
 

1 

 

Comparison of Model-based Vs. Data-driven Methods for Fault Detection 

and Isolation in Engine Idle Speed Control System 

Ruochen Yang1,2, Giorgio Rizzoni1,2,3 

1Center for Automotive Research, Columbus, Ohio, 43212, USA 

2Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio, 43212, USA 

3Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, 43212, USA 

yang.1359@osu.edu 
rizzoni.1@osu.edu 

 
ABSTRACT 

An internal combustion engine operating at idle is regulated 

by a feedback controller so that it runs at a preset idle speed 

without stalling when no acceleration is requested from the 

driver. Idle speed control is affected by numerous 

disturbances, ranging from accessory loads to environmental 

conditions. Because of the regulating behavior of the 

controller, faults, especially actuator faults, may affect 

sensor measurements in a way very similar to disturbances, 

system uncertainty or noise. This poses a challenge to the 

fault detection and isolation (FDI) problem for this system. 
In this paper, two fundamentally different fault diagnoses 

approaches are used to detect and isolate faults. A model-

based residual generation scheme as well as a data-driven 

linear discriminant analysis scheme is developed to solve 

the FDI problem even when faults are concurring in addition 

to system uncertainty, disturbance and noise. Their 

performances are compared side by side using data gathered 

from an experimentally validated simulator for an engine 

idle system that considers an actuator fault, a sensor fault, 

several system uncertainties and disturbance (operating 

conditions),  and sensor noise. The results show that 
comparable performance can be achieved with both schemes 

and some comments are made about each approach. 

 

1. INTRODUCTION 

Model-based fault diagnosis has been conventionally used 

in automotive applications (Isermann, 2005; Rizzoni, Onori, 

& Rubagotti, 2009), while data-driven diagnosis has 

become more popular in recent years. Research has been 

done to improve FDI performances by implementing one or 

a combination of the two for automotive systems 
(Mohammadpour, Franchek & Grigoriadis, 2011; Luo, 

Namburu, & Pattipati, 2010). However, few have studied 

the performance of each method applied on the same system 

to analyze the advantages and disadvantages of each 

method. This paper will demonstrate traits of each approach 

via an example on an internal combustion engine operating 

at idle speed. 

For many years, the automotive industry has complied with 

on-board diagnosis (OBD) standards (SAE J1979, 2012), 

which require continuous monitor of various vehicle 

subsystem performances and the ability to store and report 

self-diagnostic results. Among the subsystems that must be 
diagnosed is the idle speed control system. We chose this 

example to illustrate two diagnostic approaches. 

An idle speed controller stabilizes the engine operation at 

predetermined set points in accordance with its known 

working conditions, such as altitude and humidity, engine 

coolant temperature, transmission state, etc. (Okubo  & 

Michelini, 2004). For instance, an engine that starts cold 

may have an increased idle speed set point to shorten the 

catalyst warm up time (Eriksson & Nielsen, 2014). 

However, unpredicted circumstances may cause the engine 

speed to fluctuate around such set points. Assume for 
example that the air conditioner compressor is turned on 

while the engine is idling: the engine is asked to provide an 

external load torque. Before the controller can react, the 

engine speed drops dramatically to compensate for the 

torque request. Based on sensor measurements, the 

controller brings the idle speed back to the set point by 
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calculating a different value for the idle air control (IAC) 

valve setting. In this project, we consider faults in IAC 

valve and in pressure sensor, plus noise, system uncertainty 

and disturbance.  

We then test and evaluate both model-based algorithm, as 

well as a data-driven one, to perform FDI under all possible 
operating conditions. Section 2 defines the FDI problem and 

explains the engine system, faults, uncertainties and 

disturbance. Section 3 and 4 present a model-based and a 

data-driven FDI scheme respectively and their results. 

Section 5 shares some comments for each approach and 

thoughts that come up during the design process. 

2. SYSTEM BACKGROUND 

2.1. Description of the System 

Table 1 explains every mathematical symbol that is used to 

model the engine system. Known values are also indicated 

in the table except ,  1...14ia i  , the coefficients of fitted 

functions based on experimental validation data. 

The system of an engine operating at an idle speed of 

800rpm is a nonlinear system and Figure 1 shows its block 

diagram. The system has 1 known input cmd  and 2 sensor 

measurements 1y  and 2y  as outputs. Both measurements 

contain additive white Gaussian noise and the signal-to-

noise ratio is 57dB for pressure sensor and 46dB for speed. 

Two possible faults are the IAC valve actuator fault and the 

pressure sensor fault. 
distT is an external load torque 

requested from the engine and is treated as a disturbance. 
The system has parameter uncertainties in the intake 

manifold dynamics and the friction model. The goal for the 

FDI algorithms is to detect and isolate the two faults with 

known variables (1 valve opening command and 2 sensor 

measurements) in the presence of uncertainty, disturbance 

and noise. 

This project uses data generated by an experimentally 

validated simulator, developed at the Center for Automotive 

Research at The Ohio State University. The model described 

by the simulator gives good approximation of real system 

when engine speed is below 1400rpm and IAC valve 
position is below 15% open (Rizzoni, 1995-2016).  

The engine idle speed controller sends an opening command 

to the valve. The valve actuator may have a bias fault and 

the actual opening position may be greater than the 

commanded value. The mass flow rate across the throttle is 

considered as a choked flow when the valve position is 

below 15%. It is estimated as a polynomial function of the 

IAC valve position.  

 

 

 

Figure 1. Engine System Block Diagram. 

Following a filling-and-emptying approach, the intake 

manifold dynamics are modelled as a mass neglecting heat 

exchange. The intake manifold temperature’s state equation 

is modelled as a function of intake air mass, and the air flow 

rate through the throttle and port. Neglecting the scavenge 

Table 1. Symbols and Definitions. 
 

Variable Definition 

cmd  Commanded IAC valve opening position 

act  Actual throttle valve opening position 

m , m  
Air mass in the intake manifold, air mass flow 

rate in the intake manifold 

thrm  Throttle valve air mass flow rate 

portm  Port air mass flow rate 

0P  Ambient pressure, 99.79kPa 

0T  Ambient temperature, 298K 

R  Gas constant of air, 287J/(kg*K) 

k  Specific heat ratio of air, 1.4 

dV  Engine displacement, 0.00379m3  

N  Rotational engine speed 

mP  Intake manifold pressure 

mT  Intake manifold temperature 

mV  Intake manifold volume, 0.0029 m3 

indT  Indicated torque 

AF  Air-fuel (AF) ratio, 14.6 

spk  Spark timing, 10° before top dead center  

distT  Disturbance, the external load torque 

fri distT 
 

Sum of disturbance and  amount of friction 

torque above nominal 

J  
Rotational inertia of the engine, 

0.0789Nm*sec/(rad/sec) 

,  1...14ia i   Fitted function coefficients based on 
experimental engine data, known values 

thrf  IAC valve actuator fault 

pf  Intake manifold pressure sensor fault 

1y  Intake manifold pressure sensor measurement 

2y  Engine speed sensor measurement 
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flow, the port air mass flow rate is evaluated via a speed-

density equation, which is approximated as a function of 

engine speed and intake manifold pressure.  

In the combustion model, the indicated torque is calculated 

as a function of the port air mass flow rate, AF ratio and 

spark timing. The model also considers a combustion delay 
correlated to the engine speed. In this project, the AF ratio 

and spark timing are treated as constants.  

The rotational dynamics of the engine crankshaft is 

evaluated as a lumped-parameter model with one degree of 

freedom. The friction torque is estimated as a polynomial 

function of the engine speed and the coefficients are varying 

depending on whether the engine has been warmed up. A 

mathematical system model is presented in Section 2.3.  

2.2. Description of Simulation Configuration 

In this paper, we generate virtual data by simulations. To 

mimic more realistic conditions, noise and uncertainties are 

included as explained below. Two thousand 2-minute 
simulations are run with 5ms/sample step size for detector 

validation and testing. Figure 2 presents sample plots from a 

simulation. All simulations imitate an engine with idle 

speed set point of 800rpm, starting cold and warming up 

linearly over a 1-minute period. The resulting friction load 

starts from a higher value and decreases to its nominal in a 

minute. Since in reality it is unknown whether the engine 

starts warm, there is an uncertainty in friction. The simulator 

models intake manifold temperature dynamics and engine 

friction using physics-based (nonlinear) models. In the 

model-based algorithms introduced in Section 3, the 
linearized model is simplified to permit the development of 

algorithms that can be readily implemented.    

 

Figure 2. Sample plots from 1 simulation. 

Disturbance load is injected as an intermittent 10Nm torque 
to resemble an air compressor working on and off, whose 

duration and injection time is randomized. Each simulation 

contains at least 1, at most 2 pulses. Faults are injected to 

the system randomly and once injected, affected 

components stay faulty. A simulation may have 0, 1 or 2 

faults that appear in random order. Both faults are bias faults 

that increase the valve opening command by 5% of its 

nominal value and the pressure sensor measurement by 8% 

of its nominal. The corresponding intake manifold 

temperature profile is demonstrated in Figure 2. It varies 
based on the randomized operating condition, but without 

information of these conditions, the temperature is 

considered as a constant and therefore introduces 

uncertainty. No fault/disturbance is injected within the first 

2 seconds for the simulator to stabilize and only data from 

2-120s are collected and plotted throughout this paper. 

Figure 3 plots the known variables in a simulation for a 

healthy case versus a faulty case. The configuration for the 

healthy one: 1) engine starts from cold, 2) disturbances 

injected during 40-60s and 75-90s, 3) no faults, 4) 

measurements contain noise. The configuration for the 

faulty: 1) engine starts from cold, 2) disturbances injected 
during 40-60s and 75-90s, 3) valve actuator fault injected 

starting from 20s, pressure sensor fault injected starting 

from 80s, 4) measurements contain noise. Comparing the 

healthy and faulty plots in Figure 3, it is obvious that faults 

can’t be easily detected and identified. 

 

 

Figure 3. Healthy (Top) Vs. Faulty (Bottom) Scenario. 

A separate training data set is acquired in a similar fashion 
for the data-driven scheme. The same configuration in 

friction load, intake manifold temperature and volumetric 

efficiency apply. The only difference is that faults and 

disturbances are not injected randomly. System health is 

divided into 4 classes: healthy, single throttle fault, single 

pressure fault, and both faults. 800 simulations are 

generated for each class, which half of it contains a constant 

10Nm disturbance and others do not. Every simulation 

keeps the same configuration from 2-120s, i.e. a simulation 

for throttle fault with disturbance has the fault and 

disturbance injected from 2s till 120s. 

2.3. Structural Analysis 

Structural analysis (Blanke & Schroder, 2003) investigates 

the structural properties of a dynamic model by analysing its 

structural model. It is a very useful tool to identify which 
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part of the system is monitorable (i.e. the subset of the 

system components whose faults can be detected and 

isolated), provide information about the analytic redundancy 

of the system which can be used to design residuals, and 

determine those components whose failure can be tolerated 

through reconfiguration (i.e. sensor placement) (Krysander 
& Frisk, 2008). 

The engine system without controller can be represented in 

the following equations based on the assumptions descripted 

in the previous section:  
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known coefficients from the experimentally verified system 

model; , , , , , , , , , , ,thr m m ind int friact po distt thr prm m m P T T T T N f f 

are unknown variables (Rizzoni, 1995-2016). Figure 4 

summarizes the engine system as a structural incidence 

matrix of system variables vs. constraints, upon which 

Dulmage-Mendelsohn (DM) decomposition is performed. 

 
Figure 4. Engine System Structural Incidence Matrix. 

DM-decomposition decomposes the incidence matrix into 

structural under-constrained, just-constrained, and over-

constrained part (Dustegor, Frisk, Cocquempot, Krysander, 

& Staroswiecki, 2005). Analytic redundancy resides in the 

structural over-constrained part and therefore only faults 

occurring in this part can be detected. Furthermore, 
isolability test separates the over-constrained part into 

several equivalent classes, where faults appearing in the 

same class can’t be isolated from each other even though 

they are detectable (Krysander & Frisk, 2008). Result from 

the DM-decomposition for the engine system is presented 

on left in Figure 5. It shows that this system model contains 

only structurally over-constrained subsystem, thus all 

faults/disturbance can be detected. Constraints e1-e6 form an 

equivalent class that contains the throttle valve actuator 

fault, while constraints e7-e9 form another that contains the 

lumped variable for the disturbance and the uncertainty in 

friction load 
fri distT 

. e10 and e11, each forms its own 

equivalent class and e10 contains the pressure sensor fault. 

Since all faults/disturbance appear in different classes, they 
are all detectable and isolable from each other, illustrated in 

the isolability matrix in Figure 5 on right. The analysis 

indicates that no additional sensors are needed to perform 

FDI for this system setup. 

 

 

Figure 5. Structural Analysis Results. 

3. MODEL-BASED FDI 

An observer-based FDI scheme is designed in this section 

using a linearized system model. Behavior of the linearized 

model is studied against the nonlinear plant when healthy. 

Several observers are designed to generate residuals for 
robust FDI performance, which will be presented and 

discussed at the end of this section. 

3.1. System Linearization 

The original non-linear system without controller is 

analytically linearized around its nominal operating point, 

where 800rpmN  , 298KmT  , 22.462kPamP  and 
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0.76165gm  . The state-space representation of the 

linearized healthy system is: 
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The states are m: the air mass in the intake manifold, and N: 

the engine speed. The inputs are 
cmd : the known valve 

opening command from the controller, and a constant 1 
which comes from the constant terms in the linearization. 

The unknown input, fri distT  , which may be present at 

random, is the sum of disturbance torque and amount of 

friction load above nominal. Figure 8 plots one realization 

of fri distT   in red. The decreasing trend during the first 60s is 

stochastic and it simulates the extra friction load on the 

engine during warm-up. The pulses simulate the intermittent 

additional load torque due to accessories and each 120s 

simulation may contain 1 or 2 pulses. As both injection time 

and duration are random, the pulses may occur while engine 

warm-up. Outputs are the intake manifold pressure and the 

engine speed, mP  and N. When injected, thrf  is a constant 

of 0.219% valve opening and pf  is a constant of 1.797kPa; 

otherwise, zeros. 

This linearized system contains several modelling errors due 

to system uncertainties besides linearization approximation 

error. It treats the volumetric efficiency, intake manifold 

temperature, and friction coefficients as constants, rather 
than dynamic values. In addition, sensor noise is not 

considered. 

 

Figure 6. Comparison of Nonlinear Vs. Linear Plant. 

Outputs from the linearized healthy plant are compared to 

the original in Figure 6 when noise, disturbance and 

uncertainty are present. During engine warm-up, the IAC 

valve is commanded to open up more in order to overcome 

additional friction load. Since the linearized model does not 

take into account the extra friction load torque, it gives 

greater engine speed and smaller intake manifold pressure 

than the nonlinear plant over the first 60sec warm-up period. 
Aside from the engine warm-up, Figure 6 confirms that the 

linearized system behaves very closely to the original 

system and the linearized the system will be used as the 

basis for the model-based FDI design.  

By checking ( * ) ( )rank C E rank E  (Hui & Zak, 2005), 

there exists an unknown input observer (UIO) to estimate

fri distT  . Since both the controllabiliy matrix and the 

observability matrix of the linearized system have full rank, 

the system is controllable and the states are observable. 

Hence, intuitively, the lumped variable for disturbance and 

uncertainty in friction load, fri distT  , may be detected via UIO 

and be isolated from the faults; the intake manifold pressure 

sensor fault, pf , and the valve actuator fault, thrf , may be 

detected by comparing the differences between estimated 

and measured outputs of 
mP and N. Agreeing with the 

structural analysis of Section 2, these results from a control 

perspective indicate all faults/disturbance can be detected. 

Indeed, the faults and disturbance can be isolated from each 

other as implied by structural analysis in Figure 5. The next 

section will show a residual generation framework for 

model-based FDI. 

3.2. Observer-based Residual Generation 

Based on the linearized system model, a residual generation 

and evaluation logic is developed to detect and isolate 

faults, illustrated in Figure 7. An UIO (Hui & Zak, 2005) 

utilizes all available information , ,cmd mP N to estimate 

fri distT  , and the estimate ˆ
fri distT  , together with ,cmd N , is 

sent to a sliding mode observer (SMO) that produces 

estimated intake manifold pressure and engine speed, ˆ
mP

and N̂  (Drakunov & Utkin, 1995). A set of residuals, pr

and Nr  , is achieved by subtracting the estimates from the 

nonlinear plant sensor measurements. For change detection, 

a CUSUM test corresponding to each residual renders a 

fault label decision continuously in time (Basseville & 

Nikiforov, 1993). 

 

Figure 7. Residual Generation Flow Chart. 
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Figure 8 displays the actual fri loadT   and the UIO result of its 

estimate ˆ
fri loadT  in the faulty case simulation described in 

Figure 3. Note that it means, by definition, there is no 

additional load besides the nominal amount of friction when 

fri loadT  is zero. The estimated load torque is noisy but it 

closely resembles the actual one.  

 

Figure 8. Estimated Vs. Actual fri distT  . 

From the same simulation, Figure 9 plots the SMO 

estimates against their nonlinear plant sensor measurements. 

Fault injections are indicated as well: pressure sensor fault 

starts at 80s while throttle valve actuator fault has already 

been present since 20s. When the valve is faulty, it opens 

more than commanded and the controller tries to 

compensate it by sending a smaller cmd . Since the SMO 

derives estimates from cmd , it does not see the actuator fault. 

Similarly, the SMO does not see the pressure sensor fault 

because mP is not used. Figure 9 illustrates the discrepancies 

between estimates and measurements when faults are 

present. Furthermore, a residual can be designed to identify 

valve actuator fault as ˆ
Nr N N  , and another for pressure 

sensor fault as 
mP mr P P  . 

 

Figure 9. Estimated Vs. Actual Sensor Measurements. 

Ideally, if a fault is absent, the corresponding residual is 

zero; otherwise, non-zero. Nevertheless, the noise, 

disturbance and uncertainty in the system make it stochastic. 

Residual distributions are fitted with normal distributions, 

which imply that prior knowledge of the residuals is 

required. Here, 1000 simulations are used for threshold 

tuning and validation of the detector, while the other 1000 

are used for testing. Figure 10 displays the residuals from 

the same simulation as in Figure 9, and the fitted probability 

density functions under healthy and faulty condition. 

Distributions of 
pr have very little overlap and little 

detection error is expected. On the other hand, distributions 

of Nr  have larger overlap and a greater confusion is 

expected. 

Established on the residual PDF’s, a CUSUM (cumulative 

sum) test is built for pr to detect pressure sensor fault and 

another for Nr to detect throttle actuator fault. It calculates 

the log-likelihood ratio of a data sequence until a threshold 

is reached. Proper thresholds are determined during 

tuning/validation stage to achieve appropriate detection 

performance.  

  

Figure 10. Residuals and Corresponding Distributions. 

3.3. Results from Model-Based FDI Scheme 

In this project, false alarms are defined as detections before 

true occurrence time or detections when truly no fault 

occurs; detections are defined as detections with a delay less 

than 5 seconds. 

 

Figure 11. ROC Curves for Each Detector (Right), Zoomed-

in Plot of the Northwest Corner (Left). 

The Receiver Operating Characteristic curves of the 

detectors are plotted in Figure 11 based on the validation 

process using 1000 simulations. The thresholds that deliver 
optimal results (minimum average error) correspond to the 

points at the northwest-most corner. The final detectors set 
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such thresholds and are tested on the other 1000 

simulations. The detector for pressure sensor fault 

accomplished 100% detection rate and 0% false alarm; and 

for throttle actuator fault, 100% detection rate and 4.6% 

false alarm.  

4. DATA-DRIVEN FDI 

Via linear discriminant analysis (LDA), a similarity-based 

classifier is designed in this section. Even though transient 

behavior exists from fault/disturbance injection, the engine 

speed variations are small because the controller stabilizes 

the engine at 800rpm. Hence, speed measurements are not 

as meaningful as the other two available variables for the 

FDI tasks in this project. Only the commanded throttle 

position and intake manifold pressure measurement,
cmd and 

mP , are used for the data-driven FDI scheme, even though 

mP itself may have a sensor fault.  

4.1. Training Data Analysis 

The training data set is clustered into 4 classes: 1. Healthy 

(and/or disturbance), 2. one Throttle fault (and/or 

disturbance), 3. one Pressure fault (and/or disturbance), 4. 

both faults (and/or disturbance). Training data, [
mP ,

cmd ], 

from each class (400 simulations each) are segmented into 
overlapping frames, 0.5s/frame and 0.25s/increment, and the 

mean of each frame is calculated.  

Figure 12 illustrates the obtained clusters for each class 

labeled by color on left. Each class consists of two clusters: 

condition without disturbance on the lower left side, and 

with disturbance on the upper right. Four solid color dots 

represent the center of mass for each class. Figure 12 also 

presents the fitted PDF of each class when projected onto 

one of the original axes, pressure or throttle command. It is 

obvious that several distributions completely overlap even 

though they denote different health conditions. In other 
words, neither original axes offer good separation between 

classes. 

 

Figure 12. Clusters of Class Based on Mean Values and 
Their Distributions. 

It is desirable to find a projection such that the separation 

between means of projected classes is maximized and the 

variance within each projected class is minimized. The first 

thing that comes to mind is LDA. The solution can be 

attained by calculating eigenvectors based on the between-

class and the within-class covariance matrices, as described 
in the book from Hastie, Tibshirani and Friedman (2009). 

Figure 13 demonstrates the clusters after LDA, where the 

new axes are the two 1-D subspaces defined by the 

eigenvectors. It also depicts the fitted PDF of each class 

when projected onto each discriminant. Best separation 

occurs when data is projected onto Discriminant 1 according 

to Figure 13. The corresponding transformation is adopted 

by the classifiers in the data-driven FDI method. 

 

Figure 13. Clusters after LDA and Their Distributions. 

4.2. Detection Logic 

Without knowledge of the physical engine model, a fault 

diagnostic procedure is constructed using only the 

commanded throttle opening and the measured intake 

manifold pressure, which could be faulty.  

 

Figure 14. Model-free FDI Flow Chart. 

Figure 14 lays out the procedure for a test sequence. Similar 

to the training data, a test sequence is parsed into 

overlapping frames and the previously acquired projection 

transforms the mean mP and cmd onto Discriminant 1. A 

CUSUM based classifier detects whether the frame is 
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generated by a healthy system through fitted distributions of 

healthy vs. non-healthy training data. Once a non-healthy 

frame is detected, another CUSUM test identifies whether it 

is a single throttle fault or a single pressure fault. Knowing 

that a first fault has arisen, the algorithm moves on to the 

next frame and check if the other fault occurs until end of 
sequence.  

4.3. Results from Data-Driven  FDI Scheme 

For easy comparison with model-based approach, false 

alarms and detections are defined the same as in Section 3.3, 

and the same set of validation and testing data is used here. 

The ROC curves corresponding to each fault are plotted in 

Figure 15 after validation using 1000 simulations. Similarly, 

the finalized algorithm sets thresholds corresponding to the 

points at the northwest-most corner and it is tested on the 

other 1000 simulations. Comparable to results from the 

model-based algorithm, the detection rate of pressure sensor 

fault is 99.04% and false alarm rate, 0%; the detection rate 
of throttle actuator fault is 99.8% and false alarm rate, 0.8%. 

 

Figure 15. ROC Curves for Each Detector (Right), Zoomed-

in Plot of the Northwest Corner (Left). 

5. COMMENTS 

Table 2 summarizes the FDI performance of the model-

based framework as well as the data-driven one. Both 

methods developed in this paper deliver similar and 

satisfactory fault diagnostic performance for the engine 
system setup. This section comments on some of their 

advantages and shortcomings during the design and 

application process. 

The system model makes it possible to conduct structural 

analysis, which is meaningful in the early stage of FDI 

design. It offers insight of whether faults can be detected 

and isolated, or whether they can be made so by way of a 

different sensor placement. On the other hand, before the 

design stage, it is usually not clear to a data-driven method 

whether faults and disturbances are detectable or isolable, 

much less to determine which variables should be monitored 

for efficient fault diagnosis.  

With knowledge of the physical model, observer-based 

method is able to estimate system parameters and is able to 

uncover useful information that is not known or measured 

(Isermann, 2005). But, modeling error, as well as 

linearization error, can limit its performance. A complete 

separate study can be done to assess its sensitivity and 

robustness to fault, disturbance and modeling error.  

Nonetheless, modeling errors do not concern the data-driven 

method because it does not depend on the model and uses 
only the available data. However, whether training data is 

balanced and sufficient can be critical (Rizzoni et al, 2009). 

In addition, certain techniques can be more effective than 

others depending on the application. It is useful to 

understand how the data spread beforehand, even though it 

might still need some trial and error. For instance, during 

the course of developing the data-driven scheme in this 

paper, Gaussian Mixture Model (GMM) and Principal 

Component Analysis (Hastie et al 2009) are also applied to 

perform classification for fault diagnosis in this engine 

system. Unfortunately, their performance is not better than 

what has been presented. Moreover, GMM especially adds 
considerable computation complexity and memory 

consumption.  

  

6. CONCLUSION 

This paper demonstrates two dramatically different fault 

diagnostic methods, model-based vs. data driven, to solve 

the same FDI problem in an engine operating at idle. Their 
results are similar and both methods are able to give high 

detection rate while keeping very small false alarm rate. 

Strengths and weaknesses of each method are compared. 

Even though the performance is analyzed using virtual data 

from an experimentally validated simulator, we believe that 

the guidance provided by this study would be a useful 

starting point in the design of practical DFI strategies in an 

industrial application. 

Table 2.  Comparison of Performances. 
 

Observer-based Residual Generation  

Fault Rates Validation Set Test Set 

Valve 
Actuator 

Fault 

False Positive (%) 1.2 0.8 

Detection (%) 100 99.8 

Pressure 
Sensor 

Fault 

False Positive (%) 0.2 0 

Detection (%) 99.4 99.04 

Model-free Linear Discriminant Analysis  

Fault Rate Validation Set Test Set 

Valve 
Actuator 

Fault 

False Positive (%) 1.2 0.8 

Detection (%) 100 99.8 

Pressure 
Sensor 
Fault 

False Positive (%) 0.2 0 

Detection (%) 99.4 99.04 
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