoverable degradation becomes permanent deterioration 

on the gas turbine even after a major overhaul. The focus of 

this study is on the recoverable performance degradation.  

 

 

In next sections, data used in this study, including the on-

site monitoring (OSM) operation and atmospheric (ATM) 

factors, are first described. The methods used for data pre-

processing, performance calculation and neural network 

predictive modeling are then presented. The physics based 

thermodynamic heat balance of gas turbine is employed to 

correct the measured performance to the ISO conditions. It 

requires balancing mass and energy for the turbine to match 

measurement data through thermodynamic cycle matching. 

The procedure to implement the methodology is given. 

After then, the methods and procedure are applied to the 

data and to yield results.   

2. DATA 

It has been well recognized that there are a number of time-

varying site operational conditions impacting the turbine 

performance (Meher-Homji et al. 2000). These conditions 

include, but not limited to, ambient humidity, ambient 

pressure, ambient temperature, inlet filter pressure losses, 

exhaust system pressure losses, fuel heating value, fuel 

flow, and fuel temperature. In addition, a vast sea of global 

information on atmospheric factors is available on public 

internet. These atmospheric (ATM) pollution factors, which 

may affect the performance of turbo-machinery, include 

SO2 gas, Sulfate aerosols, sea salt aerosols, and PM2.5.  

The data set used in this study includes 672 performance 

degradation events collected from 194 different gas 

turbines. The degradation is calculated right prior to the 

offline water wash outage.  Only GE manufactured F-class 

gas turbines are used in this paper for demonstration 

purpose. For each event, there are 37 on-site monitoring 

(OSM) operation variables (part of them shown in Table 1) 

and 11 ATM factors.  

In this study, the baseload operation time series data is used 

to calculate the degradation for each event. The data is 

filtered out to be baseload mode based on three criteria, i.e., 

the inlet guide vane (CSGV) is full open; the turbine shaft 

(TNH) is full speed, and the exhaust temperature (TTXM) is 

close to the reference control temperature (TTRX).  

Table 1. Part of OSM performance variables 

OSM Tag units descriptions Example 

data 

AFPAP inHg Ambient Pressure 30.2 

AFPCS inH2O Inlet air total press transmitter 4.8 

AFPEP inH2O Exhaust press transmitter 12.8 

AFQ lbm/s Compressor Inlet Air Flow 1422.5 

CMHUM #H/#A Specific Humidity 0.006 

CPD psi Compressor disch press 

transmitter 

224.4 

CPR ratio Compressor Pressure Ratio 16.3 

CSGV º Position feedback IGV (high 

value selected) 

88.0 

CTD °F Compressor Discharge 

Temperature 

732.2 

CTIM °F Max Comp Inlet Flange 

Temperature 

53.2 

DWATT MW Generator watts 255.3 

FQG lbm/s Gas Fuel Flow 33.9 

FTG °F Fuel Gas Temperature 349.3 

TNH % HP Turbine Speed 99.993 

TTRX °F Temperature Control Reference 1137.3 

TTXM °F Ex Temp Median Corrected by 

Average 

1137.3 

The atmospheric pollution data is obtained from NASA’s 

(National Aeronautics and Space Administration) Earth 

Observation System (EOS), http://eospso.gsfc.nasa.gov/. 

The EOS is a coordinated series of satellites meant for long-

term global observations of the land surface, biosphere, 

solid Earth, atmosphere, and oceans.  

Satellite data can provide global information on atmospheric 

factors of interest to turbo machinery. Of particular interest 

is aerosol optical thickness, which can provide information 

regarding soot/ash from fires, desert and soil dust, 

ash/chemical species (SO2) from volcanoes and fossil fuel 

burning, marine aerosols such as suspended sea salt due to 

wave action, dimethyl sulfide from phytoplankton, and 

smog/vog due to pollution/volcanic haze augmented by 

chemical reactions in atmosphere, including photochemical 

reactions. 

Figure 1. Performance degradation components 

http://eospso.gsfc.nasa.gov/
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Note that aerosols are the tiny airborne particles that come 

from forest fires, deserts, volcanoes, breaking ocean waves, 

and urban and industrial pollution. Aerosols play an 

important role in the earth system, directly influencing 

global climate and human health. Satellite remote sensing 

data shows promise for predicting atmospheric effects on 

turbo machinery by geo-location, elevation, and season. 

There are more than 1000 different parameters and over 

1600 data types that currently than can be downloaded by 

the public.  

The sample categories likely impacting the degradation of 

heavy duty gas turbines have been pre-selected by a team of 

internal subject matter experts as shown in Table 2. These 

data are pre-processed to be monthly mean data, and can be 

obtained from the satellite/instrument or chemical transport 

models maintained by NASA, JPL (Jet Propulsion 

Laboratory), and NRL (Naval Research Laboratory). In this 

study, the 12 months averaged data is used for all 11 

variables to consider the seasonal effect for each event. 

Table 2. Weather and aerosol variables 

Variable  Units Description Example  

PS Pa Time averaged surface 

pressure 

98695.0 

QV2M kg/m3 Specific humidity 2m 

above displacement 

height 

0.0069 

T2M K Temperature 2m above 

displacement height 

284.0 

DUCMASS2.5 kg/m2 Dust Column Mass 

Density (PM 2.5) 

6221.8 

DUCMASS kg/m2 Dust Column Mass 

Density 

16316.8 

SSCMASS2.5 kg/m2 Sea Salt  Column 

Mass Density (PM 

2.5) 

656.5 

SSCMASS kg/m2 Sea Salt Column Mass 

Density 

1891.7 

SO2CMASS kg/m2 SO2 Column Mass 

Density 

10928.4 

SO4CMASS kg/m2 SO4 Column Mass 

Density 

7384.3 

OCCMASS kg/m2 Organic Carbon 

Column Mass Density 

947.2 

BCCMASS kg/m2 Black Carbon Column 

Mass Density 

7353.4 

The performance degradation is assessed based on the 

performance output. To facilitate the data analysis and 

predictive modeling, the performance calculation is 

conducted first on the OSM variables and configuration 

parameters to yield the corrected performance output. The 

performance degradation percentage is calculated for each 

event from the corrected output in regard to the baseline 

value upon its commissioning. As such, the obtained 

degradation percentage incorporates the performance 

operational influencing parameters via the physics-based 

performance modeling. Next, the degradation percentage is 

further analyzed with the atmospheric factors to identify 

vital X for predictive modeling.  

3. METHODS 

3.1. Performance Calculation 

The corrected output and heat rate are needed to be 

compared with the established baseline values to estimate 

the level of turbine performance degradation. For 

comparison and assessment purposes, these typical GT 

performance parameters, including efficiency, flow, output, 

and heat rate, need to be continuously corrected to the 

desired conditions, such as design or ISO (International 

Standard Organization) conditions. Two sets of performance 

calculation methodologies are available for performance 

calculation and correction, namely, thermodynamic 

modeling and data-driven factor interpolation method. The 

thermodynamic modeling approach calculates the 

performance of the gas turbine using physics-based 

thermodynamic cycle matching. Inputs into this approach 

include three parts: dynamic OSM data, static condition 

data, and equipment configuration data. The time-dependent 

dynamic inputs are first merged with the static data from the 

database. These static inputs contain the performance of the 

gas turbine at ISO condition, designed condition and certain 

accessory options available for the unit. Next all these 

inputs are merged with the unit configuration data to 

generate an input file for performance calculation. Then, a 

data reduction technique is employed to satisfy continuity 

and conserve energy of the gas turbine using measured 

OSM data. Finally the performance of the gas turbine is 

calculated and corrected via thermodynamic cycle matching 

method at baseload and ISO conditions.  

A data-driven adaptive approach, called factor interpolation 

algorithm, as documented in ASME test procedure (ASME 

PTC 22-2005) for field test of plant overall performance, 

may be employed to calculate the corrected output and heat 

rate using site-specific correction factors, raw OSM plant 

data, performance test methodology and baseline test 

information. In this method, a set of correction factor curves 

are pre-established from the abovementioned physics-based 

heat balance model given the desirable conditions. 

In this study, the thermodynamic modeling is employed. 

The gas turbine performance is first calculated via a 

thermodynamic cycle matching to a set of measured 

parameters such as compressor discharge temperature and 

pressure, exhaust temperature, fuel flow, and power output. 

This matching procedure is used to synthesize other non-

measured performance parameters, such as compressor and 

turbine efficiencies, combustor exit temperature, and turbine 

firing temperature, for the gas turbine operated at the 

specified boundary conditions.  In this method, the turbine 

mass flow rate (fgt) is calculated by utilizing the stage 1 

nozzle throat area (AS1N), stage 1 nozzle flow coefficient 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

4 

(αf), turbine inlet pressure (Pin), turbine total inlet temp (Tin) 

and the flow calculation function (gair), given as follows: 

fgt = gair × Pin × AS1N × αf /√𝑇𝑖𝑛   (1) 

The compressor mass flow rate (fcomp) follows the law of 

conservation of mass, i.e.  

fcomp = fgt + fext – ffuel   (2) 

where fext and ffuel are the extraction flow and fuel flow, 

respectively.  

The compressor and turbine power values are then 

calculated via the thermodynamic heat balance with the law 

of conservation of mass and energy.  The tuned gas turbine 

model is then used to project how this turbine would 

perform at other operating conditions (assuming nominal 

GT operating characteristics).  

3.2. Performance Degradation 

The ultimate purpose of this study is to establish a 

predictive model in order to project the performance 

degradation to next planned outage or a given fired hours 

for facilitating critical business decision making such as 

resource allocation, hardware upgrade, and part 

procurement. As shown in Figure 2, the projection analytics 

are usually called degradation prognostics, which utilize the 

historical performance data, degradation trend, and physics-

based simulation to predict the degree of degradation at a 

given point in time (e.g., next planned outage).   

 

The percentage degradations for power output, %OP_deg, 

can then be calculated by: 

%OP_deg = (OP_bl – Cor_OP)/OP_bl   (3) 

where Cor_OP and OP_bl are the corrected performance 

output at the operational time and the baseline output value 

at zero fired hour, respectively. 

After proper actions are taken, the performance degradation 

is corrected to the target level. The diagnostics and 

prognostics information continues to be broadcast via multi-

channels including telephone, email, and web. 

Recommendations regarding performance degradation may 

be projected to the next planned outage for facilitating 

business decision making such as resource allocation and 

part procurement. These projection analytics are usually 

called performance degradation prognostics, which utilize 

historical performance data, degradation trends, and 

physics-based simulation. Through performance prognostics 

from the current status of a given unit or component, the 

monitoring system enables the trade-off analytics to 

facilitate critical decision-making regarding hardware 

upgrades, maintenance scope, and resource allocation. For 

example, thermodynamics based simulation of the total 

plant may be employed to quantify how much the 

performance improvement can be achieved for a certain 

hardware upgrade such as enhanced inlet filtration, 

advanced hot gas path, enhanced compressor package, or 

steam high pressure section upgrade.  

As an example, Figure 3 shows the performance output 

degradation over the fired hours with offline water wash 

events. A majority of performance degradation is recovered 

from a clean offline water wash (OFWW), as illustrated by 

the difference between the pre-OFWW degradation (black 

dot) and the post-OFWW degradation (green dot).  

 

3.3. Data Preprocessing 

It is well recognized that the quality of the input data 

impacts the accuracy of predictive modeling. The sensed 

OSM data and the processed atmospheric data usually 

contain error, missingness, incoherence, and imprecision 

during the data acquisition, communication, and processing. 

Therefore, the quality of the input data should be validated 

prior to further application for performance calculation. 

Data preprocessing techniques are applied to improve the 

quality of the data. These techniques include data validation, 

outlier analysis, and data filtration, which are briefly 

described below. 

Figure 2. Thermal performance monitoring: Escalation 

and prognostics 
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Figure 3. Performance degradation trend with offline WW 
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3.3.1. Data validation 

The aim of data validation is to verify the reliability of 

sensor data or ATM factors during the normal operational 

service of the machine. As the easiest way, the widely-used 

graphical plot should be applied in data preprocessing to 

visually check the data quality. The simple statistical 

analysis should be also performed on the data to obtain its 

minimum, maximum, mean, median, and standard 

deviation. These values are often used to investigate 

whether the data points fall in the reasonable, applicable 

range based on the engineering judgment or physics 

understanding. As an example, Figure 4 shows the box plot 

of the atmospheric factor SSCMASS. A few data points 

seem to be outliers based on the statistical plots. Note that 

multi-modal distribution form may be used to identify the 

outliers more accurately. 

 

3.3.2. Outlier analysis  

Outliers tend to pull the mean value towards themselves and 

inflate the variance in their direction. The outliers will 

largely affect the moment characteristics of the data. 

Therefore outlier analysis should be conducted on the input 

data, but outliers should be excluded from the data for 

further analysis only with proper justification. Some data 

points may be inconsistent with the expectation of the 

majority elements of the series. These data points are 

usually referred to be outliers. These outliers may result 

from measurement errors and anomaly, which cannot be 

used to represent the normal operational condition of that 

unit.  

The outliers are often identified via a box-plot. The box-plot 

invented by Tukey (1977) (also known as a box-and-

whisker diagram or candlestick chart) is an exploratory data 

analysis approach to graphically depict the five-number 

summary, including the minimum, lower quartile (25%), 

median, upper quartile (75%), and maximum value, and to 

indicate the outliers in the data. The outlier is defined as any 

data observation which lies more than 1.5*IQR (inter-

quartile range) and lower than the lower quartile (25%) or 

1.5*IQR higher than the upper quartile (75%), in which the 

IQR is calculated by subtracting the lower quartile from the 

upper quartile. The box-plot is an important exploratory data 

analysis technique which is able to visually show different 

types of populations without any assumptions of statistical 

distribution. A box plot for SSCMASS shown in Figure 4 

indicates a few outliers (marked as dots in the figure).  

3.3.3. Data filtration 

As a supplementary to the outlier analysis, data filtration is 

usually performed to ensure that the sensor data represents 

the unit under normal operation via truncating sensor data in 

the reasonable operating range. Generally critical variables 

suggested by the component design team should be used to 

define the normal operating status of the unit. For example, 

the turbine HP shaft speed (TNH) with the range of 95% 

and 105% should be used as one of the critical factors to 

determine whether that unit is under normal operation or 

not.  

The performance data during the downtime is often treated 

as noise, and should not be included in the statistics 

calculation of the performance variables. Various 

performance variables should have different operating 

ranges. Before establishing a predictive model, it should be 

ensured that the proper range for each variable is obtained 

from OEM (Original Equipment Manufacturer) manual, 

material standard, or design team.  

3.4. Vital X’s Identification 

In order to decide the vital X’s or predictors, a combination 

of best engineering assessment of the underlying physics of 

the failure mechanism, statistical analytics, tribal 

knowledge, expert opinion, and available data may be used 

comprehensively. The analytics methods may include 

analysis of variance (ANOVA), correlation analysis, 

although not all methods are needed in the identification of 

the vital X’s. In this study, the correlation analysis and 

stepwise regression analysis are employed to identify the 

vital X’s for predictive modeling. 

3.4.1. Correlation analysis 

Correlation analysis is another exploratory data analysis 

method widely used to measure the dependence between 

two variables, quantitatively or qualitatively or both. The 

measurement scales used should be at least interval scales 

(e.g., [0, 1] or [-1, 1]). The simplest way to find out 

qualitatively the relationship between two variables is to 

plot the data. However, the graphical approach is feasible 

only when there are only a few variables in the problem. 

When there are many variables (e.g., >5), the graphical 

method becomes both labor and time consuming. In 

addition, the qualitative method cannot provide objective 

information on the judgment of the correlation between two 

variables. Therefore, quantitative correlation analysis may 

be pursued to more accurately identify the relationship 

Figure 4. Box plot of SSCMASS data 

Outliers 
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between two variables.  

Pearson correlation is the most familiar quantitative 

approach to measure the dependence. It divides the 

covariance of the two variables by the product of their 

standard deviations. The value of Pearson correlation 

coefficient may have the range between -1 and 1. A larger 

value near +1 or -1 implies the stronger interdependence 

between two variables, while a smaller value near 0 

indicates little dependence between them. The probability of 

un-correlation between two variables, obtained by t-

statistics and called p-value, is also used to quantitatively 

assess the correlation. The two variables are usually judged 

to be correlated if p-value is smaller than 0.05 or the 

correlation coefficient is greater than a predefined value 

(e.g., 0.50). 

The most widely-used type of correlation analysis is 

Pearson R coefficient, also called linear or product- moment 

correlation. Pearson correlation assumes that the two 

variables are measured on interval scales (e.g., -1.0  R  

1.0). It determines the extent to which values of the two 

variables are "proportional" to each other. The value of 

correlation (i.e., correlation coefficient) does not depend on 

the specific measurement unit of each variable; for example, 

the correlation between PS (Surface Pressure) and QV2M 

(Specific humidity) will be identical regardless of which 

units are used for the two variables. Proportional means 

linearly related; that is, the correlation is high if it can be 

"summarized" by a straight line (sloped upwards or 

downwards). Given two data sets X1 and X2 collected from 

two variables x1 and x2, respectively, the Pearson 

correlation coefficient between the two variables, 
21 ,XXR , 

can be obtained by dividing the covariance of the two 

variables by the product of their standard deviations, 

expressed as follows: 

21

21

21

21

)])([(),cov( 2121
,

XX

XX

XX

XX

XXEXX
R








   (4) 

where cov(X1, X2) is the sample covariance of the two 

variables, and 
iX  and 

iX are the sample mean and 

standard deviation values of the variable xi, respectively. In 

general, the coefficient 
21 ,XXR falls in the range between -

1.0 and 1.0 with the magnitude and the sign of 
21 ,XXR

representing the strength and direction respectively of the 

dependence between the two variables.  

A hypothesis testing is often used in the Pearson correlation 

analysis to test whether the two variables are correlated in 

terms of the sample data. In this context, the null hypothesis 

asserts that the two variables are not correlated, while the 

alternative hypothesis asserts that the variables are 

correlated. A T-statistic is used to test the hypothesis. The 

observed value of T-statistic, called T-value, can range 

between - (infinity) and +. A T-value near 0 is to support 

the null hypothesis that there is no correlation between the 

two variables, while a T-value far from 0 (either positive or 

negative) is to support the alternative hypothesis that there is 

correlation between the variables. The T-value (or T-

statistic) is defined as:  

)1()2( 2

,, 2121 XXXXXR RNRT   (5) 

Clearly, if the correlation coefficient R is either -1 or +1, the 

T-value is represented by NULL. Usually a p-value is used 

to represent the T-statistic. The p-value is the probability 

that the absolute value of the T-statistic at the significant 

level (e.g.,  = 5%) would equal or exceed the observed 

value, i.e., T  TR when the null hypothesis is true. A small 

p-value is to judge that the null hypothesis is false and the 

two variables are, in fact, correlated.  

3.4.2. Stepwise regression analysis 

Stepwise regression analyses is further performed to identify 

the vital X’s, particularly for multivariate analysis. In 

stepwise regression method, predictive variables in a 

regression model are selected through an automatic 

procedure using a sequence of F-tests. Other techniques may 

be used to select the predictive variables, such as t-tests, 

adjusted R-square, Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Mallows' Cp, or false 

discovery rate. In the multivariate analysis, the predictive 

response is continuous variable (i.e., degradation level). 

Therefore, the linear is employed in the stepwise regression 

analysis to identify vital X’s. Both AIC and BIC are 

employed as the criteria in the parameter analysis. 

3.5. Neural Network Predictive Modeling 

Neural network model is established to project performance 

degradation level given a certain period of operation. The 

model is formulated as a function of vital Xs identified 

previously.  

Artificial neural networks (ANNs) are a family of statistical 

learning models inspired by biological neural networks, the 

central nervous systems of animals in particular the brain, as 

shown in Figure 5. They are usually used as a non-

parametric approach to estimate or approximate functions 

that depend on a set of inputs and outputs. An ANN model 

is generally presented as a system of interconnected neurons 

which communicate messages to each other. The 

connections have numeric weights which are tuned based on 

the data and experience, making the neural net adaptive to 

inputs and capable of learning. The ANN method is widely 

used to model complex problems with implicit relationship 

among the variables which cannot be clearly explained 

mathematically. 
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There are two major learning paradigms, namely, supervised 

learning and unsupervised learning.  In the supervised 

learning, a set of data pairs (X,Y) is given and its aim is to 

find a function f: X->Y matching the data set. The 

commonly used cost, mean-squared error is usually used to 

minimize the average squared error between the ANN 

output, f(X), and the target value Y over all the modeling or 

training data set. The supervised learning ANN is employed 

in this study. 

In the unsupervised learning, only a set of input data X is 

given to minimize the cost function, which is employed in 

this paper. Priori assumptions are usually needed for the 

model parameters and observed variables. The neural 

network model may be in general represented as follows: 

  dXbXwy
D

j

kjj

M

i

D

j

kjik   
 1 1

ˆ    (6) 

where 

Xi = {xi+1, …xi+n, yi+1, …,yi+n} = Input vector 

 kŷ   = Predicted response quantity 

D = Input dimension 

M = Number of functions 

w, a, b = Parameters to be estimated 

(.) = Nonlinear activation function, a logistic function used 

in this study  

4. IMPLEMENTATION PROCESS 

Figure 6 shows the process to implement the methodology 

described previously. It consists of four main parts: data 

collection and preparation, performance calculation, 

predictive modeling, and results analysis & reporting. Refer 

to the above sections for details. 

 

5. APPLICATION 

Following the process shown in Fig.6, the performance 

calculation is conducted on all units under investigation to 

obtain the performance degradation for each unit prior to 

offline WW event. After data consolidation and outlier 

analysis, 126 units with 104 parameters are used in this 

application, of which there are 11 ATM factors and the rest 

are either operating factors or calculated performance 

factors. The performance degradation prior to offline WW is 

employed as the predictor, while 103 parameters are used as 

potential influencing factors. The correlation analysis is 

used to identify the independent variables from the ATM 

factors, while the stepwise regression method is employed 

to identify the critical variables from the other factors. As an 

example, Figure 7 shows the data versus the operation time 

at offline WW in terms of performance degradation, 

compressor discharge temperature (CTD), fuel flow (FQG), 

and specific humidity 2m above displacement height 

(QV2M).  

5.1. Correlation Analysis 

The correlation analysis is applied to identify the 

independent variable from the 11 ATM factors and the other 

OSM factors separately. For instance, from the multivariate 

Pearson correlation analysis by using Eq. (4), we can obtain 

5 relatively independent ATM variables, PS, QV2M, 

DUCMASS, SO2CMASS, and OCCMASS, which will be 

included for further analysis. For demonstration purpose, 

Figure 5. Illustration of neural network 

Figure 6. Implementation process 
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Figure 8 shows the color map of the correlation coefficients, 

where the deep red color indicates strong correlations 

between two factors, while the light color indicates weak 

correlations.  

 

 

5.2. Stepwise regression 

The stepwise regression analysis is further employed to 

identify the critical factors influencing the performance 

degradation.  The trend of AIC and BIC criteria is shown in 

Fig. 9. The list of 10 factors with minimum BIC value is 

identified as the vital X’s from the OSM variables  

 

5.3. Neural Network model 

In the neural network modeling, a learning rate of 0.1 is 

used to fit an additive sequence of models. The 6-folder 

validation strategy is employed in the model generation. The 

114 data points are randomly selected for model training 

and then the rest 12 data points are used to validate the 

model. We select 2-hidden layers neural network structure 

first, and then determine the number of hidden nodes by a 

trial and error approach.  

Figure 10 shows the ANN structure with 15 input nodes 

(factors), 15 first hidden nodes, 5 second hidden nodes, and 

1 output node representing for the performance degradation 

data. The R-squared value of 0.905 is obtained for model 

training, while 0.977 for model validation, implying the 

model produce the high prediction accuracy. Figure 11 

shows the plots of actual degradation versus the predicted 

results for a) model training and b) model validation. It is 

observed that most data is clustered around the 1:1 plots in 

both cases, indicating an acceptable predictive ANN model. 

6. SUMMARY 

Performance assessment and prediction of a gas turbine 

provides valuable identification and understanding of which 

components were suffering from rapid or severe degradation 

and required technical assistance to resolve the deficiencies. 

This paper attempt to develop predictive degradation models 

for GTs by integrating satellite collected atmospheric 

factors, OSM data, and physics-based calculated 

performance data. Total 127 assets with 100 variables are 

analyzed and employed in this study. Outlier analysis and 

preprocessing are used to clean the data for modeling. 

Fifteen vital X’s, including 5 ATM factors and 10 OSM 

factors, are identified by using correlation analysis and 

stepwise regression analysis. The performance degradation 

calculation is obtained from thermodynamic heat balance of 

gas turbine with the measurement data. The performance 

degradation prior to the offline WW is used as the predictor. 

Artificial neural network modeling is employed to establish 

the predictive models. A procedure is presented to explain 

the proposed methodology. This is a multivariate-input-

single-output predictive problem. The results show that the 

ANN model presents acceptable prediction accuracy. 

Figure 7. Data versus operation time at offline WW 

Figure 8. Color map of correlation coefficients 

Figure 9. AIC and BIC Criterion trend in Vital X’s 

Selection 
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Current study is focused on the yearly averaged data as 

inputs, and the degradation is treated as a static output.  

Further research may be conducted to develop time-

dependent degradation predictive model. In addition, only 

10 ATM factors have been investigated in this study, more 

ATM factors if available may be investigated in future, 

associated with other predictive modeling techniques. The 

developed predictive model would be applied for outage 

optimization and predictive maintenance of assets, in order 

to reduce the operational and maintenance cost for 

customers.  

REFERENCES 

ASME (2006), Performance Test Code on Gas Turbines. 

American Society of Mechanical Engineers (ASME), 

ASME PTC 22-2005. 

Balevic D, Hartman S and Youmans R (2010), Heavy-Duty 

Gas Turbine Operating and Maintenance 

Considerations. GER-3620L.1, GE Energy, Atlanta, 

GA.  

Brooks FJ (2000), GE Gas Turbine Performance 

Characteristics. GER-3567H. GE Power Systems, 

Schenectady, NY. 

Jiang X, Foster C (2013), “Remote Thermal Performance 

Monitoring and Diagnostics – Turning Data into 

Knowledge,” Proceedings of the ASME 2013 Power 

Conference, July 29 – August 1, 2013, Boston, 

Massachusetts, USA. 

Jiang X, Foster C (2014), “Plant Performance Monitoring 

and Diagnostics – Remote, Real-Time and 

Automation,” Proceedings of ASME Turbo Expo 2014: 

Turbine Technical Conference and Exposition, June 

16 – 20, 2014, Düsseldorf, Germany. 

Johnston JR (2000), Performance and Reliability 

Improvements for Heavy-Duty Gas Turbines. GER-

3571H, GE Power Systems, Schenectady, NY. 

Meher-Homji CB, Chaker MA and Motiwala HM (2001), 

“Gas Turbine Performance Deterioration,” 

Proceedings of the 30th Turbomachinery Symposium, 

139-175, Houston, TX. 

Tukey, JW (1977). Exploratory Data Analysis.  Addison-

Wesley, Reading, MA.  

 

 

BIOGRAPHIES  

Xiaomo Jiang received his Ph.D. in 

Structural Engineering from the Ohio 

State University in 2015 and M.Eng. 

from National university of Singapore 

in 2000. From 2005 to 2007, Dr. Jiang 

conducted post-doctoral research at 

Vanderbilt University. Currently Dr. 

Figure 10. Multilayer neural network for performance 

degradation prediction 

Figure 11. Actual degradation and predicted results: a) 

Model training, and b) model validation 

b) 

R
2
=0.977 

n = 12 

a) 

R
2
=0.905 

n = 114 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

10 

Jiang is a Technical Leader of Analytics in Monitoring & 

Diagnostic center at GE Power, where he is leading the 

advanced analytics development, integration, execution, and 

validation efforts for next generation Asset Performance 

Management platform, with applications in heavy duty 

power generation products such as gas turbines and steam 

turbine, as well as other OEM assets in coal and nuclear 

plants and liquidated natural gas manufacturers. Dr. Jiang is 

an expert at Bayesian statistics, wavelet signal processing, 

and intelligent algorithms. He has 20 years of experience in 

condition based diagnostics, predictive analytics, 

prognostics, risk and reliability modeling, performance 

monitoring, and model validation for engineering systems 

under uncertainties. Dr. Jiang has authored 1 book, 3 book 

chapters, and more than 40 research Journal papers and 25 

international conference papers in the cross-disciplinary 

fields of computer science, engineering, and applied 

statistics. He holds multiple U.S. and foreign patents. He 

has been invited to serve as a peer reviewer, editorial board, 

or associate editor for over 40 different international 

journals and conferences.  

 


