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ABSTRACT 

Structural health monitoring needs to produce actionable 
information regarding structural integrity that supports 
operational and maintenance decision making that is 
individualized for a given structure and its performance 
objectives. An effective Prognostics and Health 
Management (PHM) framework for aging structures 
(subjected to physical, chemical, environmental, and 
mechanical degradation) needs to integrate four elements – 
damage modeling, monitoring, data analytics, and 
uncertainty quantification. This paper briefly discusses 
available techniques and ongoing challenges in each of 
these four elements of PHM, in the context of concrete 
structures. A Bayesian network approach is discussed for 
integrating heterogeneous information from multi-physics 
computational models of degradation processes, full-field 
measurement techniques, big data analytics, and various 
data and model uncertainty sources.   Such a comprehensive 
framework can quantitatively support decisions regarding 
appropriate risk management actions.  

1. INTRODUCTION 

The purpose of structural health monitoring is to provide 
information to the decision-maker in a manner that is 
suitable for risk management with respect to structural 
integrity and performance. Risk management decisions 
include sustainment decisions regarding inspection, 
maintenance and repair, as well as operational decisions 
regarding the mission demand limits for the system and its 
operating conditions. In all engineering systems, such 
decisions are made in the presence of uncertainty that arises 
from multiple sources. The various types of uncertainty 
include natural variability (in loads, material properties, 
structural geometry, and boundary conditions), data 
uncertainty (e.g., sparse data, imprecise data, missing data, 
qualitative data, and measurement and processing errors), 

and model uncertainty (due to approximations and 
simplifying assumptions made in diagnosis and prognosis 
models and their computer implementation). An important 
challenge is to aggregate the uncertainty arising from 
multiple sources in a manner that provides quantitative 
information to the decision-maker about the future risks for 
structural integrity and performance, as well as the risk 
reduction offered by various risk management activities, 
thus facilitating quantitative risk-informed cost vs. benefit 
decisions. 

The information available in structural health monitoring is 
quite heterogeneous, since the information comes from a 
variety of sources in a variety of formats. The 
heterogeneous sources include mathematical models, 
experimental data, operational data, literature data, product 
reliability databases, and expert opinion. In addition to the 
specific system being monitored, information may also be 
available for similar or nominally identical systems in a 
fleet, as well as legacy systems. Even within the system 
being monitored, information may be available in different 
formats (e.g., numerical, text, image). It is also worth noting 
that information about different quantities may be available 
at different levels of fidelity and resolution. An important 
challenge in data analytics for PHM is information 
integration, i.e., fusion of heterogeneous information 
available from multiple sources and activities.  

Health monitoring systems have used either data-driven 
techniques or model-based techniques for diagnosis and 
prognosis. An effective framework for health diagnosis and 
prognosis of aging structures (subjected to physical, 
chemical, environmental, and mechanical degradation) 
needs to make use of all the available information through 
damage modeling, monitoring, data analytics, and 
uncertainty quantification techniques. This paper suggests a 
dynamic Bayesian network (DBN) approach for information 
integration, data analytics and uncertainty quantification in 
diagnosis and prognosis. The Bayesian network approach 
enables both the forward problem (uncertainty integration) 
and the inverse problem (risk management, resource 
allocation). Methods have recently been developed to 
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integrate various sources of uncertainty (natural variability, 
data uncertainty and model uncertainty) in order to quantify 
the overall uncertainty in health monitoring outcome. Such 
methods need to be quantitatively linked to decisions 
regarding appropriate risk management actions through the 
use of structural reliability theory (Naus, 2009).  

A particular problem of current interest to the authors is the 
application of the above concepts to the monitoring, 
diagnosis, prognosis, and health management of concrete 
structures. Concrete structures are affected by a variety of 
chemical, physical and mechanical degradation mechanisms 
such as chloride penetration, sulfate attack, carbonation, 
freeze-thaw cycles, shrinkage, and mechanical loading. 
Each of the four elements mentioned earlier – damage 
modeling, monitoring, data analytics and uncertainty 
quantification – is a difficult challenge for a heterogeneous 
material such as concrete. This paper outlines research 
needs and possible directions through a few illustrative 
damage modeling and health monitoring techniques for 
concrete structures. 

2. DAMAGE MODELING 

The deterioration processes in concrete structures can be 
classified briefly into three main groups, i.e. physical 
processes, chemical processes and mechanical processes 
(Mehta and Monteiro 2001). Sources of physical 
deterioration may include temperature variation and the 
associated thermal expansion/contraction, relative humidity 
variation and the associated drying shrinkage/wetting 
expansion, freezing and thawing cycles (i.e. frost attack), 
wear and abrasion etc. Sources of chemical deterioration 
include corrosion of reinforcement embedded in concrete, 
chloride penetration, carbonation, leaching of concrete 
constituents, acid attack, sulfate attack, and alkali-aggregate 
reaction etc. And sources of mechanical deterioration 
include externally applied overload or impact, cyclic fatigue 
loads, differential settlement of foundation, and seismic 
activity. All these sources of deterioration can alter the 
porosity and permeability of concrete, cause or aggravate 
various material flaws (such as scaling and spalling, 
swelling and debonding, cracking and disintegration), 
impair the integrity and tightness of concrete structure, and 
lower the loading capacity of structural member.  

The physical and chemical deterioration processes of 
reinforced concrete structures are closely interconnected and 
synergistic; distinguishing any single deterioration process 
from the joint impact is difficult. The complexity of the 
aforementioned classification of deterioration processes has 
led the technical community to model deterioration 
mechanisms of concrete individually. Individual 
deterioration processes have been studied extensively, and 
significant strides have been made in developing 
computational models. A major current challenge is how to 
develop an integrated computational methodology to 

quantitatively assess the durability of reinforced concrete 
structures subjected to a variety of coupled deterioration 
processes that are acting simultaneously. A related issue is 
that damage under different deterioration processes 
accumulates at different rates; thus multi-physics 
degradation analysis also needs to account for different time 
scales in different processes. 

In the case of concrete degradation under coupled 
physical/chemical processes, governing differential 
equations that characterize the mass/energy balance and 
thermodynamic/chemical equilibrium of coupled heat 
conduction, ionic diffusion, moisture transport and chemical 
reaction have been developed. A variety of multi-scale 
methods and continuum finite element/difference methods 
have been utilized to solve the interactive and nonlinear 
governing equations. Methods have also been pursued to 
connect chemical reaction products to the mechanical 
response of concrete (e.g., stress, displacement, crack 
density).  The accelerating effects of cracking on the 
transport processes of various aggressive agents have also 
been considered. 
 

Figure 1. Multi-physics degradation of concrete 
 
Prior to experiencing any deterioration, ordinary concrete 
usually possesses high porosity and low permeability. The 
overall connectivity of the micropore network, instead of the 
porosity of concrete, controls the transport properties of 
concrete. In other words, only interconnected micropores 
and microcracks in concrete contribute to the permeability 
of concrete and its vulnerability to deterioration. Under 
degrading environments, initially discontinuous micropores 
and microcracks grow, coalesce and finally form an  
interconnected network of multi-scale pores and cracks. As 
a result, the permeability of concrete increases, thus further 
accelerating the deterioration processes of the concrete 
structure, as shown in Fig. 1 (Chen, 2008).  

Thoft-Christensen (2003) classified various deterioration 
models of concrete structures into three levels. Level 1 
models are  empirical models, which are established on the 
basis of direct observations on existing structural elements 
and do not consider the deterioration mechanism. Level 1 
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models have been adopted extensively in current design 
codes as a means of producing a rough estimate of the 
durability level of existing concrete structures. Level 2 
models are medium level models from a sophistication 
viewpoint; these are based on semi-empirical or average 
“material parameters” (e.g., concrete permeability) and 
average “loading parameters” (e.g., average chloride content 
applied on the surface of concrete). Deterioration 
mechanisms are assumed to follow some formulated 
physical principles like Fick’s law. Level 2 models have 
usually limited their scope to individual deterioration 
mechanisms. Level 3 is the most advanced level, where the 
modeling of the deterioration profile is based on 
fundamental physical, chemical and mechanical principles. 
Detailed information on concrete microstructure and applied 
environmental loading is required, and multiple coupled 
deterioration processes are taken into account. 

A few examples of multi-physics degradation modeling, 
namely carbonation and chloride penetration (Level 2), and 
sulfate attack (Level 3), are described next for the sake of 
illustration.  

Carbonation 
Unlike physical deterioration processes such as the heat 
transfer and moisture transport, carbonation of concrete is 
essentially a chemical process. As the hydration product of 
Portland cement, calcium hydroxide in concrete may react 
with carbon dioxide dissolved in pore solution, neutralize its 
high alkalinity environment, and finally result in 
depassivation of the passive layer and initiation of 
reinforcement corrosion — one of the major deterioration 
mechanisms for reinforced concrete structures. On the other 
hand, as the main product of the carbonation reaction, 
calcium carbonate will not dissolve in water but precipitate 
in the pores of concrete, thus decreasing the porosity of 
concrete and altering its microstructure. In this case, 
carbonation reaction may be favorable to maintain the 
durability of plain concrete. Thus carbonation has opposing 
effects on different constituents of the material. 

Based on an assumption that the carbonation front advances 
after the alkaline material (i.e., calcium hydroxide) has been 
neutralized completely, the carbonation process is 
dominated by the diffusion of carbon dioxide through the 
porous microstructure of concrete, where the concentration 
gradient of carbon dioxide acts as a driving force. As a 
neutralization reaction, the carbonation process generates a 
specific amount of moisture, which may affect the temporal 
and spatial distribution of moisture content in concrete and 
should be considered in the simulation of previous moisture 
transport process. To develop a numerical model for 
carbonation, several coupled processes, namely the 
diffusion of carbon dioxide, moisture transport, heat 
transfer, formation of calcium carbonate, availability of 
calcium hydroxide in the pore solution etc., need to be 
considered. A popular approach is the multifactor equation, 

where the diffusivity of CO2 is assumed to be dependent on 
the pore relative humidity, temperature and the carbonation-
induced reduction of porosity as  
 
      32

*
10, FTFhFDD cc  (1) 

 
where F1, F2 and F3 represent the effects of humidity, 
temperature and carbonation, respectively. Refer Saetta et al 
(1995) for details of models for F1, F2 and F3. Saetta et al. 
(2004) also proposed a similar numerical model for the 
carbonation reaction rate as 
 
 

RchTr ffff  0  (2) 

 

where 0 indicates an ideal carbonation rate at which the 
carbonation reaction takes place in specified ideal 
conditions, and fT, fh, fc, and fR represent the influences of 
temperature, relative humidity, concentration of free CO2, 
and degree of carbonation respectively, on the reaction rate. 

Chloride Penetration 
Chloride-induced reinforcement corrosion is one of the 
major deterioration mechanisms for reinforced concrete 
structures exposed to marine environment, deicing salts or 
underground environment. It leads to a series of structural 
degradations, such as loss of the concrete-steel interface 
bond, reduction of the cross-section area of reinforcement, 
and cracking and spalling of the concrete cover, thus 
severely reducing the load carrying capacity of the structure. 
Considering its unique significance, substantial studies have 
been carried out on the chloride-induced reinforcement 
corrosion process for several decades. 

Based on Fick’s second law, the governing equation of 
chloride penetration in concrete is expressed as: 
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where Ccl(x,t) is the chloride content at spatial coordinate x 
and time t, and Dcl is chloride diffusivity. Chen and 
Mahadevan (2008) proposed the modeling of chloride-
induced deterioration through a multifactor equation as 
 
        localfclclcl FTFCFtFDD 54,320,  (4) 

 

where Dcl,0  is the reference or nominal chloride diffusivity 
when all influencing factors assume values of unity. F2 
denotes the influence of the age of concrete, which reflects 
the cement hydration-induced reduction in the concrete 
porosity with time t. F3 represents the influence of the free 
chloride content Ccl,f, which reflects the hindering effect of 
high chloride content on the chloride diffusion. F4 indicates 
the influence of temperature T, which reflects the 
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thermodynamic effect of high temperature on the chloride 
diffusion. F5 reflects the influence of local relative crack 
density  local. Chen and Mahadevan (2008) implemented 
this approach through a finite element-based computational 
methodology to link the diffusivity change to structural 
degradation expressed by the local relative crack density. 

The above two modeling approaches use semi-empirical 
multifactor equations, whose parameters are calibrated using 
experimental data. These are Level 2 approaches using 
averaged parameters. An example of a Level 3 approach 
based on multi-scale modeling is illustrated below for 
sulfate attack.  

Sulfate attack 
When sulfate ions diffuse through a cementitious structure, 
they react with the cement hydration products to form 
expansive products. This induces strain leading to cracking 
and eventual failure. Sarkar (2010) developed a probabilistic 
computational model of concrete durability under sulfate 
attack that considers three processes – diffusion of ions, 
chemical reactions and mechanical damage accumulation 
due to cracking. The three processes were modelled through 
basic differential equations, chemical reactions and 
mechanics models respectively, based on continuum first 
principles. 

There are several inputs and model parameters in the three 
parts of the model. Sarkar et al (2012) pursued a hierarchical 
Bayesian calibration approach where the parameters of each 
model component were calibrated using tests that 
progressively added the processes (i.e., first chemical alone, 
then chemical and diffusion, then all three). In the 
geochemical speciation modeling, many mineral sets are 
possible; their relative proportions were calibrated using 
experimental data.  

The effect of chemical reaction products on mechanical 
properties such as elastic modulus and strength was 
computed through multi-scale modeling. Four scales were 
considered for homogenization and calculation of macro-
level structural properties and strength degradation. These 
were: calcium silicate hydrate (CSH), cement paste, cement 
mortar, and concrete. The macro-level crack density was 
then connected to effective elastic modulus and diffusivity.  

In summary, the above examples of concrete deterioration 
modeling show attempts at modeling the interactions among 
multiple chemical, physical and mechanical processes that 
operate simultaneously across multiple spatial and temporal 
scales. This presents unique challenges for concrete 
structures health monitoring. Sensing of physical, chemical 
and mechanical quantities is one challenge. In addition, 
since multiple processes are interacting in a coupled 
manner, it is difficult to link any observed damage to a 
particular deterioration process or to estimate the proportion 
of damage contributed by different processes.   
 

Figure 2. Multi-physics modeling of sulfate attack 

3. HEALTH MONITORING 

A variety of non-destructive evaluation (NDE) techniques 
have been studied for concrete structures. While some 
studies have investigated embedded sensors in concrete, we 
restrict this discussion to external sensing considering that 
the structures are already built. In a recent study led by the 
Oak Ridge National Laboratory, five NDE techniques were 
assessed for damage detection in concrete, namely shear-
wave ultrasound, ground penetrating radar, impact echo, 
ultrasonic surface wave, and ultrasonic tomography 
(Clayton 2014). The techniques were compared in terms of 
ease of use, time consumption, and defect detection 
capability, and different techniques showed different 
advantages and disadvantages. For example, ultrasonic 
tomography appeared to have the best detection especially 
at larger depths under the surface, but was very time 
consuming. The first two (shear-wave ultrasound and 
ground penetrating radar) were found to have above average 
performance but some disadvantages as well.  

For larger structures (e.g., containment structure in a nuclear 
power plant), the use of full-field imaging techniques appear 
promising. Some of these techniques are briefly discussed 
below (infrared imaging, digital image correlation, and 
velocimetry). 

By using infrared imaging, it is possible to identify the 
thermal load path in a material.  By tracking this thermal 
signature longitudinally in time, the onset of changes in the 
load path and hence changes in the composition of a 
material as well as mechanical damage in the material can 
be identified. Infrared imaging can also be combined with 
excitation techniques such as standoff acoustic sound 
pressure.  By insonifying a material with an acoustic source, 
full-field vibro-thermography measurements can be made to 
characterize changes in the material over time.  Such a 
methodology falls into the class of active structural health 
monitoring sensing methods (Mares et al, 2013).  

A second approach to structural health monitoring for full-
field infrared imaging is to measure the thermal response 
under an applied uniform heat flux.  By analyzing thermal 
gradients in the material, regions of non-uniform material 
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composition such as due to the formation of defects can be 
identified and tracked (Sharp et al, 2014)..  

Digital image correlation (DIC) has also been studied in 
recent years as a full-field structural health monitoring 
imaging technique. For example, DIC has been used to 
detect micro cracking in chopped fiberglass compression 
molded parts.  The resulting image shows the principal 
strains in a region where a crack has formed.  The strain 
field indicates the strains that occur under an applied static 
load. This method can also be used to detect localized 
residual strains (and stresses) after an applied load is 
removed. Furthermore, the method is applicable to tracking 
the strain that occurs under temperature or other types of 
environmental loading (wind, solar, etc.). 

Velocimetry has also been studied as a full-field structural 
health monitoring imaging technique to detect subsurface 
nonlinearity due to material damage.  For example, full-field 
velocimetry has been applied to monitor the ambient 
vibration of composite structures and data has been 
analyzed to detect subsurface damage in such 
materials.  Damage indices quantify the degree of nonlinear 
stiffness/damping behavior that is observed locally at each 
measurement point in the grid. Using modern scanning laser 
technology, it is possible to perform these measurements for 
in-plane an out-of-plane vibration fields to achieve greater 
sensitivity to defects in composite structures.  Using this 
technique, it has been demonstrated that the nonlinear 
dynamic behavior of heterogeneous materials such as the 
fiberglass sandwich material are indicative of subsurface 
damage, and that a higher frequency vibration provides for 
enhanced localization of the damage (Bond et al, 2013).  

The aforementioned full-field measurement techniques have 
been applied to metallic and composite material structures. 
Their suitability for concrete structures is yet to be 
investigated. Full-field measurements also need to be 
supplemented by appropriate NDE and laboratory testing 
activities. 

4. DATA ANALYTICS 

Data analytics is a crucial step in processing the collected 
data and assembling the evidence for diagnosis and 
prognosis. A variety of data processing techniques have 
been developed during the past decades to analyze the data 
generated by the sensor systems. In general, health 
monitoring systems and sensors generate a large amount of 
data. For online monitoring, the amount of information 
grows very large, and this becomes a big data problem. A 
big data problem is characterized by volume, velocity and 
variety (heterogeneity) of data. When full-field imaging 
techniques are used, data analytics is challenged by the 
presence of heterogeneous data (numerical, text and image). 
The data becomes too large and complex to be stored, 
managed and processed by traditional database management 
techniques.  

 
In recent years, several software frameworks for storage, 
management and retrieval of big data have been developed. 
The well-known Hadoop distributed file system for storing 
large amounts of data is scalable and fault-tolerant. 
MapReduce is a parallel processing framework for large-
scale data processing. It consists of two segments -- Map 
function, where the task is subdivided and assigned to slave 
nodes, and Reduce function, where the results from slave 
nodes are aggregated to obtain final result (Prajapati, 2013).  

Big data presents many issues such as data quality, 
relevance, re-use, decision support etc. In particular, 
uncertainty of inference due to data quality, and 
incompleteness need to be addressed. Sensitivity analysis 
leads to identifying the relevance of various data 
components, and helps to focus attention and collection 
efforts to the most relevant data. Additional challenges 
relate to data scrubbing and robust data management, as also 
the requirements for increased memory, storage and 
computing power. 

Dimension reduction and data reduction are common steps 
in processing big data. Dimension reduction is achieved 
through feature selection and extraction. Two types of 
approaches are available for feature selection – filter 
approach and wrapper approach. In the wrapper approach, 
all possible subsets to predict the output variable are 
created, and the subset of variables, whose corresponding 
classification algorithm performs the best, is selected. In the 
filter approach, ranks are assigned to individual variables, 
and depending upon the accuracy required, the subset of 
variables is selected. In general, filter methods tend to be 
faster. In Feature Extraction, all the variables are mapped to 
a lower-dimensional space and models are constructed in 
this low-dimensional space. Principal components analysis 
(PCA) and factor analysis are well-known techniques that 
aid dimension reduction. 

Prominent data reduction techniques include classification 
and clustering. Several different classification techniques 
such as decision trees, nearest neighbor classifier, neural 
networks and support vector machines are available. 
However, many of these are deterministic classifiers, 
whereas the Bayesian network is an uncertainty-based 
classifier where the available evidence is assigned to 
different classes with a quantified probability measure. 
Clustering can be either hierarchical or based on partition of 
the problem domain. Several different clustering techniques, 
such as k-means, DBSCAN, expectation maximization are 
available, and these need to be investigated for suitability in 
the present problem. For larger data sets, dimension 
reduction is possible through feature extraction and feature 
selection, in order to develop a low-dimensional 
representation of the available data.  
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After preprocessing and reducing the available data, the next 
step is PHM model building by learning the 
interrelationships. While doing this, it is advisable to use the 
data in a systematic manner that maximizes the information 
gain. An adaptive selection of data sources can be pursued, 
based on information-theoretic metrics. Various possible 
data sources are ranked based on the information gain 
potential and selected to train the model in decreasing order 
of information gain.  

In summary, data about different physical quantities being 
measured is available in heterogeneous formats and fidelity, 
from multiple sources (e.g., test data, expert opinion, 
operational data, legacy system data, and model-based 
simulations). Data may be sparse about some quantities, 
while it may be abundant for other quantities. A systematic 
and rigorous approach is needed for data analytics that 
makes use of all available heterogeneous information. One 
promising approach is to use the Bayesian network (BN) 
machine learning approach as the organizing principle for 
connecting data in multiple different formats. The Bayesian 
network (discussed in the next section) allows the 
integration of various types of information that (a) occur at 
different times, and (b) combine in different ways (linear, 
nonlinear, coupled, nested, and iterative). 

5. UNCERTAINTY QUANTIFICATION 

Uncertainty sources in various components of the PHM 
model may broadly be classified into three categories: 
natural variability in the system properties and operating 
environments (aleatory uncertainty), information uncertainty 
due to inadequate, qualitative, missing, or erroneous data 
(epistemic uncertainty), and modeling uncertainty induced 
by assumptions and approximations (epistemic uncertainty). 
Much previous work has focused on variability, but a 
systematic approach to include data and model uncertainty 
sources within PHM still awaits development.  

Data Uncertainty: On the one hand, sensor information 
may be inadequate, due to sparse, imprecise, qualitative, 
subjective, faulty, or missing data. On the other hand, one 
may be confronted with a large volume of heterogeneous 
data (big data), involving significant uncertainty in data 
quality, relevance, and data processing. In the context of a 
probabilistic framework, both situations lead to uncertainty 
in the distribution parameters and distribution types of the 
variables being studied, and the Bayesian approach is 
naturally suited to handle such data cases and update the 
description with new information. Flexible parametric or 
non-parametric representations can be developed within the 
Bayesian framework to handle such epistemic uncertainty 
(Sankararaman and Mahadevan, 2011). An important recent 
development is the extension of global sensitivity analysis 
to quantify and distinguish the relative contributions of 
aleatory uncertainty vs. epistemic uncertainty 
(Sankararaman and Mahadevan, 2013a). 

Model Uncertainty: The challenges in developing a 
computational framework for concrete degradation 
modeling that mathematically represents the interactions 
among the multi-physics degradation processes and their 
relation to the quantities being measured by sensors were 
discussed earlier. The models for various processes could be 
based on first principles or regression of empirical data. For 
some components there may not even be any mathematical 
models available, but perhaps reliability data from past 
experience or literature.   The Bayesian network offers a 
systematic approach to integrate such heterogeneous 
information. Quantification of the model uncertainty 
resulting from such heterogeneous information could be 
studied w.r.t. three categories, namely, model parameters, 
model form, and solution approximations; and the 
corresponding activities to quantify them are calibration, 
validation and verification, respectively. Model parameters 
are estimated using calibration data, and Bayesian 
calibration constructs probability distributions for the model 
parameters. Model form uncertainty may be quantified in 
two ways: either through a validation metric, based on 
validation data, or as model form error (also referred to as 
model discrepancy or model inadequacy). Model form error 
can be estimated along with the model parameters using 
calibration and/or validation data, based on the comparison 
of model prediction against physical observation, and after 
accounting for solution approximation errors, uncertainty 
quantification errors, and measurement errors in the inputs 
and outputs (Liang and Mahadevan, 2011) 

Probabilistic graphical models for machine learning such as 
Bayesian networks (Jensen, 1996) have shown much 
effectiveness in the integration of information across 
multiple components and physics in several application 
domains. Dynamic Bayesian networks (DBNs) have been 
used for systems evolving in time, and recent work has 
extended DBNs to include heterogeneous information in 
diagnosis and prognosis (Bartram and Mahadevan, 2014). 
The Bayesian network is able to include asynchronous 
information from different sources. Also, Bayesian 
networks can be built in a hierarchical manner, by 
composing component-level networks to form a system-
level network.  

In summary, data and model uncertainty sources need to be 
systematically included in the PHM of concrete structures, 
and the Bayesian network offers such a systematic and 
comprehensive approach for the aggregation of uncertainty 
from multiple sources and heterogeneous information. The 
Bayesian network facilitates both forward propagation of 
uncertainty and the inverse problem of decision-making 
(e.g., sensor layout design) in order to achieve uncertainty 
reduction. The Bayesian approach has been used to quantify 
the uncertainty in each step of diagnosis and prognosis 
(Sankararaman et al, 2011; Sankararaman and Mahadevan, 
2013b). Connection of these uncertainty quantification 
techniques to risk assessment and risk management 
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decisions through the use of structural reliability theory 
needs to be investigated (Naus, 2009). 

6. CONCLUSION 

This paper discussed challenges encountered in four 
elements of PHM for concrete structures – degradation 
modeling, sensor measurement, data analytics and 
uncertainty quantification. Illustrative techniques and 
ongoing challenges in each direction were briefly discussed. 
An important current need is the development of an 
effective framework for PHM of concrete structures that 
combines the state-of-the-art techniques in each of the four 
elements, overcomes challenges such as feasibility, 
complexity and scalability, and develops confidence in 
PHM result. Such a comprehensive approach will facilitate 
the development of a quantitative, risk-informed framework 
for structural health management. 

ACKNOWLEDGEMENT 

This study is partly funded by Battelle Energy Alliance LLC 
at Idaho National Laboratory (Contract No. 0014530, 
Monitors: Bruce Hallbert, Vivek Agarwal). The support is 
gratefully acknowledged. 

REFERENCES 

Naus, D.J (2009), “The Management of Aging in Nuclear 
Power Plant Concrete Structures,” Journal of the 
Minerals, Metals and Materials Society 

Mehta, P.K. and Monteiro, P. (2001). Concrete — 
Microstructure, Properties and Materials, Prentice-Hall, 
Englewood Cliffs, New Jersey.  

Chen, D.(2006), “Computational Framework for Durability 
Assessment of Reinforced Concrete Structures under 
Coupled Deterioration Processes,” Ph.D. Dissertation, 
Vanderbilt University, Nashville, TN. 

Thoft-Christensen, P. (2003) Corrosion and Cracking of 
Reinforced Concrete, in Life-Cycle Performance of 
Deteriorating Structures: Assessment, Design and 
Management, ASCE, pp. 26-36. 

Saetta, A.V. and Vitaliani, R.V. (2004) Experimental 
investigation and numerical modeling of carbonation 
process in reinforced concrete structures, Cement and 
Concrete Research, Vol. 34, No. 4, pp. 571-579. 

Chen, D., and Mahadevan, S. (2008), “Chloride-Induced 
Reinforcement Corrosion and Concrete Cracking 
Simulation,” Cement and Concrete Composites, Vol. 
30, pp. 227-238, No. 3. 

Sarkar, S., Mahadevan, S., J.C.L. Meeussen, H. van der 
Sloot, D.S. Kosson (2010), “Numerical Simulation of 
Cementitious Materials Degradation Under External 
Sulfate Attack,” Cement and Concrete Composites, 
Vol. 32, No. 3, pp. 241-252.  

Sarkar, S., Kosson, D.S., Mahadevan, S., Meeussen, J.C.L., 
van der Sloot, H., Arnold, J.R., Brown, K.G (2012). 

“ Bayesian calibration of thermodynamic parameters 
for geochemical speciation modeling of cementitious 
materials,” Cement and Concrete Research, Vol. 42, 
No. 7, pp. 889-902. 

Clayton, D. (2014), “Nondestructive Evaluation Techniques 
for Nuclear Power Plant Concrete Structures,” Light 
Water Reactor Sustainability (LWRS) Newsletter, Issue 
14, U. S. Department of Energy. 

Mares, J., Miller, J., Rhoads, J., Son, S., Groven, L., Sharp, 
N., and Adams, D. (2013), “Thermal and Mechanical 
Response of PBX 9501, PBS 9501, and 900-21 under 
High-Frequency Mechanical Excitation,”, Journal of 
Applied Physics, 113, 084904. 

Sharp, N., P. O’Regan, Adams, D. E., Caruthers, J., David, 
A., and Suchomel, M. (2014), “Lithium-Ion Battery 
Electrode Inspection using Pulse 
Thermography,”NDT&E International, Vol. 64, pp. 41-
51. 

Bond, R., Underwood, S., Adams, D., and Cummins, J. 
(2013), “Structural Health Monitoring-Based 
Methodologies for Managing Uncertainty in Aircraft 
Structural Life Assessment,” Proceedings of the 9th 
International Workshop on Structural Health 
Monitoring, Palo Alto, CA. 

Prajapati, V.(2013), Big Data Analytics with R and Hadoop, 
Packt Publishing, Birmingham, UK. 

Sankararaman, S., and Mahadevan, S. (2011), “ Likelihood-
Based Representation of Epistemic Uncertainty due to 
Sparse Point Data and Interval Data,” Reliability 
Engineering and System Safety. Vol. 96, No. 7, pp. 
814-824. 

Sankararaman, S., and Mahadevan, S. (2013), “Separating 
the Contributions of Variability and Parameter 
Uncertainty in Probability Distributions,” Reliability 
Engineering & System Safety, Vol. 112, pp. 187-199.   

Liang, B., and Mahadevan, S. (2011), “ Error and 
Uncertainty Quantification and Sensitivity Analysis of 
Mechanics Computational Models,” International 
Journal for Uncertainty Quantification. Vol. 1, No. 2, 
pp. 147-161. 

Jensen, F. V., An Introduction to Bayesian Networks. 
Springer-Verlag, 1996. 

Bartram, G., and Mahadevan, S. (2014), “Integration of 
Heterogeneous Information in SHM Models,” 
Structural Control and Health Monitoring, Vol. 21, No. 
3, pp. 403-422. 

Sankararaman, S., Ling, Y., Shantz, C. and Mahadevan, S. 
(2011), “Uncertainty Quantification in Fatigue Crack 
Growth Prognosis,” International Journal of Prognostics 
and Health Management, Vol. 2, no. 1.  

Sankararaman, S., and Mahadevan, S.(2013), “Bayesian 
methodology for diagnosis uncertainty quantification 
and health monitoring,” Structural Control and Health 
Monitoring, Vol. 20, pp. 88-106. 

 
 


