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ABSTRACT

In recent years, there has been significant interest in prognosis
and health management of heat exchanger tubes in steam gen-
erators (SG) using eddy current (EC) non-destructive evalu-
ation (NDE) techniques. One of the recent challenges en-
countered in SG tube inspection is the presence of foreign
objects lodged outside the tubes. Extreme vibrations cause
these loose parts to rub against the tube wall and form wears
on their outer surfaces which can be dangerous in the high
pressure environment. Hence, there is a strong need for reli-
able automated signal analysis systems for early detection of
foreign objects and prevention of harmful radioactive leaks
at nuclear facilities. In this paper, a hidden Markov model
(HMM) based classifier is proposed which can estimate the
material of the foreign object from EC inspection signal. Un-
known loose part material interferes with EC analysis results
and lead to errors in signal processing parameters which in
turn can degrade performance and reliability of automated de-
tection systems. The proposed algorithm implements a con-
tinuous HMM classifier by using magnitude and phase based
measurements obtained from the foreign object. Results of
applying the algorithm on experimental data from SG tube in-
spection is presented, demonstrating its benefits in increasing
the robustness and performance of automated signal analysis
systems in detecting loose parts.

1. INTRODUCTION

Assessing structural integrity of heat exchanger tubes is a
challenging task faced by the Non Destructive Evaluation
(NDE) industry. High temperature, pressure, material inter-
actions and fluid flow rates cause various types of degrada-
tions on the tube walls. These multiple cracks potentially
lead to leakage of harmful radioactive fluids into the environ-
ment and hence periodic inspection of steam generator tubes
is imperative. With the rise in unscheduled plant shutdowns
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in recent years and increase in repair costs, industries have
started demanding more accurate and consistent determina-
tion of flaws in heat exchanger tubes.

Automated data analysis systems have gained a lot of popu-
larity in steam generator (SG) tube inspection to detect flaws
in tubes (Udpa, Ramuhalli, Benson, & Udpa, 2004; Xiang et
al., 2000; Grimberg et al., 2011). As newer forms of subtle
degradation mechanisms have been identified over the years,
more advanced signal processing techniques are implemented
in the existing data analysis systems. Often in industry, dif-
ferent inspection conditions cause noise and unwanted signal
interference which makes the task of damage characterization
more complex. Additional difficulties in NDE data analysis
arise due to signals from probe wobble, support structures and
variations in geometry of tubes. Along with cracks and wears,
a more recent challenge faced by the industries is monitoring
the presence of foreign objects outside tube walls. These are
parts of the tube or its surrounding structures which break off
and lodge outside the tube wall. Due to continuous vibra-
tions, they rub against the wall leading to thinning and cracks
on their outer surface. Consequently, early detection of for-
eign objects is necessary to improve the health of SG tubes
and it is important to develop reliable automated signal anal-
ysis systems for the same. The method proposed in this paper
aims at improving existing techniques for loose part charac-
terization.

Eddy current testing (ECT) has been used for decades as a
standard NDE method for periodic maintanance of SG tubes
(Grimberg et al., 2011). Presence of a crack or anamoly in
conducting materials causes variation in the coil impedance
which is captured by change in phase and amplitude of the
EC inspecion signal. This technique is highly sensitive to de-
tect surface as well as sub-surface cracks or pitting in non-
ferromagnetic or partially-ferromagnetic materials such as
nickel alloys used in SG tubing. ECT has further proved to
be successful in detecting loose parts in SG tubes depending
on the size of the loose part and its distance from the outer
wall of the tube (Joo & Shina, 2012). Automated data analy-
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sis systems have been developed to process eddy current in-
spection signals and detect regions-of-interest (ROI) indicat-
ing possible loose parts with higher accuracy and consistency.
Subsequently, magnitude and phase based features extracted
from the ROIs are analysed by a rule-base or other statistical
classifiers in order to classify a ROI as a loose part or noise
indication (Mayo & Shugars, 1988). However, to the best
of author’s knowledge, classification at a sub-level, precisely
for estimating the material of loose part has not yet been ad-
dressed yet. Eddy current signals depend strongly on material
properties of the object specifically its conductivity and mag-
netic permeability and hence loose parts of different material
show different signal responses. Since it is extremely difficult
to know the exact loose part material a-priori, an algorithm to
estimate its material should be developed and integrated in
the classification procedure.

Several classifiers have been implemented for damage mon-
itoring in diverse applications including wavelet transforms
(Eren & Devaney, 2004), statistical pattern recognition using
outliers (Sohn, Allen, Worden, & Farrar, 2005), neural net-
works (Lee, Kirikera, Kang, Schulz, & Shanov, 2006), clas-
sifier ensemble (Banerjee, Safdarnejad, Udpa, & Udpa, 2016)
and Hidden Maorkov Models(Zhou et al., 2007). Hidden
Markov Models (HMM) have proven to be successful in sev-
eral classification problems owing to their rich mathematical
structure. Taking advantage of underlying Markov dynam-
ics in its hidden states, they can successfully capture statistics
of the damage response and aid in developing a reliable and
effective SHM system. HMMs has been used in multi-fault
diagnosis of rolling bearing joints (Purushotham, Narayanan,
& Prasad, 2005) and ultrasonic inspection of cylindrical bil-
lets (Féron & Mohammad-Djafari, 2004). Apart from NDE,
HMM has also been widely used for classification of im-
ages (Mouret, Solnon, & Wolf, 2009), speech recognition
(Rabiner, 1989) and protein gene identification (Haussler &
Eeckman, 1996). In this paper, HMM was used to classify
ROIs from eddy current inspection signal into loose parts of
different materials. The proposed algorithm implements a
continuous Hidden Markov model by using phase informa-
tion of the measurement signals. Section 2 covers the ba-
sic theory behind HMM and describes the classification al-
gorithm based on HMM. In Section 3, implemention of this
approach on classifying loose parts into two classes is pre-
sented. Performance of the proposed classifier model is com-
pared with that of traditional Naive Bayes classifier and re-
sults are reported.

2. BACKGROUND

2.1. Theory of HMM

HMM is a statistical tool used for modelling sequential data
(Rabiner, 1989). This approach comprises an observation se-
quence y = y1, ., yT of length T and a probability distribution

over y is defined by invoking a sequence of unobserved (hid-
den) discrete states x = x1, ...xN . The model implements (a)
Markov dynamics on the sequence of hidden states, and (b)
independence of the observations y, from all other variables,
given xn. In a Markov process, the probability of occurrence
of a hidden state xt at time t given all its prior states is com-
pletely dependent on the probability of occurrence of the pre-
vious state xt−1, i.e P (qt|qt−1, qt−2, ...q1) = P (qt|qt−1).
These transition probabilities are defined in the initial state
distribution vector π and the state transition matrix A in
HMM. With N being number of states, HMM is parameter-
ized by the N ×1 vector π whose ith element is the probabil-
ity p(x1 = i) and the N ×N state-transition matrix A whose
(i, j)th element is P (xn+1) = j|xn = i). Additionally,
HMM is described by a state-dependent observation density
matrix B whose (j, n)

th element is bj(yn) = P (yn|xn = j).
Overall, the model parameters are denoted by θ = {π,A,B}.

If the observations y = y1, ..., yT are discrete and belong to
the pre-defined set of alphabet V = V1, ., VK , then B reduces
to a N ×K matrix whose (j, k)

th element is bjk = P (yn =
Vk|xn = j). Such a model is known as a discrete HMM.
Discrete HMM was first introduced in (Zhou et al., 2007) for
damage classification. It served as a good classifier, but its
performance reduced when features belonged to a continuous
range due to loss of information during quantization. When
observations lie in a continuous range, a continuous HMM is
preferred where B can be modelled using a Gaussian mixture
model (GMM) with M components,such that

bj(yn) =

M∑
m=1

cmN (yn, µjm,Σjm) (1)

where cm, µjm, and Σjm are the coefficients, mean, and co-
variance matrices respectively of themth mixture component
(Gauvain & Lee, 1994).

2.2. HMM-Based Classification

In this paper, training dataset is used by the HMM to learn its
model parameters. Given a ‘training’ observation sequence
y belonging to one class, the maximum likelihood estimates
of the HMM parameters are estimated for the classes using
Baum-Welch algorithm (Seymore, McCallum, & Rosenfeld,
1999). The Baum-Welch algorithm was introduced as a spe-
cial case of the expectation-maximization (EM) algorithm
which iteratively maximizes the log-likelihood of the train-
ing data and obtains the optimum model parameters θ. The
details and derivation of Baum Welch algorithm can be found
in (Bilmes et al., 1998). With intelligent selection of initial
values, the model parameters are updated at (n + 1)th itera-
tion according to Equation 2.

θ(n+1) = argmax
θ

∑
x

p(x|y, θn) log p(x, y|θn) (2)
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The EM algorithm is guaranteed to converge to the maximum
of the likelihood function defined in Equation 3. Proof of
convergence of the algorithm has been studied extensively by
(Jordan & Xu, 1995) (Boyles, 1983).

θML = argmax
θ

log p(y|θ) (3)

Training is repeated for obtaining HMM parameters for every
class in the application. Once, maximum likelihood estimate
of the HMM parameters are computed, the predictive likeli-
hood of a ‘test’ observation sequence y′ can be computed as:

p(y′|θML) =
∑
x

p(x, y′|θML)

=
∑
x

πx1

T−1∏
n=1

axnxn+1

T∏
n=1

bxnyn

(4)

Finally, classification is performed according to Bayesian rule
and the ‘test’ observation is classified to the class having max-
imum predictive likelihood. Flowchart of HMM based clas-
sification algorithm is presented in Figure 1.
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Figure 1. Algorithm design for HMM based classifier com-
prising (a) training for all classes and (b) classifying a test
observation.

3. APPLICATION: FOREIGN OBJECT CLASSIFICATION

3.1. Experimental Set-up and Data Collection

In this section, experimental data obtained from eddy current
inspection of foreign objects outside steam generator tubes
was analyzed. Figure 2 shows the experimental setup with
associated eddy current inspection signal. A foreign object
was placed outside the tube wall above tube support and an
eddy current multi-frequency rotating probe collected data
across the entire tube length. Eddy current measurements
capture impedance changes caused by magnetic flux reduc-
tion and generate complex voltage at the output(De Mesquita,

Ting, Cabral, & Upadhyaya, 2004). Magnitude and phase
information from the impedance plot distinguishes a loose
part indication from background noise. A typical post pro-
cessed eddy current inspection signal with the loose part in-
dication is shown in Figure 2. It is obtained from SG tube
inspection containing loose part made of carbon steel located
4mm above the tube support. In this experiment, data was
collected from 88 SG tubes at three frequencies: 15KHz,
200KHz and 300KHz. Loose parts belonged to two cate-
gories of materials- copper and carbon steel.

Figure 2. Experimental setup and eddy current inspection sig-
nal of SG tube at 15KHz with loose part indication.

Apart from material of loose part, factors which affect out-
put signal response are size of the loose part and its position
from the outer tube wall. A larger loose part located closer
to the outer wall shows a stronger response in the measured
signal than otherwise. To take these factors into considera-
tion and make data more representative of real situations, this
experiment was conducted with variable size of loose parts,
located at different positions with respect to the tube wall.
In this paper, 18 tube data with carbon steel loose parts and
19 tube data with copper loose parts, randomly chosen from
the entire dataset, were used for training the proposed HMM
based classifier for the two classes. The remaining 51 sig-
nals were used for testing the classification performance of
developed classifier. In this study, it was desired to achieve
high classification accuracy with limited training, replicating
field inspection scenarios. Hence, fewer data were used for
training compared to testing the classifier.

Figure 3a and 3b show the imaginary component of eddy cur-
rent inspection signal of a section of SG tube with a loose part
made of copper and carbon steel respectively lodged outside
the tube wall. The axial length of the tube described by the
ordinate is 80mm whereas the abscissa correspond to 360◦

circumferencial span of the tube. The rectangular box indi-
cates the location of the loose part at the three frequencies-15
KHz (low), 100 KHz (medium), 300 KHz(high). A useful
method for representating and comparing eddy current anal-
ysis results is by studying the corresponding Lissajous curves
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(Jarmulak, 1997) where the output signal from ECT is plotted
in a complex plane. Roughly, the amplitude of the curve cor-
responds to volume of the defect and its phase corresponds
to defect depth and location. The Lissajous plots for copper
and carbon steel loose part detection are shown in Figure 4a
and 4b. The x and y axes describe the real and imaginary
components respectively in volts. It is noted that the output
signal response varies for the two materials. For carbon steel,
loose part indications at 15KHz have signal at higher volt-
age than background noise whereas for copper, signals at a
voltage lower than surrounding noise identifies the loose part.
Without information about the material, automated analysis
software is typically unable to determine whether to retain
signal above or below a threshold as the potential loose part
region. Thus an algorithm is required to classify the material
of the loose part signal before applying proper thresholds and
locating the loose part.

(a)

(b)

Figure 3. Imaginary component of eddy current response sig-
nal for (a) carbon steel loose part and (b) copper loose part at
three frequencies.

3.2. Choice of Model Parameters

The primary feature that is used to detect a loose part signal
from its background noise is phase of the complex eddy cur-
rent post-processed signal response. Using magnitude thresh-
olds, signals with higher amplitude are selected as ROIs con-
taining potential loose parts and rest of signal is discarded.
According to principle of eddy current testing, phase of a
loose part signal is typically different from that of noise.
Therefore with proper phase thresholds, ROIs containing
loose part signals is separated from noise indications which
are retained even after magnitude thresholding.

However, phase information of signal at only one frequency
channel is not sufficient for distinguishing loose part signals
of two different materials. In lieu of single frequency re-
sponse, loose part signals of copper and carbon steel can be
distinguished by analysing their phase over a range of fre-
quencies. From Figure 3 and Figure 4 it was observed that
the phase of the ROIs follows a trend over the frequency range
such that phase at a particular frequency depends on its value

(a) (b)

Figure 4. Lissajous plots for loose part indications made of
(a) carbon steel (b) copper.

in the previous frequency channel. This forms the motiva-
tion behind exploiting the underlying Markovian dynamics.
HMM models the temporal transitions between the three fre-
quency channels in conjunction with the associated observa-
tion statistics and hence HMM based classifier was found to
be suitable for classifying loose part inspection data into two
classes of materials.

3.3. Naive Bayes Classifcation

In this study, the ‘training’ dataset consisting of phase at three
frequencies for 37 datafiles was used to model Naive Bayes
classifier for comparing classification performance of pro-
posed HMM-based classifier(Rish, 2001). Naive Bayes clas-
sifer computes the Bayes posterior probability for all classes
and labels it onto the class with the highest posterior proba-
bility measure. It is an optimal classifier for a two-class clas-
sifcation task and has been widely used for damage detction
in engineering materials (Addin, Sapuan, Mahdi, & Othman,
2007) and prognostic applications by eddy current analysis
(Qiu et al., 2013). The confusion matrix based on the classi-
fication result on the ‘test’ dataset consisting of 51 measure-
ments is reported in Table 1.

Correct classification rate, i.e (No. of correct classifications) /
(Total no.of samples) ×100% was calculated as 72.54 % and
almost half of carbon steel loose part data were misclassified
by the Naive Bayes classifier. The phase information at the
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Table 1. Confusion matrix for Naive Bayes classification of
loose part material.

three frequencies were not discriminative of the two classes
of loose part materials resulting in poor performance of the
classifier.

3.4. HMM-Based Classifcation

The dependency graph for HMM in this application is shown
in the Figure 5. The frequencies are chosen as the hidden
states S0, S1, S2 whereas the phase values corresponding to
the frequency channels are considered as the observation vari-
ables O0, O1, O2.

Figure 5. Dependency graph of HMM for classification of
loose part data.

Since phase of signals after magnitude thresholding lies in
the continuous range within 0 to 360◦, the proposed classi-
fier is based on continuous HMM where the B-matrix is es-
timated using a Gaussian mixture model (GMM). The num-
ber of components in the GMM is selected according to the
number of clusters formed by K-means approach in the 3-
dimensional feature space of the two classes (Hartigan &
Wong, 1979). As shown in Figure 6, for both carbon steel
and copper, phase at the three frequencies form two separate
clusters and therefore for this dataset, a mixture of 2 Gaussian
functions was chosen. The estimated means and covariances
of the GMM, computed by K-means clustering, were used to
model the observation matrix.

An interesting thing to note is that features from two ma-
terials are not separable in the feature space which was the
primary reason behind the poor classification performance of
the Naive Bayes classifier. This reinforces the benefit of the
HMM based classifier which is able to exploit the underly-
ing Markovian dynamics of signals and classify loose parts
with different material properties. Besides, copper loose part
shows more distinct indications on the eddy current response
signal as compared to carbon steel due to characteristic dif-
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Figure 6. Feature space for (a) carbon steel (b) copper.
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Figure 7. Plot of log-likelihood function in Baum Welch al-
gorithm for (a) carbon steel and (b) copper.

ference of its material properties from inconel, hence copper
data formed a tighter cluster in the feature space.

During training with 37 loose part data according to the Baum
Welch algorithm, the logarithm of the likelihood function at
every iteration was evaluated and plotted in Figure 7 for car-
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bon steel and copper. For both the cases, the log likelihood
increases with every iteration till it converges to the maximum
likelihood parameters of the HMM.

To illustrate the performance of the HMM classifier, 51 test
samples, 27 with carbon steel loose part and 24 with cop-
per loose part, were classified by the trained algorithm. The
correct classification rate was calculated as 88.24%. The as-
sociated confusion matrix is recorded in Table 2.

Table 2. Confusion matrix for HMM-based classification of
loose part material.

4. CONCLUSION AND FUTURE WORK

This paper demonstrates the benefit of Hidden Markov Mod-
els for characterizing the material of loose part before apply-
ing selective signal processing on the eddy current data. Most
loose part materials were classified correctly by the HMM
based classifier using phase information as classification fea-
tures. Further, by using continuous HMM instead of its dis-
crete version, the quantization step and its associated errors
was avoided. By taking advantage of underlying Markovian
principle, the proposed classifier exhibits better classification
performance compared to traditional Naive Bayes. Extention
to more types of loose part materials other than copper and
carbon steel will be studied in future in order to verify the ro-
bustness and classification capability of the proposed method.

In this study, the initial values of the HMM parameters were
chosen randomly for obtaining the maximum likelihood es-
timate by Baum Welch algorithm. A wrong selection of the
inital values may result in sub-optimum parameter estimates
as the EM algorithm can get trapped in a local maxima which
can degrade the performance of the proposed classifier. In
order to avoid local maxima of the likelihood, a simulated
annealing scheme can be employed. Moreover, the dataset
studied in this application was assumed to adhere to Gaus-
sian mixture model which may not be true for other appli-
cations. In such cases, non-parametric approaches should be
preferred.
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