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ABSTRACT 

The internet of things (IOT) enabled presence of abundant 

sensors on smart machineries and the recent advance in deep 

learning is accelerating the development of predictive 

maintenance in production systems with less time and fair 

amount of effort. In this work a Deep learning Neural 

Networks (DNN) based bearing health monitoring system 

with index of similarity check is developed and tested for its 

effectiveness. The assessment procedure followed in here 

trains a DNN model on a time series data segmented to a 

vector size equal to number of data points per cycle as 

training and test data sets. Moreover the model measures the 

similarity of the test signal to an anchor signal selected from 

each fault class. The classification performance comparison 

done proves that DNN with fair depth and large data 

perform better and can be extended to other problems in 

intelligent maintenance systems development efforts. The 

proposed system is intuitive and has minimal complexity 

with uncompromised fault detection accuracy. 

1. INTRODUCTION 

The advance in automation and robotics has envisioned the 

realization of the 4
th

 industrial revolution aka industry 4.0. 

Moreover the tremendous progress seen in machine learning 

(ML) in general and deep learning (DL) in particular has 

doubled the effort and enhanced the path to realization of 

predictive maintenance goals. High volume of research 

works are being done on machinery prognostic and health 

management (PHM) which taps the availability of big data 

enabled analytics due to abundance and sophisticated 

sensors incorporated in the machineries as part of growing 

machine hardware intelligence (E. L. Lee, 2016; J. Lee et al., 

2014). Uses of big data analytics to take proactive action 

with regard to machine performance, however is dependent 

on the algorithms chosen and the quality of the feature 

extracted out of the data (Tsui, Chen, Zhou, Hai, & Wang, 

2015).  

Most fault identification methodologies in rotating 

machineries, such as induction motor and gearboxes, uses 

vibration data. The commonly used analysis techniques are 

based on statistical time domain, frequency domain, and the 

joint time-frequency domain features (Saucedo-Dorantes, 

Delgado-Prieto, Ortega-Redondo, Osornio-Rios, & Romero-

Troncoso, 2016; Tran, Yang, Gu, & Ball, 2013). One 

limitation of frequency domain analysis is its inability to 

handle non-stationary waveform signals, commonly 

observed during machine faults (Zhang, 2017). Time-

frequency domain techniques, such as short time Fourier 

transform (STFT) and wavelet methods have been applied 

to rotating machineries health prognostics to overcome this 

drawback (Q. Sun, Chen, Zhang, & Xi, 2004).  

While dozens of methods have been developed to analyze 

bearing conditions, most of these studies fail to quantify the 

damage level, mainly focus on classification task. Moreover 

there is vivid lack of intuitiveness and needs domain 

expertise to understand and apply to real problem solutions. 

This research work uses raw time series data in training 

deep learning neural network (DNN) to monitor health 

degradation of roller bearing in rotating machineries. To 

enhance the detection and diagnostic of bearing condition 

the dominant health indicators of its components through 
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deep layer learning algorithm is extracted. The two basic 

procedures followed in this work in estimating the bearing 

components health status are: 

i. Segment the raw time series data to one cycle vector in 

accordance to setup parameters during the collection 

phase. Use this vectors and form training dataset to 

build a DNN model.  
ii. Train Support Vector Machine (SVM) model to classify 

the bearing based on manually extracted features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Steps in bearing health assessment: a) Traditional 

method, b) DNN Method 

 

The traditional approach in bearing performance prediction 

involves collecting raw vibration data, feature extraction 

and system modeling (Figure 1a).These models base on 

hand crafted features, which at times my result in loss of 

some important information. This work aims at system 

modeling and health performance prediction for rotating 

machinery components using cyclic raw vibration data. It 

mainly focuses on application of deep learning algorithm to 

bearing health assessment in feature extraction and 

classification, and present analysis result on performance of 

the proposed model.  In this paper raw time series data 

collected with enhanced noise filtering is used to train deep 

neural network (Figure 1b).  

The reset of the paper is organized as follows: In section 2 

we will discuss data acquisition procedures; while bearing 

vibration signal feature extraction is explained section 3; in 

section 4 we describe machine learning training algorithm 

used. Section 5 discusses experiment and result, and finally 

conclusion is presented in section 6. 

2. DATA ACQUISITION  

It is challenging to collect good quality vibration data from 

rotating machinery in production line due to complex nature 

of the signal as well as noise and resonance effects of other 

components. Nonetheless vibration signals obtained from 

the vicinity of a bearing assembly contain rich information 

about the bearing condition(Q. Sun et al., 2004).  

AC servo motor actuated test rig equipped with single axis 

accelerometer, (PCB 352C33 Quartz ICPs in combination 

with NI-9234 signal acquisition module) is prepared as a 

test set up. The accelerometer is placed on the outer surface 

of the bearing housing (Figure 2) to measure the vibration 

signals. Data is collected at sampling rate of 12 KHz with a 

block size of 40960 data points captured; 64 files of data 

(blocks of data vectors of size 40960) are taken for each 

class bearing; normal, inner race, outer race and ball defect 

bearings (Figure 3).  

Figure 2.  NI-9234 DAQ module and Bearing Test rig 

In case of feature based health monitoring system the 

collected data needs to go through preprocessing steps to 

extract the selected features. In deep learning neural 

network, however, the raw time series data, segmented into 

proper size (number of data points per revolution of the 

shaft) is directly used in training DNN. 

 

Figure 3. Time series vibration signal: a) normal b) inner c) 

outer race and d) roller defect bearings. 

In fact the biggest concern in deep learning is the 

availability of sufficient labeled data for training; 

nonetheless this is less a challenge in the current problem 
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since one can collect enough data within few weeks or 

months easily using relevant sensors. 

3. FEATURE EXTRACTION 

The goal of feature extraction is to find out as many as 

possible unique features to enable accurate recognition of 

bearing performance status at real time. To develop bearing 

health monitoring model without a need for manual feature 

extraction, deep neural network (DNN) is one of the best 

and versatile candidate, which uses its layers’ depth in 

sifting the data and effectively identifies the characteristics 

features. However this model depends on availability of big 

data. In case of poor knowledge about the data, in fact 

unsupervised machine learning algorithms such as self 

organizing mapping (SOM) will have a better performance 

in extracting features inherent to the data set (Lu, Sun, Tao, 

Liu, & Lu, 2013). 

To extract features in the frequency domain as well as the 

envelope method the peak information at the bearing 

characteristic frequencies are key indicators for assessing 

the health of the rolling element bearing. These frequencies 

are estimated from bearing geometric parameters and 

mounted shaft speed. The mathematical formula for the 

characteristic ball pass frequencies (BPF) is reported in 

numerous literatures (Soualhi, Medjaher, & Zerhouni, 

2015). These values for the experimental test rig in this 

study are reported in Table 1. 

Table 1 Bearing Parameters 

 

Inner race rotational speed(rpm) ωi 3000 

Outer race rotational speed(rpm) ω0 0 

Bearing pitch diameter(mm) 31 

Roller/ball diameter(mm) 6.35 

Contact angle θ 15
0 

Number of rolling element 12 

@ 3000 RPM constant shaft speed (RPS) 

Outer race ball pass frequency (BPFO) 240.642 

Inner race ball pass frequency(BPFI) 287.486 

Ball Spin Frequency (BSF) 117.269 

Fundamental Train Frequency (FTF)  20.053 

 

Some of the common statistical features extracted from the 

time domain signal for use in SVM model, procedure ii, 

training includes; maximum (Xmax), mean (μ), root mean 

square (RMS), variance, standard deviation (σ), skewness 

kurtosis, peak-to-peak and crest factor (Bornn, Farrar, Park, 

& Farinholt, 2009). In addition to the above time series 

features BPFO, BPFI, BSF and FTF values are considered 

in training feature vector of SVM model. 

The characteristics of bearing dynamic response due to 

defect at particular component (roller, cage, inner and outer 

race) when it passes through the load zone of the bearing, 

shows there is a correlation between the defect and impulse 

patterns observed in one cycle of the signal (Randall & 

Antoni, 2011; You & Meng, 2011). This characteristic is 

important in selecting the data segment size. The segmented 

data is centralized, i.e. raw time data is zero mean 

normalized for use in the DNN algorithms, which will help 

in removing the DC data and faster convergence in learning 

phase. 

4. MODEL TRAINING  

While data may have been acquired with reasonable degree 

of accuracy and in abundance, the data needs to be analyzed 

and understood to the extent it gives proper information 

about the machine performance history. Thus this study 

proposes to use supervised machine learning algorithms, 

Deep Neural network. In developing the DNN model, 

segmented and normalized raw time series data is used to 

avoid any extra preprocessing and make the task more 

intuitive. For the purpose of comparison SVM model is also 

developed on manually extracted features, and the result of 

the two algorithms is reported for the data used. 

The data is partitioned randomly to 90 % training set 

(2,359,296 data points), 5 % validation set (131,072 data 

points), and 5% test set (131,072 data points) for all class of 

bearings. It is divided into eleven training batches and one 

test batch, each training batch with 214400 data points. The 

test batch contains only 50 randomly-selected signals 

segments (vector of size 400) from each class. The training 

batches contain the signal vectors in random order, but some 

training batches may contain more from one class than 

another for CWRU data. In training phase the four class of 

bearing category is encoded as a (4xm) vector Y with 

1][ iy for class label i  and zero otherwise, m is number 

of training examples. For instance 
Ty ]0001[ represent 

normal bearing. 

4.1. Deep Learning Neural Networks(DNN) 

Given training example (x, y), it uses deep layers of neuron 

to learn the underlying features to predict the bearing 

conditions. DNN is mostly applied in image recognition and 

classification problems (Bengio, 2009; Schmidhuber, 2015; 

Szegedy, Toshev, & Erhan, 2013). For X  is input, W and 

b  weight and bias network parameters respectively is 

updated during the training phase of the model to predict the 

outputY , as in typical DNN model in Figure 4. 
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Figure 4. Multi-layer Artificial Neural Network model 

For non-stationary non-linear nature of vibration signal 

neural network is one of the ideal candidate algorithms of 

choice from pattern recognition and condition monitoring 

tool (Hinton, Osindero, & Teh, 2006; Jia, Lei, Lin, Zhou, & 

Lu, 2016; Jing, Zhao, Li, & Xu, 2017). The two major steps 

in DNN learning are forward and back ward propagation. 

The forward and backward pass will let to run until 

convergence is achieved to the level of error criteria. The 

general steps in building a Neural Network model is (Figure 

4):  

1. Define the network structure (i.e. number of input, 

hidden, and output units). Initialize the weight and bias 

parameters, 
][lW and

][lb  respectively. 

2. Loop: 

 Implement forward propagation, Eq. (1). 
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 Compute cost. 

 Implement backward propagation to get the 

gradients. 

 Update parameters (gradient descents). 

 

The problem in this work is approached as multi-class 

classification problem; thus DNN output activation layer 

uses Softmax activation, logistic regression for C classes. 

For X , Y training and label input data sets the model 

learning is implemented as forward and backwards 

propagation steps followed by gradient decent optimization 

and parameter updating with the objective of minimizing the 

loss function, Eq. (2),  using cross entropy. 

))~1log()1(~log(( )()(

0

)()( ii
m

i

ii yyyyJ  


       (2) 

 

Where )(~ iy and
)(iy are predicted and actual outputs of the 

thi  training steps respectively.   

 

Developing an optimized DNN model is not an easy task; 

usually a problem of high variance and bias is faced, slow 

convergence while determining the optimal network and the 

whole process is highly iterative. To mitigate the problem of 

over and under fitting various methods have been suggested 

by Machine Learning researchers’ community, such as 

regularization, data augmentation, early stopping, and 

dropout techniques. 

Due to the nature of physical interactions between bearing 

components, vibration signal may not exactly identical in a 

given cycle. To accommodate this variation we adopt 

similarity check function Eq.(3) whose parameter propagate 

to compute resemblance of the signal during training, which 

originally used in (Y. Sun, Wang, & Tang, 2014) face 

representation and identification task with slight change on 

constant parameter d. This can essentially be considered as 

a correlation of two discrete signals with trained scaling and 

shifting parameters.  

2))((
2

1
),,(   dyyxxsimIndex ijijji

,        (3) 

   

Where ji xx ,  are segmented signal in the training data set 

1ijy  if the signal are same and 1ijy otherwise. 

With 
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ji
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d

*

.
  is cosine similarity between two signals, 

},{  are learnable parameters.  

 

Thus the DNN model parameters are trained based on 

optimizing cross-entropy loss function Eq. (2). Similarity 

check, Eq. (3) is computed during training and cache 

gradients in every pass to update these parameters after each 

epoch, Eq. (4) and Eq. (5). Similarity check index tell how 

far apart are the two signals under consideration. The anchor 

signal to compare with during testing is selected from a 

signal in training dataset based on similarity index value; 

signal with higher similarity within the same class is 

selected as anchor of the group.  
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Where 
][lW  and 
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 are layer L weight and biases 

respectively.
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Once training is completed; in testing phase the test data is 

segmented into one cycle size points, same as training signal 

size, and run prediction followed by computation of 

similarity index value of the test case with the anchor signal 

of each class. Then the final prediction result is verified 

based on the average of weighted sum of each prediction 

(Algorithm1):  

 

Algorithm1: Similarity check algorithm 

Given:  m
anchXanchX

0
__ 

 
anchor signal from each class.  

Segment test signal into N vector of size same as training signal.  

 NxxxtestX ,...,,_ 21  

Run DNN model and predict the class of each segment of the test 

signal.  

 Nyyytesty ,...,,_ 21  

   for i in range(0,C):              #C-number of class 

    for j in range(0,N):   

),,(],[ ijji yxxsimIndexjisIndx 
 

Compute current time prediction as weighted sum of prediction 

each segment of the test signal as final verification step. 

            




N

n

nynsInd
N

Y
1

*][:,
1  

 

In case of monitoring a bearing health in its life time the 

index expected to get bigger showing more similarity to the 

other classes (fault bearings). 

5. EXPERIMENT AND ANALYSIS  

A Bearing health diagnosis system based on deep learning 

neural network system is trained. The system is applied to 

classify a bearing into four categories based on a vibration 

signal collected and segmented to one cycle data points. 

Effectiveness of the system developed is also tested on data 

from test rig we have developed as well as a dataset  

acquired from online repository bearing vibration 

database(CWRU) (Western, 2013). The performance of 

DNN on standardized data set is shown in Table-3. 

 

Table 2. Classification accuracy (%)  

Class Label 1 hidden 

layer  

2hidden 

layer  

3 hidden 

layer  

SVM 

Normal 86.00 92.00 100.0 87.19 

Inner race  64.00 88.33 91.17 77.78 

Outer race  52.00 88.33 94.17 79.12 

Roller fault 78.00 93.50 99.33 77.32 
 

The accuracy reported in Table 2 is average result on 

CWRU database. The overall accuracy for best performing 

model on test dataset in 4-layer network goes up to 98.5%. 

Figure 5 shows training performance for two layers DNN. 

 

 
 

Figure 5.  Two Layer model training accuracy  

 

The main worry in using the deep learning approach is the 

time and computational cost while using batch gradient 

decent optimization algorithms, Eq. (5). Stochastic gradient 

descent is fast enough to train in this case; however the 

parameters oscillate in approaching to the minimum los 

point, which may leads it to trap in local minima. 

The training performance for varying learning rate and 

optimization algorithms in Figure 6 reveals that adaptive 

learning methods convergence faster and has better test 

accuracy. However several hyper parameters need tuning. 

On the other hand figure 6c shows the batch size relation to 

the convergence time and accuracy, smaller mini-batch 

learn faster and have wavy gradient to absolute minima. 

The analysis result shows that detection of ball defect and 

normal bearing is high in all the test cases, mostly near 99 % 

prediction accuracy (Figure 7). During testing we have also 

observed that there was high confusion of inner race fault as 

ball and outer race defect; however none of the faults 

confused to normal, which is a good characteristic in 

classifying bearing into normal and failed binary classes. 

The DNN system developed in this work is implemented 

using TensorFlow v1.4. 
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Figure 6. Cost (error) vs. learning methods: a) Adaptive 

learning b) Gradient descent c) batch size effect   on 

convergence. 

One remarkable observation of the analysis result is that 

detection accuracy varies for loading variation and also for 

position of outer race fault. The confusion matrix for 200 

test samples for 0.014” fault size and outer race fault @6:00 

is shown in Table-3.  

Table 3. Confusion Matrix (CWRU data) 

 

 Predict 

Actual Normal Inner Outer  Ball 

Normal 50 0 0 0 

Inner 0 48 0 0 

Outer 0 0 50 1 

Ball 0 2 0 49 
 

 

Figure 7 Average Test Accuracy curve  

The performance on a data collected from our test setup 

platform have similar (with up to 8% difference in some 

cases) characteristics to CWRU data. Nonetheless the test 

from our data set shows higher confusion rate for some 

defect, e.g. ball to inner race confusion is higher than 

CWRU data, up to 5 more cases confused on 50 test cases. 

The reason for difference in prediction accuracy is partly 

due to the test setup (closely placed bearing in our test 

setup) but this needs to be verified in series of experiments.  

6. CONCLUSION  

In this paper deep learning neural network algorithms based 

system is developed to model fault detection in roller 

bearing based on historical data collected from a test rig 

operated in different conditions moreover the similarity of 

test signals is measured to check how close predicted class 

to normal anchor signal. The analysis result has proven the 

effectiveness of using DNN algorithms in extracting 

features from raw vibration data and predicting bearing 

status from cyclic raw vibration time domain signal. From 

practical point of view the fact the network learns to 

compute the similarity index in relation to normal bearing 

will enhance the confidence of prediction as well as have 

the potential to quantify the relative damage level, at least 

relative damage. In general the test results show that deep 

learning from raw time series data segmented to one cycle 

have robust performance. With good choice of the hyper 

parameters DNN outperform other algorithms on training 

and testing datasets.   
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