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ABSTRACT

Quadrotor Unmanned Aerial Vehicles (UAVs) have attracted
significant attention in recent years due to their potentials
in various military and commercial applications. Four pro-
pellers mounted on the shafts of four brushless DC motors
generate the required thrust and torques needed for altitude
and attitude control of quadrotors. However, structural dam-
age to the propellers and rotor degradation can lead to ac-
tuator faults in the form of a partial loss of effectiveness in
a rotor, which may result in degraded tracking performance
or even loss of stability of the control system. This paper
presents the systematic design, analysis, and real-time ex-
perimental results of a fault detection and isolation algorithm
for quadrotor actuator faults using nonlinear adaptive estima-
tion techniques. The fault diagnosis architecture consists of
a nonlinear fault detection estimator and a bank of nonlin-
ear adaptive fault isolation estimators designed based on the
functional structures of the faults under consideration. Adap-
tive thresholds for fault detection and isolation are systemat-
ically designed to enhance the robustness and fault sensitiv-
ity of the diagnostic algorithm. Using an indoor quadrotor
test environment, real-time experimental flight test results are
shown to illustrate the effectiveness of the algorithms.

1. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have ex-
perienced a significant increase in popularity due to their po-
tentials in various applications. Because of the requirement of
autonomous operations without a human operator, autonomous
navigation and control of UAVs are much more challenging.
In order to enhance the reliability, survivability, and auton-
omy of UAVs, advanced health management technologies are
required, which will enable UAVs to have the capabilities
of state awareness and self-adaptation (Vachtsevanos, Tang,
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Drozeski, & Gutierrez, 2005; Y. M. Zhang et al., 2013; Shima
& Rasmussen, 2009).

Quadrotors represent a special class of UAVs, which are equipped
with four propellers, mounted on the shafts of four brushless
DC motors, respectively. The spinning of the rotors generates
the thrust required to maintain the quadrotor airborne. Addi-
tionally, the quadrotor attitude is controlled by systematically
varying the rotor velocities which generate moment forces
acting on the body frame. However, the actuating motor-
propeller system is prone to faults due to component damage
such as change in the motor parameters, propeller damage,
etc. The occurrence of actuator faults can cause undesirable
effects in the closed-loop control system that could lead to
poor tracking performance and even catastrophic outcomes.

Recent research efforts guided towards quadrotor actuator faults
focus mainly on the design of fault-tolerant control (FTC)
systems, and systematic methods for actuator fault detection,
isolation, and estimation (FDIE) are still limited (Y. M. Zhang
et al., 2013; Chamseddine, Zhang, Rabbath, Apkarian, & Ful-
ford, 2011; Z. T. Dydek, Annaswamy, & Lavretsky, 2013;
Ranjbaran & Khorasani, 2010; Sharifi, Mirzaei, Gordon, &
Zhang, 2010). Due to the intrinsic fabrication of the actuat-
ing systems, component damage can cause the faults to grow
over time beyond the on-board FTC capabilities and reach ac-
tuator saturation. Therefore, early actuator fault detection and
isolation plays a crucial role in the safe operation of quadro-
tor UAVs. Additionally, most actuator fault diagnosis meth-
ods with application to quadrotor UAVs are either based on
linearization techniques or by assuming the quadrotor is op-
erating in near hover conditions (Chamseddine et al., 2011;
Ranjbaran & Khorasani, 2010; Sharifi et al., 2010). How-
ever, the quadrotor dynamics are highly nonlinear, and the
assumption of near hover operating conditions is not always
satisfied. Moreover, most of the existing results on quadro-
tor fault diagnosis designs focus on simulation studies, and
experimental results are still very limited (Freddi, Longhi, &
Monteri, 2010; Ranjbaran & Khorasani, 2010; Sharifi et al.,
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2010; Berba, Lesecq, & Maritinez, 2008).

In this paper, a nonlinear framework for quadrotor actuator
fault diagnosis is formulated based on the intrinsic nonlinear-
ity of the system dynamics. A nonlinear adaptive estimation
based method for detecting, isolating, and accommodating
quadrotor actuator faults is developed by utilizing the general
methodology in (X. Zhang, Polycarpou, & Parisini, 2002).
The robustness and fault sensitivity properties of the fault de-
tection and isolation algorithm is enhanced by using appropri-
ately designed nonlinear adaptive thresholds. Additionally,
the proposed actuator fault diagnosis method is independent
of the on-board controller structure, and the fault magnitude
estimate provided by the diagnostic component can be used
to improve the overall performance of the closed-loop con-
trol system. The presented actuator fault diagnosis method
is implemented using a real-time indoor quadrotor test en-
vironment. Experimental results are shown to illustrate the
effectiveness of the diagnostic method.

The remainder of the paper is organized as follows. Section
2 presents the quadrotor dynamic model and formulates the
problem of actuator fault diagnosis for quadrotor UAVs. Sec-
tion 3 provides the detailed design of the fault detection, iso-
lation, and estimation method. Real-time experiments from
an in-door flight test environment are shown in Section 4, il-
lustrating the effectiveness of the proposed method. Finally,
some concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

2.1. Quadrotor Dynamic Model

Figure 1 shows a simplified model of the quadrotor along with
the assumed body frame orientation and Euler angles con-
vention. Specifically, the quadrotor dynamics considered are
described by:

ṗE = vE (1)

v̇E=
1

m
REB(η)

 0
0
−U

−cdvB

+

0
0
g

+ξv0(x, t)+ξv(x, t)

(2)

η̇ = Rη(φ, θ)ω (3)

ω̇ =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+

 1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

+ ξω0(x, t) + ξω(x, t) , (4)

where the system state variables are pE ∈ R3, vE ∈ R3,
η , [φ, θ, ψ]T , and ω , [p , q , r]T , representing the iner-
tial position, inertial velocity, Euler angles, and body angular
rates, respectively, and the system inputs include the thrust
U , the rolling torque τφ, the pitching torque τθ, and the yaw-
ing torque τψ . The rotation matrix REB in Eq. (2) is defined

Figure 1. Quadrotor model in ”X” configuration

based on a 3-2-1 rotation sequence as

REB(η) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


(5)

where s· and c· are shorthand notations for the sin(·) and
cos(·) functions, respectively. Additionally, the matrixRη(φ, θ)
in Eq. (3), relating body angular rates to Euler angle rates, is
given by:

Rη(φ, θ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 .
The term cdvB in Eq. (2) represents the drag force acting
on the vehicle frame, with cd being the drag force coefficient
and vB representing the velocity of the quadrotor relative to
the body frame. The relationship between the inertial veloc-
ity vE and the body velocity vB is given by: vE = REBvB .
The terms ξv0(x, t) and ξω0(x, t) represent additional known
nonlinearities (e.g. damping, gyroscopic effects, etc.) in the
system dynamics, and ξv(x, t) and ξω(x, t) are the remaining
modeling uncertainties in the translational and rotational dy-
namics, respectively, where x , [pTE , v

T
E , η

T , ωT ]T . Other
model parameters in Eq. (1) - Eq. (4) are the quadrotor mass
m, the gravitational acceleration g, and the quadrotor iner-
tials about the body x-, y- and z-axis represented by Jx, Jy
and Jz , respectively.

2.2. Actuator Fault Model

As shown in Figure 1, the motors and propellers are config-
ured such that rotors M1 and M3 rotate counter-clockwise,
and rotors M2 and M4 rotate clockwise. Each rotor is lo-
cated at a distance d from the quadrotor center of mass and
produces a force Fs (s = 1, .., 4) along the negative z di-
rection relative to the body frame. Additionally, due to the
spinning of the rotors, a reaction torque τs is generated on the
quadrotor body by each rotor.

As in (Z. Dydek, Annaswamy, & Lavretsky, 2013; Amoozgar,
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Chamseddine, & Zhang, 2013), we consider actuator faults
represented by partial loss of effectiveness (LOE) in the ro-
tors. For instance, structural damage to a propeller or an un-
expected change in the rotor physical parameters would result
in a partial loss of thrust generated by the respective rotor.
Specifically, the actuator faults under consideration are mod-
eled as follows: for s = 1, .., 4,

Ω∗
s = αsΩs , (6)

where Ωs represents the commanded rotor angular velocity,
Ω∗
s is the actual rotor angular velocity, and αs ∈ (ᾱ, 1] is an

unknown parameter characterizing the occurrence of a partial
loss of effectiveness fault in rotor s. The case of αs = 1
represents a healthy rotor, and αs < 1 represents a faulty ro-
tor with partial loss of effectiveness. Note that the constant
ᾱ > 0 is a known lower bound needed to maintain the con-
trollability of the quadrotor. For instance, in the extreme case
of a complete failure (i.e., ᾱ = 0), the quadrotor orientation
becomes uncontrollable.

In this research, the thrust and torque generated by the ro-
tors are considered to be directly proportional to the square
velocity of the rotors (Pounds, Mahony, & Gresham, 2004;
Y. M. Zhang et al., 2013). Specifically, by considering the
actuator fault models Eq. (6), the relationship between the
forces Fs and the reaction torques τs generated by each rotor
and the rotor angular velocity is given by:

Fs = (1− β(t− Ts)ϑs)bFΩs
2 (7)

τs = −(1− β(t− Ts)ϑs)k sgn(Ωs)Ωs
2 , (8)

where ϑs , 1 − α2
s represents the unknown fault parameter

relative to the the s-th rotor’s square velocity. Specifically,
ϑs = 0 represents a healthy rotor, and ϑs ∈ (0, ϑ̄) represents
the case of a rotor experiencing a partial loss of effective-
ness, where ϑ̄ , 1 − ᾱ2. The constants bF and k represent
rotor thrust and torque constants, respectively, and sgn(·) rep-
resents the signum function. The fault time profile function
β(·) is assumed to be a step function with unknown fault time
occurrence Ts, that is:

βs(t− Ts) =
{ 0 , if t < Ts

1 , if t ≥ Ts ,
(9)

for s = 1, .., 4.

Thus, based on the quadrotor configuration shown in Figure
1 and by using Eq. (7)-Eq. (8), the total thrust and moments
acting on the quadrotor body can be expressed as:

U
τφ
τθ
τψ

 = M (I4 − β(t− Ts)ϑsΛs)


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 , (10)

where the vector [Ω2
1, Ω2

2, Ω2
3, Ω2

4]T represents the commanded

rotor velocities, I4 is the 4 × 4 identity matrix, and M rep-
resents the mapping matrix relating thrust and torques to ro-
tor angular velocities (Pounds et al., 2004). Specifically, the
mapping matrix is given by:

M =


bF bF bF bF
bFa −bFa −bFa bFa
bFa bFa −bFa −bFa
k −k k −k

 , (11)

where a = d/
√

2, and d is the distance from the center of
mass of each rotor to the center of mass of the quadrotor. The
actuator fault distribution matrix Λs characterizes the location
of an actuator fault for s = 1, .., 4. Specifically, Λs is a 4× 4
matrix with all entries zero, except for the s-th position on the
main diagonal. For instance, if a loss of effectiveness fault
occurs in rotor M1, then Λ1 = diag{1, 0, 0, 0}.

In this brief, we consider the occurrence of a single actuator
fault at any time. The research objective focuses on the design
and experimental demonstration of a robust fault detection,
isolation, and estimation scheme for quadrotor actuator faults
described by Eq. (1)-Eq. (4) and Eq. (10) using adaptive
estimation techniques. The following assumption is needed
for the design and analysis of the FDI scheme:

Assumption 1: The unstructured modeling uncertainties ξv(x, t)
and ξω(x, t) in Eq. (2) and Eq. (4), respectively, are unknown
but assumed to be bounded by some known functions, i.e.,

|ξv(x, t)| ≤ ξ̄v(x, t) (12)
|ξω(x, t)| ≤ ξ̄ω(x, t) (13)

for all t ≥ 0.

Assumption 1 characterizes the class of modeling uncertain-
ties under consideration. The bounds on the unstructured
modeling uncertainties are needed in order to be able to de-
rive adaptive thresholds to distinguish between the effects of
faults and modeling uncertainty in the fault diagnosis proce-
dure.

Figure 2. Quadrotor actuator fault diagnosis architecture

3. ACTUATOR FAULT DIAGNOSIS

The proposed actuator fault diagnosis and accommodation ar-
chitecture is shown in Figure 2. As can be seen, it consists of
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the following two main components: (1) a fault detection esti-
mator (FDE) for determining fault occurrence and (2) a bank
of four nonlinear adaptive fault isolation estimators (FIEs)
for identifying the faulty rotor and providing an estimation of
the unknown fault parameter. The controller signal and sen-
sor measurements serve as inputs to the fault diagnosis mod-
ule. Under normal operating conditions, the FDE monitors
the system for detecting any faulty behaviors. Once an actua-
tor fault is detected, the four FIEs are activated to isolate the
faulty rotor and provide an estimate of the fault parameter.
The robustness and fault sensitivity properties of the scheme
are enhanced by the use of appropriately designed adaptive
thresholds for fault detection and isolation.

3.1. Fault Detection

By substituting the thrust and torque model Eq. (10) into the
quadrotor velocity and angular rate dynamics model given by
Eq. (2) and Eq. (4), we obtain:
v̇z
ṗ
q̇
ṙ

 = ϕ(x, t)+GM(I4−βsϑsΛs)


Ω2

1

Ω2
2

Ω2
3

Ω2
4

+ξ(x, t), (14)

where vz represents the quadrotor inertial velocity along the
z−direction (i.e. vz is the third component of vE), G ,
diag{− 1

m cosφ cos θ, J−1
x , J−1

y , J−1
z }, and the known non-

linearity ϕ(x, t) is defined as:

ϕ(x, t) ,


− cd
mvz + g
Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+ ξ0(x, t) . (15)

The nonlinear terms ξ0(x, t) and ξ(x, t) are given by:

ξ0(x, t) ,

[
ξz0(x, t)
ξω0(x, t)

]
, ξ(x, t) ,

[
ξz(x, t)
ξω(x, t)

]
, (16)

with ξz0(x, t) and ξz(x, t) being the third component of ξv0(x, t)
and ξv(x, t) in Eq. (2), respectively. By using Eq. (14), the
following nonlinear fault detection estimator is chosen:

˙̂vz
˙̂p
˙̂q
˙̂r

 = −L


v̂z − vz
p̂− p
q̂ − q
r̂ − r

+ ϕ(x, t) +GM


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 , (17)

where [v̂z, p̂, q̂, r̂]
T represents estimated inertial velocity and

quadrotor angular rates, L , diag{lj}, for j = 1, .., 4, is a
positive definite design matrix. Let us define the state estima-

tion error as: 
ṽz
p̃
q̃
r̃

 ,


vz − v̂z
p− p̂
q − q̂
r − r̂

 , (18)

and let ε(t) , [ṽz, p̃, q̃, r̃]
T . Then, based on Eq. (14) and

Eq. (17), it follows that the state estimation error dynamics
are given by:

ε̇(t) = −Lε(t)−GMβsϑsΛsΩ̄ + ξ(x, t) , (19)

where
Ω̄ , [Ω2

1, Ω2
2, Ω2

3, Ω2
4]T . (20)

Thus, in the absence of actuator faults (i.e., for t0 < Ts), for
j = 1, · · · , 4, the j-th component of ε(t) satisfies

|εj(t)| ≤ e−lj(t−t0)|εj(t0)|+
∫ t

0

∣∣∣e−lj(t−τ)ξj(x, τ)
∣∣∣ dτ ,

(21)

where εj(t0) is the initial state estimation error, and ξj(x, t)
is the j-th components of ξ(x, t) given in Eq. (16). Based on
Assumption 1, the modeling uncertainty ξj(x, t) is bounded.
Let us denote the bound on ξj(x, t) as ξ̄j(x, t) (i.e. ξ̄j(x, t) ≥
|ξj(x, t)|). Therefore, based on Eq. (21), the fault detection
thresholds can be chosen as

ε̄j(t) , e−lj(t−t0)ε̄j(t0) +

∫ t

t0

e−lj(t−τ)ξ̄j(x, τ)dτ , (22)

where ε̄j(t0) ≥ |εj(t0)| is a bound on the initial state esti-
mation error. Thus, it is guaranteed that |εj(t)| ≤ ε̄j(t) for
all 0 ≤ t < Ts. Note that the adaptive detection thresholds
described by Eq. (22) provide improved robustness and fault
sensitivity over a fixed threshold (Blanke, Kinnaert, Lunze, &
Staroswiecki, 2006; X. Zhang et al., 2002) and can be easily
implemented as the output of the following linear filters:

˙̄εj(t) = −lj ε̄j(t) + ξ̄j(x, t) . (23)

with an initial condition ε̄j(t0).

Fault Detection Decision Scheme: If any component of the
diagnostic residual |εj(t)| exceeds its corresponding thresh-
old ε̄j(t) at some finite time tj > Ts, then we can conclude
that a fault has occurred. The fault detection time is defined
as Td , min{tj , j = 1, .., 4}.

3.2. Fault Isolation

In this section, we describe the fault isolation method using
adaptive estimation techniques. Suppose an actuator fault has
occurred to the s-th actuator at time Ts, and the fault is de-
tected at time Td > Ts, where s ∈ {1, .., 4}. Let us define the
following state vector: ζ , [vz, p, q, r]

T . Therefore, based
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on Eq. (14), for t > Td, we have

ζ̇ = f(ζ, Ω̄) + ξ(x, t) + ϑshs(x, Ω̄) , (24)

where Ω̄ is defined in Eq. (20), f(ζ, Ω̄) , ϕ(x, t) + GM Ω̄,
and

hs(x, Ω̄) , −GMΛsΩ̄ , (25)

is the known functional structure of the s-th actuator fault.

As shown in Figure 2, once an actuator fault is detected, a
bank of four nonlinear adaptive FIEs are activated to deter-
mine the partially faulty rotor. Each FIE is designed based
on the functional structure of a particular actuator fault under
consideration. Specifically, by using Eq. (24), the following
four FIEs are chosen: for s = 1, · · · , 4,

˙̂
ζs = −Γs(ζ̂s − ζ) + f(ζ, Ω̄) + ϑ̂shs(x, Ω̄) , (26)

where ζ̂s represents the state estimate, Γs = diag{γjs} is a
positive definite design matrix (j = 1, .., 4), and ϑ̂s is the
fault parameter estimate provided by the s-th FIE. The adap-
tation in the isolation estimators arises due to the unknown
fault parameter ϑs. The adaptive law for estimating the un-
known parameters ϑ̂s is derived using Lyapunov synthesis
method (Ioannou & Sun, 1996) and is chosen as

˙̂
ϑs = PΘ{Ψsh

T
s (x, Ω̄)(ζ − ζ̂s)} , (27)

where Ψs > 0 is a design constant representing the learning
rate, and the projection operator PΘ is used to constrain the
parameter estimate ϑ̂s to a known compact region Θ , [0, ϑ̄],
ensuring the stability of the learning algorithm in the presence
of modeling uncertainty (Ioannou & Sun, 1996).

Denote ζ̃s as the state estimation error (i.e., ζ̃s , ζ − ζ̂s)
corresponding to the s-th isolation estimator. Then, based on
Eq. (24) and Eq. (26), for t > Td, the dynamics of the j-th
component of the state estimation error (i.e., ζ̃js (t)) is given
by:

˙̃
ζjs = −γjs ζ̃js + ϑsh

j
s(x, Ω̄)− ϑ̂shjs(x, Ω̄) + ξj(x, t) . (28)

The solution of the above differential equation satisfies

|ζ̃js | ≤
∫ t

Td

e−γ
j
s(t−τ)

(
|ϑ− ϑ̂s| · |hjs(x, Ω̄)|+ |ξj(x, τ)|

)
dτ

+ e−γ
j
s(t−τ)ζ̄js , (29)

where the constant ζ̄js ≥ |ζ̃js (Td)| is an upper bound on the
initial state estimation error. Since the parameter estimate ϑ̂s
belongs to a known compact set Θ, we have |ϑ− ϑ̂s| ≤ κs(t)
for a suitable κs(t) depending on the geometric properties of
the set Θ. For instance, by choosing Θ , [0, ϑ̄], we have
κs(t) = ϑ̄

2 + |ϑ̂s − ϑ̄
2 |. Thus, by using Eq. (29) and Assump-

tion 1, it can be shown |ζ̃js (t)| ≤ µjs(t) for t > Td, where

µjs(t) ,
∫ t

Td

e−γ
j
s(t−τ)

[
κs(τ)|hjs(x, Ω̄)|+ ξ̄j(x, τ)

]
dτ

+ e−γ
j
s(t−τ)ζ̄js . (30)

Note that the adaptive threshold µjs(t) given by Eq. (30) can
easily be implemented as the outputs of a linear filter given
by:

µ̇js = −γjsµjs + κs(t)|hjs(x, Ω̄)|+ ξ̄j(x, t) , (31)

with an initial condition ζ̄js .

The fault isolation procedure is designed based on the gener-
alized observer scheme (Blanke et al., 2006). Specifically,
the following intuitive principle is employed: if fault s ∈
{1, .., 4} occurs at time Ts, and is detected at some finite time
Td ≥ Ts, then a set of adaptive thresholds {µjs, j = 1, .., 4}
can be designed for the s-th FIE, such that all components of
the state estimation error satisfy |ζ̃js (t)| ≤ µjs(t) for all t >
Td. Consequently, a set of such adaptive thresholds can be
designed for each of the four FIEs. In the fault isolation pro-
cedure, for a particular isolation estimator r ∈ {1, .., 4}\{s},
if at least one component of its state estimation error exceeds
the corresponding threshold, then the possibility of the occur-
rence of fault r can be excluded. Thus, we have the following:

Fault Isolation Decision Scheme: If, for each r ∈ {1, ..., 4}\{s},
there exists some finite time tr > Td and some j ∈ {1, .., 4},
such that |ζ̃js (tr)| > µjr(tr), then the occurrence of a fault
in the s-th actuator is concluded. The fault isolation time is
defined as Tisol , max{tr, r ∈ {1, .., 4}\{s}}.

3.3. Fault Estimation

After the faulty actuator is isolated, the matched adaptive FIE
also provides an estimation of the unknown fault magnitude
(see Eq. (27)). More specifically, after the occurrence of a
fault corresponding to the s-th actuator, if there exists con-
stants α1 ≥ α0 > 0 and T0 > 0, such that

α1I ≥
1

T0

∫ t+T0

t

hTs (x, Ω̄)hs(x, Ω̄)dτ ≥ α0I , (32)

then the parameter estimate provided by the matched s-th FIE
generated by Eq. (27) will closely approximate the true value
of the fault parameter ϑs. Equation Eq. (32) provides the
persistency of excitation (PE) condition which is typically re-
quired in many adaptive learning systems (Ioannou & Sun,
1996). It is worth noting that the unknown fault parameter ϑs
in Eq. (24) is only a scalar and the required PE level can be
easily satisfied.

Remark. An important feature of the presented integrated
FDIE method is that it is independent of the baseline con-
troller structure. As described above, the fault detection and
isolation blocks shown in Figure 2 only use controller out-
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put signals and sensor measurement in the fault detection,
isolation, and estimation process. Therefore, the presented
quadrotor FDIE method can possibly be deployed on-board
of any quadrotor platform, provided that a good mathemat-
ical dynamics model and quadrotor physical parameters are
available.

4. EXPERIMENTAL RESULTS

In this section, we present some real-time flight test results
to illustrate the effectiveness of the proposed actuator fault
detection, isolation, and estimation method.

4.1. Experimental Setup

Figure 3. Experimental system architecture setup

A block diagram of the experimental system setup is shown in
Figure 3. During flight tests, quadrotor position and attitude
information is obtained from a Vicon motion capture camera
system. The position and Euler angle measurements are col-
lected every 10 ms and relayed from a Vicon dedicated PC via
TCP/IP connection to a ground station computer with negli-
gible time delay. The fault diagnosis method is implemented
on-board of a quadrotor built in-house with off-the-shelf com-
ponents, and it is evaluated in real-time during autonomous
flight. The quadrotor is equipped with the Qbrain embedded
control module from Quanser Inc. The control module con-
sist of a HiQ acquisition card providing real-time IMU mea-
surements, and a Gumstix DuoVero microcontroller running
the real-time control software. An IEEE802.11 connection
between the ground station PC and the Gumstix allows for
fast and reliable wireless data transmission and on-line pa-
rameter tuning. The actuator fault diagnosis and FTC soft-
ware executes on-board at 500 Hz. In order to further take
real-world constraints into account, the position and Euler
angle measurements provided by the Vicon camera systems
are intentionally corrupted by zero mean measurement noise.
Note that in a real-world setting, position measurements can
be obtained from a GPS unit. Additionally, an estimation
of the roll, pitch, and yaw angles can be obtained using on-
board sensor measurements (see for instance (John L. Cras-
sidis, 2007)).

Figure 4. Experimental quadrotor platform in the Unmanned
Air Vehicles Laboratory at Wright State University, Dayton
OH.

Figure 4 shows the quadrotor while in flight, labeling the
main components: Qbrain embedded control module (A), 4
propeller attached to four brushless DC motors mounted on a
custom frame (B), four electronic speed controllers (C) regu-
lating the rotors angular velocity based on the PWM signals
generated by the on-board controller, a 3-cell 2000mAh, 12V
battery (D), and a safety landing gear (E) added to provide
improved protection of the control module during landing.
Additionally, one of the Vicon cameras (F) can also be seen
in the background.

Based on Eq. (1), the relationship between the quadrotor in-
ertial velocity and the quadrotor altitude is given by żE = vz ,
where zE represents the quadrotor inertial vertical position.
Then, using the fast rate position measurements, an estimate
of the quadrotor inertial velocity can be obtained by means of
linear filtering techniques. Specifically, the velocity vz used
in the FDI scheme is obtained as the output of the following
second order filter:

vz =
ω2

0s

s2 + 2ω0s+ ω2
0

z, (33)

where z represents the altitude measurement, and ω0 repre-
sents the corner frequency of the filter. For implementation
purpose, the above filter is discretized and the corner fre-
quency ω0 is chosen experimentally to be ω0 = 20 rad/sec.

The FDIE algorithm described in Section III is based on the
quadrotor vertical velocity and angular rate dynamics (see Eq.
(14)). It is worth noting that some of the modeling parame-
ters in Eq. (14) are directly measurable or can be obtained
experimentally (e.g. mass, moments of inertia, etc.). Con-
versely, motor thrust coefficients (bF ), the drag force coef-
ficient (cD), and the additional known nonlinearities repre-
sented by the term ξ0(x, t) are not directly measurable and
need to be estimated using system identification techniques
(Klein & Morelli, 2006). Figure 5 shows the actual verti-
cal velocity and angular rate dynamics and their estimates.
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Specifically, referring to Eq. (14), the signals v̇z , ṗ, q̇, and ṙ
generated using sensor measurements are depicted in dashed
blue line, and their estimates generated based on the model
given by the right side of Eq. (14) are depicted in solid red
line. As can be seen, the model-based estimates closely ap-
proximate the actual signals.

Figure 5. Quadrotor model system identification

The uncertainty bound ξ̄ on the uncertainty term ξ(x, t) given
in Eq. (16) and Assumption 1 is obtained as follows. By
using equation Eq. (24) under healthy actuator conditions
(i.e. ϑs = 0), we have

ξ(x, t) = ζ̇ − f(ζ, Ω̄) ≤ ε|ζ̇ − f(ζ, Ω̄)| = ξ̄(x, t, Ω̄) , (34)

where ε > 1 is a constant chosen experimentally (ε = 1.25
used in the results shown below). Specifically, the bound ξ̄ is
generated by using experimental data collected from several
autonomous flight scenarios and standard system identifica-
tion techniques using least squares (Klein & Morelli, 2006).

4.2. Experimental Evaluation Results

In order to evaluate the proposed actuator fault diagnosis method,
approximately 1 minute of autonomous flight with real-time
FDIE is recorded. The quadrotor is commanded to perform
a circular maneuver with a radius of 1 meter at a constant al-
titude while following a sinusoidal orientation angle. Trajec-
tory control of the quadrotor is achieved using a double-loop
architecture, as shown in Figure 6. Specifically, the outer loop
controls the x and y positions by generating desired roll and
pitch angles. The Altitude and Attitude Controller generates
the required rotor velocities needed for the quadrotor to track
the desired attitude and altitude trajectories. As described
above, the fault diagnosis method is independent of the struc-
ture of the controller. Therefore, for brevity, the description
of the baseline control algorithms is purposely omitted.

Figure 6. Quadrotor control architecture

Quadrotor sensor measurements are processed on-line, and
real-time actuator fault diagnostic decision is provided by the
diagnostic algorithm. An actuator fault is artificially injected
in rotorM1 by purposely corrupting the controller output sig-
nal Ω̄1 according to Eq. (6). Specifically, at approximately
time t = 24s, a 20% loss of effectiveness is introduced in the
thrust generated by rotor M1 (i.e. ϑ1 = 0.20, α1 = 0.89).

Figure 7. Fault detection results: detection residuals (solid
blue lines) and adaptive thresholds (dashed red lines).

The fault detection residuals and adaptive thresholds, gener-
ated by Eq. (18) and Eq. (23), are shown in Figure 7. As can
be seen, before the occurrence of an actuator fault, all com-
ponents of the detection residuals remain below their corre-
sponding thresholds. Shortly after the occurrence of a loss
of effectiveness fault in rotor M1 at time t = 24 sec, at least
one residual component exceeds its corresponding detection
threshold, indicating the occurrence of an actuator fault.

Figure 8 shows the isolation residuals and adaptive thresh-
olds generated by the four FIEs, respectively. As can be seen,
all components of the isolation residual generated by FIE 1
always remain below their corresponding thresholds. Addi-
tionally, at least one component of the residual generated by
any other FIEs exceeds the corresponding threshold shortly
at approximately t ≈ 25 sec. Therefore, based on the fault
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Figure 8. Fault isolation results: isolation residual components (solid blue lines) and adaptive thresholds (dashed red lines).
The x-axis represents the time scale in seconds, and the y-axis units are m/s, rad/s, rad/s, rad/s starting with the top left
plot of each FIE in a clockwise direction.

isolation logic described in Section 3.2, we can conclude that
a fault has occurred in rotor M1.

As described in Section 3.2, the matched FIE provides a rea-
sonable estimate of the fault magnitude. Figure 9 shows the
estimated fault parameter generated by the adaptive law Eq.
(27). As can be seen, shortly after fault detection (at approx-
imately t = 24.5 sec), the fault magnitude estimation reason-
ably approximates the true fault magnitude.

Figure 9. Fault parameter estimation

5. CONCLUSIONS

This paper presents the design and real-time experimental re-
sults of a quadrotor actuator fault diagnosis method using
nonlinear adaptive estimation techniques. By following the
general methodology given in (X. Zhang et al., 2002), a bank
of nonlinear adaptive estimators are designed for detecting

and isolating faults in the quadrotor actuating system. Non-
linear adaptive thresholds are designed to enhance the de-
tectability and isolability of FDI method. The fault detec-
tion, isolation, and estimation method is implemented on a
quadrotor UAV test environment and is demonstrated during
real-time autonomous flight. An interesting direction for fu-
ture research is to develop a unified FDI framework for both
actuator faults and sensor faults in quadrotor UAVs.
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