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ABSTRACT 

In the age of Internet of Things and Industrial 4.0, the 
prognostic and health management (PHM) systems are used 
to collect massive real-time data from mechanical 
equipment. Mechanical big data has the characteristics of 
large-volume, diversity and high-velocity. Effectively 
mining features from such data and accurately identifying 
the machinery health conditions with new advanced 
methods become new issues in PHM.  A major problem of 
using the existing PHM methods for machinery fault 
diagnosis with big data is that the features are manually 
extracted relying on much prior knowledge about signal 
processing techniques and diagnostic expertise, limiting 
their capability in fault diagnosis with big data. 

This paper presents a deep learning based approach for 
bearing fault diagnosis using acoustic emission (AE) 
sensors with big data. Different from widely used shallow 
neural network architecture with only one hidden layer, the 
branch of machine learning methods with multiple hidden 
layers are regarded as deep learning method. The presented 
approach pre-processes AE signals using short time Fourier 
transform (STFT) and extract features. Based on the simply 
processed AE features, an optimized deep learning structure, 
large memory storage retrieval neural network (LAMSTAR) 
is used to perform bearing fault diagnosis. The unique 
structure of LAMSTAR enables it to establish more 
efficient and sparse distributed feature maps than traditional 
neural networks. By leveraging the labelled information via 
supervised learning, the trained network is endowed with 
discriminative ability to classify bearing faults. The AE 
signals acquired from a bearing test rig are used to validate 
the presented method. The test results show the accurate 

classification performance on various fault types under 
different working conditions, namely input shaft rotating 
speeds. It also proves to be effective on diagnosing bearing 
faults with relatively low rotating speeds.  

1. INTRODUCTION 

Bearings are widely used as vital components in modern 
mechanical equipment. The occurrence of bearing faults 
will result in significant breakdown time, elevated repair 
cost and even a potential decrease in productivity. In the age 
of Internet of Things and Industrial 4.0, the prognostic and 
health management (PHM) systems are used to collect 
massive real-time data from mechanical equipment.  
Mechanical big data has the characteristics of large-volume, 
diversity and high-velocity. Effectively mining features 
from such data and accurately identifying the machinery 
health conditions with new advanced methods become new 
issues in PHM. 

Over the recent years, the application of acoustic emission 
(AE) sensors for machine health monitoring and fault 
diagnosis has been reported (Morhain & Mba, 2003, Mba, 
2008, He et al., 2011, He & Zhang, 2012, Nienhaus et al., 
2012, Hemmati et al., 2016, ). In comparison with other 
sensor signals such as vibration signals, AE signals have 
certain advantages in capturing and representing both local 
and global bearings fault features. A key step in using AE 
sensors for machine fault diagnosis is signal processing and 
valuable feature extraction. In machine health monitoring 
and fault diagnosis, the AE signals are used to detect, locate 
and characterize damage (Girado et al., 2003, Nigam et al, 
2004). Mba (2008) reported the efficiency of fault detection 
and health monitoring by using Hilbert-Huang transform 
(HHT) on rotational machinery system and components. 
Along with application of HHT, another threshold based 
technique was used to increase the signal-to-noise ratio of 
targeted AE burst signal (Mba, 2008). Hemmati et al. (2016) 
proposed a new algorithm by using wavelet packet 
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transform to optimize the ratio of kurtosis and Shannon 
entropy for diagnosing local defects on bearings under 
various working conditions. The validation result showed 
effectiveness on extracting bearing characteristic 
frequencies with background noise under various operation 
conditions. In a recent study (He et al., 2011), a data mining 
based full ceramic bearing fault diagnostic algorithm using 
AE sensors was presented. Condition indicators were 
extracted from decomposed intrinsic mode functions 
components of the AE signals using HHT. The extracted 
condition indicators were then used in both k-nearest 
neighbor (KNN) and back propagation (BP) neural network 
for bearing fault diagnosis. 

A major problem of using the existing PHM methods for 
machinery fault diagnosis with big data is that the features 
are manually extracted relying on much prior knowledge 
about signal processing techniques and diagnostic expertise, 
limiting their capability in fault diagnosis.  

Different from widely used shallow neural network 
architecture with only one hidden layer, the branch of 
machine learning methods with multiple hidden layers are 
regarded as deep learning method.   Deep learning attempts 
to model complexity and internal correlation in dataset by 
using multiple processing layers, or with complex structures, 
to mine the information hidden in dataset for classification 
or other goals (Hinton & Salakhutdinov, 2006). As a deep 
learning method, LAMSTAR has been applied in multiple 
fields such as image recognition (Girado et al., 2003), 
biomedical diagnosis (Nigam et al., 2004, Sivaramakrishna 
& Graupe, 2004, Waxman et al., 2010, Isola et al., 2012), 
with solid result showing the ability of LAMSTAR for 
rapidly processing large amount of data and less error 
percentage than regular machine learning algorithms. As 
one of the representative classical neural networks, the BP 
neural networks have been widely used in machinery fault 
diagnosis (Paya et al., 1997, Huang et al., 2007). However, 
the reported studies based on BP neural networks have 
shown the strict requirement of signal pre-processing using 
complicated signal processing methods including HHT and 
wavelet packet transformation. With the introduction of 
forgetting, rewarding/punishing features into a traditional 
neural network, LAMSTAR works on a closer level of 
mimicking the working process of a natural brain. Without 
the limitation on network size, LAMSTAR can grow/shrink 
in dimension without changing the original structure and 
maintain fast training speed. As an input, the LAMSTAR 
network accepts data defined by the user, such as system 
state and system parameter. Then, the system builds a model 

to be trained for memorizing the information of input data 
and correlation between input data.  The trained module can 
be used in testing, by searching the stored knowledge to find 
the best approximation to the features of input data. The 
standard perceptron-like neurons are employed in 
LAMSTAR, arranging in self-organizing maps (SOM) 
modules. The SOM structures in LAMSTAR are governed 
by winner taking all (WTA) strategy and the memories of 
those neurons in SOM are stored in bidirectional associative 
memory (BAM) function. The optimization of a LAMSTAR 
network is to determine the link weights that store relation 
message between various SOM modules and between 
neurons in SOM and output decision layer. The link weights 
contribute along with information stored in winner neuron 
from each individual SOM to SOM-type output decision 
layer. With all of the characteristics discussed above, a 
LAMSTAR network can learn and understand system 
information more systemically and intelligently. Yoon et al. 
(2013) have successfully applied LAMSTAR on AE signals 
for full ceramic bearing fault diagnosis. AE signals were 
pre-processed by using HHT to extract conditional 
indicators as input to BP, LAMSTAR, and KNN. The 
classification result from that study shows faster learning 
speed and higher accuracy from LAMTAR. Deep learning 
represents an attractive option to process mechanical big 
data for machinery fault diagnosis. 

In this paper, a LAMSTAR based bearing fault diagnosis 
using AE sensors is presented. The unique contribution of 
the paper is that the AE are pre-processed with the simple 
short-term-Fourier-transform (STFT) method rather than 
computationally complicated signal processing algorithms 
such as wavelet transform and HHT. The AE features 
obtained using STFT are directly taken as inputs to 
LAMSTAR for bearing classification. Thus, the feature 
extraction process for fault diagnosis is greatly simplified. 

2. THE METHODOLOGY 

The general procedure of applying LAMSTAR network for 
AE sensor based bearing fault diagnosis is shown in Figure 
1. As shown in Figure 1, the AE data is first pre-processed 
using STFT to generate a spectrum matrix S.  Sub-patterns 
are then generated from the spectrum matrix S and used to 
obtain the optimal LAMSTAR network model for bearing 
fault diagnosis. The basic LAMSTAR network structure and 
specific design of LAMSTAR network in this paper are 
explained next. 

2.1. Basic Structure of LAMSTAR Networks 
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The LAMSTAR network is specifically designed for 
retrieval, classification, prediction and decision making 
problems, especially those involving large amount of 
categories. With advantages of SOM-based network 
modules and statistical decision tools, LAMSTAR is 
capable of pattern storage and retrieval. The information in 
network is continuously being updated for each sample 
through learning and correlation, to make LAMSTAR an 
intelligent system. One unique function of LAMSTAR is to 
handle analytical and non-analytical data, with complete or 
some missing categories information. Such uniqueness is 
achieved by implying forgetting, interpolation and 
extrapolation features, allowing the network to reduce the 
weights of stored information and still being able to 
approximate forgotten information by extrapolation or 
interpolation.  

The decision making principle in LAMSTAR is the same as 
the classical neural networks. If n denotes the number of 
inputs fed into ݆௧௛ neuron as	൛ݒ௜௝, ݅ ൌ 1, 2, … , ݊ൟ, then output 
 :௝of the ݆௧௛ neuron can be expressed asݕ

௝ݕ ൌ ே݂൫∑ ௜௝ݒ௜௝ݓ
௡
௜ୀଵ ൯         (1) 

where ே݂ሺ∙ሻ  represents nonlinear activation function. 
Variable ݓ௜௝	are the weights assigned to the ݅௧௛ inputs of ݆௧௛ 
neuron and whose setting is the learning action of the 
LAMSTAR network. The information in LAMSTAR is 
stored and processed via correlation links between 
individual neurons in separate SOM modules. Given a 
coded real matrix ࢄ as input pattern: 

ࢄ ൌ ሾ࢞ଵ், ,ଶ்࢞ ,ଷ்࢞ … ,  ே்ሿ        (2)࢞

where ࢞௜் stands for transpose of sub-pattern ࢞௜. Each sub-
pattern ࢞௜is channeled to a corresponding ith SOM module 
that stores data focusing on ith category of the input pattern. 
A general structure of LAMSTAR network is presented in 

Figure 2. In Figure 2, input pattern represents each signal to 
be diagnosed, containing all of sub-patterns generated from 
the spectrum matrix S. Input modules represent all of the 
structure before final decision module, including input 
pattern and SOMs. Considering each input pattern as an 
input layer, each sub-patterns can be viewed as an input 
neuron and each SOM module as a hidden layer. The 
LAMSTAR network does not create neurons for an input 
pattern. Instead, only individual sub-patterns are stored in 
SOM layers, and correlations between sub-patterns are 
stored as link weights (Graupe & Kordylewski, 1997). The 
sub-pattern construction is explained in details in Section 
2.2.1. How a link weight in LAMSTAR is created and 
adjusted is explained next. 

 

Figure 2. General structure of the LAMSTAR network 
 
When a new input pattern is loaded into a LAMSTAR 
network, the LAMSTAR network checks all the storage-
weight ࢝௜  in the ith SOM module corresponding to the ith 
sub-pattern to be stored. If any existing sub-pattern matches 
the input sub-pattern ࢞௜ within a pre-defined error tolerance, 
then it is claimed as the winning neuron for that particularly 

Figure 1. LAMSTAR for AE based bearing fault diagnosis  
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observed input sub-pattern. For most applications with 
storage of purely numerical input sub-patterns, the storage 
of such sub-patterns into SOM module can be simplified by 
directly mapping each SOM module into a pre-defined 
range of value. For example, the ith sub-pattern with value of 
0.6 will be stored in the neuron of the ith input SOM module 
representing range of 0.5 to 0.75. The searching procedure 
and decision of winning neuron in each module for SOM 
dynamic weights construction is explained in Section 2.2.3. 

The correlation between sub-patterns is stored in link 
weights that connect neurons in different SOM modules. 
Also, the correlation between winning neurons in each input 
SOM module and decision SOM module are stored as link 
weights. Link weights are functioned as links among 
knowledge learned by brain. Thus, the link weights become 
fundamental to allow interpolation and exploration of sub-
patterns. The link weights are updated as for a given input 
pattern with a determined winning kth neuron in ith SOM 
module and a winning mth neuron in jth SOM module. A 
winning neuron is determined for each input sub-pattern 
based on the similarity between the input sub-pattern and a 
weight vector ࢝  (stored information). For a given sub-
pattern	࢞௜, the winning neuron is determined by minimizing 
the distance norm ‖∗‖ as below: 

݀ሺ݅, ݆ሻ ൌ ฮ࢞௜ െ ௝ฮ࢝ ൑ ௜࢞‖ െ ,‖௞࢝ ∀݇ ് ݆        (3) 

The vector 	࢞௜  will be stored in weights ݓ௜௝  of vector ࢝௝ 
relating to the jth neuron when the distance satisfies Eq. (3). 
Vector ࢝௝  represents the storage weight vector only for the 
input SOM modules. Decision SOM module does not store 
the information of input patterns. The link weight ܮ௜,௝

௞,௠  is 
calculated by adding a pre-defined reward. Meanwhile, all 
other links can be decreased with a predefined punishment. 
The link weights update can be expressed as followings: 

௜,௝ܮ
௞,௠ሺݐ ൅ 1ሻ ൌ ௜,௝ܮ

௞,௠ሺݐሻ ൅ ∆ܴ        (4) 

௜,௝ܮ
௞,௠ሺݐ ൅ 1ሻ ൌ ௜,௝ܮ

௞,௠ሺݐሻ െ ∆ܲ        (5) 
ሺ0ሻܮ ൌ 0          (6) 

where, in Eq. (4) and Eq. (5), ܮ௜,௝
௞,௠	donates links between 

winning neuron i in kth module and winning neuron j in mth 
module, ∆ܴ and ∆ܲ are pre-defined reward and punishment 
values, and t represents the number of the iterations that the 
link weights are updated. The initial link weight is set as 0. 
The value of reward and punishment are normally pre-
defined between 0 and 0.5, and they can be set as same 
value. The output that matches with target input will be 
rewarded by a non-zero increment; otherwise it will be 
punished by a non-zero decrement. It is computationally 
efficient in most applications that only link weights between 
winning neurons in the input SOM modules and decision 
SOM module are updated. 

The output at the decision SOM modules is made by 
analyzing correlation links between decision neurons in the 

decision SOM module and neurons in all input SOM 
modules. To make such a decision, LAMSTAR produces a 
winning decision neuron n from the set of output neurons ܬ 
in the decision SOM module by searching for the neuron in 
output module with the highest cumulative value of link 
weights connecting to the selected winning neurons in each 
input modules. The equations to make such a decision for 
the ith output SOM module are given as follows: 

ሺ݆ሻܧ ൌ ∑ ∗఑௪ܮ
௜,௝ெ

఑௪∗ , ∀݆ ∈  (7)         ܬ

ሺ݊ሻܧ ൒ ,ሺ݆ሻܧ ∀݆ ∈  (8)         ܬ

where i donates the ith output module; ݊ donates winning 
neuron in the ith output module; ݓߢ∗  donates winning 
neuron in every ߢ th input module; M stands for the total 
number of input modules; ܮ఑௪∗

௜,௝  stands for link weight 
between winning neuron in ߢ௧௛input module and neuron j in 
ith output module; and J is set of the neurons in ith output 
module. Thus, ܧሺ݆ሻ  represents the sum of link weights 
connecting to the jth neuron in ith output SOM module from 
winning neuron ݓߢ∗  in every ߢ th input module, and ܧሺ݊ሻ 
represents the sum of link weights connecting to the 
winning neuron ݊ in ith output SOM from winning neuron 
 .th input moduleߢ in every ∗ݓߢ

In the LAMSTAR based bearing fault diagnosis approach, 
the algorithm will first use the training data to update the 
link weights. More specifically, it will find the winning 
neuron in each layer and applies the WTA principle to 
update the link weights. In testing procedure, the 
LAMSTAR network will calculate the winning neuron in 
the decision layer serving as the label information. In the 
last step, the LAMSTAR will provide the accuracy rate 
defined as ratio of success classification number against 
total number of tested data points.  

2.2. The Design of the LAMSTAR Network for AE 
based Bearing Fault Diagnosis 

The design of the LAMSTAR network for AE based bearing 
fault diagnosis involves the following tasks: sub-pattern 
generation, input data normalization, dynamic formation of 
neurons in SOM, determination of the link weights, and 
neural network test. They are explained next. 

2.2.1. Sub-pattern generation 

The basic storage modules of the LAMSTAR networks are 
SOM modules as discussed in Section 2.1. In LAMSTAR 
networks, the information is stored and processed via 
correlation links between individual neurons in separate 
SOM modules. The link weights are the main engine of the 
network, connecting every SOM module so that the 
emphasis is on correlation of link weights between atoms of 
memory, not on the memory atoms themselves. In such case, 
the input data should be modeled as sub-patterns for each 
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SOM module to store and process, and each sub-pattern 
describes characteristics or attributes of the input pattern.  

The collected raw AE data will be pre-processed by STFT at 
first. Then, the processed data are transferred into spectrum 
2-D matrix with a size of	݈ ൈ ݊. Given an AE signal	ݏሺݐሻ	, 
the spectrum matrix can be written as ௟ܵൈ௡  with a size 
of	݈ ൈ ݊	, where l denotes row number and n denotes column 
number.  Each of the AE signal is viewed as one pattern in 
this case. By considering the spectrum matrix as a spectrum 
plot with known elements inside, the sub-sampling method 
used in LAMSTAR based image recognition application 
(Girado, 2004, Homayon, 2015) can be applied to generate 
sub-patterns. Sub-patterns are generated by taking samples 
from previously generated spectrum matrix, by using a 
sliding box.  

For each pattern, data subsets are sampled using sliding box 
with a size of		݀	 ൈ ݀ by sliding the spectrum matrix from 
left to right, then top to bottom, sequentially. Every subset 
obtained from sliding box will be transformed column by 
column into a 1-D vector, taken as one sub-pattern in a 
SOM. The procedure for obtaining sub-pattern from 
spectrum matrix is presented in Figure 3. 

 S(l * n)

Sliding 
Box

(d * d)

S
Sub-sample

Sub-pattern 1 Sub-pattern 2  Sub-pattern N 
.... 

{

N

SO
M

 1

SO
M

 2
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M

 N

.... 

OUTPUT

Neuron 1

Neuron 2

Neuron 3

Winner 
neuron

Winner 
neuron
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neuron
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(d * d)

Sliding 
Box

(d * d)
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Box

(d * d)
...
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(d * d)

...

...

Link weights

Link weights

Link weights

Figure 3. The procedure for obtaining each sub-pattern from 
spectrum matrix as input to LAMSTAR 

 

With a defined size of sliding box as 	ൈௗ	ௗܤ	 , the total 
number of generated sub-patterns ܰ is decided as: 

ܰ ൌ ሺ݈/݀ሻ ൈ ሺ݊/݀ሻ		       (9) 

Normally the value of N is set as an integer by adjusting the 
value of variable d in an acceptable range. And for each 
sub-pattern, the number of elements is 	݀ଶ	 . Since each 
spectrum matrix ௟ܵൈ௡ is considered as one pattern, then one 
can define a sub-pattern as	Ωజ, ߭ ൌ 1,2, … ,ܰ. Thus a sub-
pattern can be written as: 

 Ωజሺ݂, ݃ሻ ൌ ௟ܵൈ௡ ൬඄
ே
೙
೏

ඈ ൈ ݀݋݉,݂ ቀ
௟

௭
ቁ ൈ ݃൰,			 

∀݂, ݃ ൏ ݀                  (10) 

The data sampled from the spectrum matrix is stored in sub-
patterns, and each sub-pattern will be modeled as one SOM 
layer. Thus, the number of SOM is the same as the number 
of generated sub-patterns, as related with spectrum matrix 
dimension and sliding box size directly. A standard 
procedure for selecting the dimension of sliding box has not 
been reported. Currently, the sliding box dimension is 
selected by trial and error approach. The goal of 
determining an appropriate sliding box dimension is to 
select a sub-pattern containing as many variant information 
and thus can be used as a feature. Therefore, the entropy of 
elements per sliding box can be used as one criterion when 
selecting the appropriate sliding box dimension.  In bearing 
fault diagnosis, each fault will be represented by an output 
neuron firing sequence on a decision layer. Therefore, the 
decision layer should contain enough number of output 
neurons such that a complete permutation of the output 
neuron firing sequences can be used to represent the patterns 
(i.e., the bearing conditions) to be classified. 

2.2.2. Input normalization 

For each sub-pattern ௜࢞	 ൌ ,ଵݔൣ ⋯,ଶݔ …,௝ݔ ൧ , the 
normalization of ࢞௜ is computed as: 

௜࢞
௡௢௥௠ ൌ 	

௜࢞
ඥ∑ ௝ଶ௝ݔ

 

            = [
௫భ

ට∑ ௫ೕమೕ

,
௫మ

ට∑ ௫ೕమೕ

, … ,
௫ೕ

ට∑ ௫ೕమೕ

,…]     (11) 

Thus, the input sub-pattern is normalized between 0 and 1. 

2.2.3. Dynamic formation of neurons and weights in 
SOM 

In this paper, the SOM models are built dynamically instead 
of setting a fixed number of neurons arbitrarily. The 
network is built to have neurons depending on the class to 
which a given input to a particular sub-pattern might belong. 
Such designed network produces less number of neurons 
and the time required to fire a particular neuron at the 
classification stage is reduced considerably. 

The first neurons in all the SOM modules are constructed as 
Kohonen neurons and are placed as the first ones in each list 
of the neurons. One neuron is built with inputs and 
randomly initialized weights to start with and they are 
normalized following the same equation for input sub-
patterns. Then the weights are updated until the output of 
the neuron is made equal to 1 with pre-defined error 
tolerance. Let ࢝ሺ݊ሻ and ࢝ሺ݊ ൅ 1ሻ be the weight at iteration 
n and n+1, then the weight is updated as:  

ሺ݊࢝ ൅ 1ሻ ൌ ሺ݊ሻ࢝ ൅ ߙ ∙ ሾ࢞ െ  ሺ݊ሻሿ     (12)࢝

where learning constant ߙ	is set as 0.8 and ࢞ denotes sub-
patterns. 
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The output value of neuron is computed as: 

ݖ ൌ ࢝ ∗  (13)       ࢀ࢞

In the dynamic SOM weight construction process, all of 
incoming sub-patterns are checked if they are zero sub-
patterns (i.e. zero vector). The trained output weight is set to 
be zero and searching winning neuron step is skipped if zero 
sub-pattern exists. Otherwise, any incoming sub-pattern 
searches among the previously constructed neurons and 
corresponding weights if any neuron generates output ݖ that 
equals to 1 with pre-defined error tolerance. The neuron 
satisfies with output that equals to 1 with pre-defined error 
tolerance is claimed as winning neuron. If the searching of 
winning neuron fails, another neuron and corresponding 
weight set are constructed additionally with pre-defined 
error tolerance.  

After all of the sub-patterns are imported into the respective 
SOM modules the output at any of the previously built 
neuron is compared to 1 with pre-defined error tolerance. 
The neuron who satisfies the condition will be rewarded 
with a non-zero increment and punished with a small non-
zero decrement.  

2.2.4. Determination of the link weights 

Link weights store the correlation between sub-pattern in 
different input SOM modules, and correlation between the 
winning neurons in different input SOM module and 
neurons in decision SOM module. The value of link weight 
will be changed in every iteration according to 
reward/punish policy. In a modification version of 
LAMSTAR, the link weight ,௜,௝ሺ݉ܮ	 ݇ሻ  from neuron m in 
SOM module to neuron j in the ith decision layer is replaced 
by a normalized link weight as: 

௜,௝ܮ
௡௢௥௠ሺ݉, ݇ሻ ൌ ,௜,௝ሺ݉ܮ ݇ሻ/݊ሺ݉, ݇ሻ      (14) 

where ݊ሺ݉, ݇ሻ denotes the number of times that neuron m is 
the winning neuron in kth SOM module.  

2.2.5. The test of the LAMSTAR neural network 

Testing the network follows a straightforward approach. 
The test samples are preprocessed and normalized into sub-
patterns the same way as the training set. The stored weights 
of the SOM module and the link weights, obtained during 
training of the network, are used. The input is then 
propagated through the network and output is determined. A 
slightly different code is used for testing the network where 
the weights of the SOM and link weights are loaded from 
the already stored values obtained from the training process. 

3. EXPERIMENT SETUP AND LAMSTAR NETWORK 

DESIGN 

3.1. Bearing Seeded Fault Test Experiment Setup 

This section covers the experimental setup used to validate 
the deep learning based AE bearing fault diagnostic 
technique.  Figure 4 shows the bearing test rig used to 
collect the AE data and conduct the bearing seeded fault 
tests. A wide band (WD) type AE sensor was axially 
mounted on the face of the bearing housing using instant 
glue. 

 

Figure 4. The bearing test rig 
 

Type 6205-2RS steel FAG ball bearings were used for 
testing.  Four fault types were simulated on steel bearings: 
inner and outer race faults, rolling element fault, and cage 
fault (see Figure 5). The inner and outer race faults were 
generated by scratching the steel race surfaces with a 
diamond tip grinding wheel bit to cover the ball contact 
surface. The ball fault damage was created by cutting the 
steel cage in one of the ball locations and then using the 
diamond tip grinding wheel bit to create a small dent in one 
of the steel balls. For the cage fault, the steel cage was cut in 
between two ball locations. For all seeded fault tests, the 
bearing seal and grease was removed and replaced 
following the creation of the fault.  

 
Figure 5. The bearing seeded faults 

 
Figure 6 shows the AE data acquisition system consisting of 
a demodulation board, power supply, along with the 
function generator and sampling device. The demodulation 
board performs the multiplication of the AE sensor signal 
with the reference signal output from the function generator 
which allows a sampling frequency reduction technique to 
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be implemented. It takes the two signals as inputs and the 
output is the multiplication of the signal inputs. After 
shifting the signal information to a lower frequency range, 
the output is fed to the sampling board while filtering out 
the high frequency component. To down shift the AE signal 
frequency, its carrier frequency had to be determined in 
order to introduce a reference signal for demodulation.  
Thus, the goal was to determine the central AE carrier 
frequency and set the reference signal frequency as close to 
it as possible.  

 
Figure 6. The AE data acquisition system 

 
A sweep function, created by the function generator, was 
used to record the output of the system. After examining the 
energy envelope at different frequencies, an estimate of the 
frequency range of the output was found. It was determined 
that the central AE signal carrier frequency was 400 kHz 
and was used as the demodulation reference frequency. The 
sampling device is a low frequency data acquisition device 
capable of handling a sampling frequency up to 250kS/s. NI 
Labview signal express was used for data acquisition, 
collecting the continuous AE signals at a sampling rate of 
100 kHz. Both the healthy bearing and the seeded fault 
bearings were tested at following shaft speeds: 2 Hz, 4 Hz, 6 
Hz, 8 Hz, 10Hz, 30 Hz, and 45 Hz. At each speed, 5 
samples were collected for a total of 15 samples of AE data 
per bearing type. For consistency, the AE sensor was placed 
in the same axial location for all data acquisitions. 

3.2. The LAMSTAR Neural Network for the Validation 
Test 

Each of the AE signal dataset was transformed into a 2-D 
spectrum matrix as explained in Section 2.1. 10 patterns 
from each of the 5 bearing conditions: inner race fault, outer 
race fault, cage fault, ball fault and healthy condition were 
generated.  Therefore, there were a total of 50 patterns 
generated.  

In the implementation of the LAMSTAR network, each 
spectrum matrix representing one pattern has a dimension of 
250 ൈ 4000. A sliding box with size of 50 ൈ	50 was selected 

initially. Thus, 40 SOMs (hidden layers) were generated for 
40 sub-patterns sampled from each spectrum matrix. In each 
SOM module, the dynamic neurons were constructed for 
storing representative value of cell in matrix. Thus, the 
number of neurons in each SOM varied from 0 to 2500.  
Considering there are 5 bearing conditions in this study: 
inner race fault, outer race fault, cage fault, ball fault and 
healthy condition, three LAMSTAR network output neurons 
were used to give a complete permutation of 6 firing 
sequences with each sequence representing a condition. 
Table 1 shows the bearing conditions and their LAMSTAR 
output neuron firing sequence representations.  The error 
tolerance was set to be 10-9; and learning rate alpha was set 
to be 0.8 as a constant, and error tolerance for winning 
neuron decision in dynamic SOM weights construction was 
set to be 10-7. Based on the principle of ANN application, 
the collected dataset was divided into training and validation 
groups for training and validating generated network. In this 
paper, the ratio of training to testing dataset was 60% to 40% 
against total. The graphic procedure of LAMSTAR network 
structure in this paper is displayed in Figure 2 as above. 

Table 1. Bearing conditions and their LAMSTAR output 
neuron firing sequence representations 

Bearing 
condition 

Output 
neuron 1 

Output 
neuron 2

Output 
neuron 3

Inner race fault 0 0 1 

Outer race fault 0 1 0 

Cage fault 1 0 0 

Ball fault 1 0 1 

Healthy 1 1 0 

4. THE RESULTS 

Using the AE signals collected during the bearing seeded 
fault tests, 50 patterns were used to train the LAMSTAR 
model, 10 for each bearing condition. The dynamically built 
neurons in SOM modules enable the large reduction on 
training time as the search time to find the winning neuron 
was reduced to a small number of neurons in many cases. 
The neural network learns as it goes even if untrained.  In 
addition to LAMSTAR, another deep learning algorithm 
convolutional neural network (CNN) was used to perform 
the bearing fault diagnosis using the same datasets for the 
purpose of comparison.  Table 2 and 3 show the bearing 
fault diagnosis result obtained by LAMSTAR and CNN for 
normal speeds at 45 and 30 Hz. 
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Table 2. LAMSTAR and CNN comparison result on 
rotating speed at 45 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 100% 

Inner race fault 100% 90% 

Outer race fault 100% 90% 

Cage fault 100% 90% 

Ball fault 90% 90% 

Over all 98% 92% 

 
Table 3. LAMSTAR and CNN comparison result on 

rotating speed at 30 Hz 
Bearing 

condition 
LAMSTAR 

accuracy (%) 
CNN 

accuracy (%)

Healthy 100% 100% 

Inner race fault 100% 80% 

Outer race fault 100% 90% 

Cage fault 100% 90% 

Ball fault 90% 90% 

Over all 98% 90% 

 

From Table 2 and Table 3, it can be observed that under the 
normal speeds, LAMSTAR gives more accurate diagnosis 
performance than CNN. In addition, the time used to train a 
LAMSTAR model was 10 times less than CNN. As the 
shaft speed reduces from 45 Hz to 30 Hz, the diagnostic 
performance of LAMSTAR remains the same while the 
diagnostic performance of CNN gets worse.  

As pointed out in Van Hecke et al. (2014), it is normally 
difficult to diagnose the bearing faults at low speed in the 
range of 0.5 Hz and 10 Hz. Using a spectral averaging based 
approach, they only showed significant fault diagnosis 
results for rotation speed over 30 Hz. Table 4 to Table 8 
show the diagnosis result obtained by LAMSTAR and CNN 
at relatively low speeds. As shown in the tables, LAMSTAR 
shows more steady performance than CNN on fault 
diagnosis with decreasing rotating speed. The classification 
accuracy from LAMSTAR application decreases from 98% 
to 96 %, while the one from CNN drops from 88% to 80%. 
The results presented in this paper show the powerful 
diagnostic performance of deep learning based approach for 
even relatively low speeds. 

Table 4. LAMSTAR and CNN comparison result on 
rotating speed at 10 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 100% 

Inner race fault 100% 90% 

Outer race fault 100% 90% 

Cage fault 100% 80% 

Ball fault 90% 80% 

Over all 98% 88% 

 

Table 5. LAMSTAR and CNN comparison result on 
rotating speed at 8 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 100% 

Inner race fault 100% 90% 

Outer race fault 100% 90% 

Cage fault 100% 80% 

Ball fault 90% 80% 

Over all 98% 88% 

 

Table 6. LAMSTAR and CNN comparison result on 
rotating speed at 6 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 100% 

Inner race fault 90% 80% 

Outer race fault 100% 80% 

Cage fault 100% 80% 

Ball fault 90% 80% 

Over all 96% 84% 
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Table 7. LAMSTAR and CNN comparison result on 
rotating speed at 4 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 100% 

Inner race fault 90% 80% 

Outer race fault 100% 80% 

Cage fault 100% 80% 

Ball fault 90% 80% 

Over all 96% 84% 

 

Table 8. LAMSTAR and CNN comparison result on 
rotating speed at 2 Hz 

Bearing 
condition 

LAMSTAR 
accuracy (%) 

CNN 
accuracy (%)

Healthy 100% 80% 

Inner race fault 100% 80% 

Outer race fault 90% 80% 

Cage fault 100% 80% 

Ball fault 90% 80% 

Over all 96% 80% 

5. CONCLUSIONS 

In this paper, a deep learning based approach for bearing 
fault diagnosis using acoustic emission (AE) sensors with 
big data was presented. The presented approach pre-
processes AE signals using short time Fourier transform 
(STFT) and extracts features. Based on the simply processed 
AE features, the optimized deep learning structure, 
LAMSTAR was used to perform bearing fault diagnosis. 
The presented method was validated with AE data collected 
from seeded bearing fault tests performed on a bearing test 
rig in the laboratory. The bearing fault diagnosis 
performance of the LAMSTAR was also compared with 
another deep learning method CNN.  The results have 
shown that the LAMSTAR based method gives better 
performance at both the normal and relative low input shaft 
speeds. 
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