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ABSTRACT 

OEMs and operators of complex mission/safety critical 

systems are faced with the requirement to mitigate design 

and performance risks and their economic consequences. A 

key issue for any engineering organization is the integrity of 

the analysis that is used to support significant commercial 

decisions. Analysis outputs used to establish or validate 

performance criteria should have an appropriately high level 

of confidence associated with them when entering into 

significant financial contracts. While risk assessment 

methods and  techniques for analysis are well defined and 

understood and are captured in various international military 

and commercial standards, the issue of analysis quality has 

traditionally been neglected and is not adequately covered in 

most commercially available engineering analysis tools.  

The quality of data inputs determines the quality of analysis 

outputs. A key factor  is the source of the parameters used in 

an analysis. For example input data may be sourced from 

operational data, or may be based on the engineering 

judgement of an individual or a third party organization. 

This paper outlines an approach to analysis quality 

assessment in a model based engineering environment, 

focusing on the sources of data and ancillary information to 

generate an Analysis Quality Index (AQI) for the analysis. 

The AQI is generated as a dashboard reporting function for 

the engineering model that is used to provide a confidence 

rating on the analysis outputs.  Analysis Quality Index 

capability was incorporated into Maintenance Aware Design 

environment (MADe) software, an integrated tool-set that 

combines engineering risk analysis capabilities to support 

systems engineering, design and through-life support. 

1. INTRODUCTION 

Risk management has become a hot topic over the last 

decade, its ever increasing application to engineering 

systems is not always driven by purely technical 

considerations (Ross, K., & Main, B.W. (2001)). Factors 

like compulsory compliance with standards (MIL, ISO) and 

regulation (e.g. FAA), risk of litigation and thus possible 

audits of the risk assessment process, reliability dependent 

insurance costs, changes in system management approaches 

(Product Life Management (PLM), Life Cycle Management 

(LCM)), changes in sustainment of technical systems 

(Performance-based Contracts (PBC)), risks to 

environmental safety etc. cause increased awareness  that  

failures of engineering assets can have penalties. 

Operation of an engineering system inevitably leads to 

system degradation or failure of various degrees, which 

generate financial, operational (ceased function of the 

system) and physical risks to assets, human operators or the 

environment.  

To deal with these issues a range of methodologies have 

been proposed and accepted, especially in the military 

sector, there are over 150 methodologies dealing with risk 

management in engineering systems.  

The process of risk management is a two-step process: 

 Formalized risk identification using various 

methodologies of risk analysis - Failure Mode and 

Effects Analysis (FMEA), Failure Mode, Effects and 

Criticality Analysis (FMECA), Reliability Block 

Diagram (RBD), Fault Tree Analysis (FTA), etc. see 

International Standards Organization (ISO) (2004).  

 Risk elimination by changes in system design, 

maintenance, operation etc.  

Of course we must remember that risks are assessed and 

dealt with during the design process, albeit not necessarily 

using formalized methods.  

The objective of risk identification is to determine how the 

system may fail, and how such failure affects system safety, 

performance, availability, etc. Analysis provides metrics of 
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risks (e.g. criticality, reliability) which are the basis for 

corrective actions (e.g. design changes or changes in 

maintenance procedures). The formalized risk identification, 

depending on how and when it is applied, has varying 

impact on risk reduction. Ideally, it should be concurrent 

with design of the system so risks identified during design 

process can be eliminated and/or minimized by modification 

to design.  This approach is optimal in terms of cost, time 

and degree of risk reduction.   

However in practice, formalized risk identification (FMEA, 

RBD, FTA) is not conducted concurrently with design or is 

carried out too late to accommodate design changes. In 

these circumstances, risk analysis has only limited impact 

on the system design and is often conducted at completion 

of the design process to generate contractual deliverables or 

achieve compliance. 

The ‘concurrent with design’ approach is also not possible 

when dealing with legacy systems. In the case of such a 

system, we may only use workaround solutions to mitigate 

risk (better maintenance, sensing) as design changes are 

often not feasible or possible.  Methods like Reliability 

Centered Maintenance (RCM), Maintenance Effectiveness 

Review (MER) and Back-fit RCM are used to determine 

maintenance practices which can reduce operational risk. 

These methods often lead to outcomes such as Condition 

Based Maintenance (CBM) and Prognostics and Health 

Management (PHM). 

With a growing importance of risk management 

methodologies, the quality of the methods is becoming 

important. Low quality of risk assessment may increase 

rather than decrease the cost of designing and operating of 

technical systems. 

According to a Google search, the topic of quality of risk 

assessment is very prevalent - 60,000k results for “risk 

analysis engineering” and 81,200k results for “quality of 

risk analysis” engineering – it is currently seen as an 

important attribute of risk management. Table 1 presents the 

most widely used methods of risk assessment: 

2. THE PROBLEM – CURRENT APPROACHES THAT IMPACT 

THE QUALITY OF RISK ANALYSIS 

The current industry approaches to support risk analysis are 

primarily database or spreadsheet based software. The use 

of such software to conduct the required analysis generates a 

number of significant issues in terms of the cost of 

conducting analysis, quality of the analysis, system level 

analysis and scheduling (Bednarz & Marriott (1988), Kara-

Zaitri C., Keller A., Barody I. & Fleming, P. (1991), 

Ormsby A., Hunt J. & Lee  M. (1991). The main factors 

impacting the quality of analysis are the quality and quantity 

of data used.  

 

 Limited knowledge capture / reuse  

Spreadsheets are an obstacle to knowledge transfer which 

impacts the quantity of data available for risk analysis. The 

fact that spreadsheets can normally only be updated by the 

people that created them, is also critical to ensure maximum 

coverage of the risk analysis. Spreadsheets are not easily 

configuration managed based on operational data or as 

changes in the platform are made. Furthermore, the results 

of a performed analysis cannot be automatically transferred 

and used to support related analysis methods.  

Table 1. List of the most widely used methods of risk 

assessment according to Google search results (June 2014) 

Method of risk assessment Quantity 

FMEA 3,270k 

Reliability Diagram 20,600k 

Fault Tree 30,000k 

Fault Analysis 45,200k 

Failure Analysis 113,000k 

Performance Based Contract 70,200k 

Engineering Risk Audit 34,400k 

Condition Based Maintenance 16,700k 

 

 Inconsistency of terminology 

The quality in the analysis is significantly impacted by the 

lack of industry wide taxonomies to define functions and 

failure concepts, which brings issues of ambiguity and 

inconsistency of terminology. Risk analyses are also artefact 

driven (based on attributes of the platform) and performed 

on a specific state of the system. A snapshot of the system is 

thus captured by the analysts in spreadsheets and the 

designer is rarely involved in all iterations of the analyses - 

this can lead to poor data quality that is used in the risk 

analysis. 

 Retrospective analysis 

Usually analysis is done retrospectively (rather than 

concurrently) at the end of the design process using 

spreadsheets/database FMEA/FMECA mainly to document 

the outcomes for compliance or contractual requirements. 

Evans J. (1992) in his editorial wrote “..The idea that all the 

experts and number-crunchers should come in after a design 

was virtually complete, and second-guess the designers was 

stupid to begin with..”. 

 Disparate models 

Industry practice usually relies on the usage of disparate 

models of a platform and its Bill of Materials (BOMs) that 

reside within the functional stovepipes of an organization. 

This is an obstacle for comparing and controlling the data. 

Inconsistencies in models such as holes in the BOMs or in 

the structure of the system may cause coverage losses that 

are not obvious using spreadsheets. 
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 Bottom-up – inductive approach.  

Current methods to conduct risk analysis are inductive 

(based on brainstorming) and use a bottom-up approach. It 

is therefore difficult to visualize and aggregate all the data 

in order to analyze a system in whole. Each piece of the 

system data is stored by each stakeholder in spreadsheets. 

This implies a suggestive process to support the risk 

analysis process as the assumptions underlying analysis, 

data sources and knowledge of thought processes of the 

team members are generally not recorded. As a result, the 

quality and coverage are affected: a bottom-up approach 

may result in comments being missed (coverage) and 

missing the source of the data (brainstorming). 

 Subjective analysis audit  

Various FMEA guides/books stress the importance of 

FMEA quality see Carlson. C. S. (2012) and McKinney B. 

(1991). However, the FMEA quality audit is rather 

subjective as it relies on subject matter expertise and often is 

limited to checking that the standard procedure was 

correctly followed. This does not provide accurate and 

objective assessment of the quality of analysis. A major 

problem is repeatability of FMECA when carried by a 

different team of analysts (Bell D., Cox L., Jackson S. & 

Schaefer, P. (1992)). 

 Platform reliability based on design parameters 

In current engineering practices, designers do not 

necessarily understand how the operators will use the 

system and this is a critical issue for the reliability of the 

platform as (Reliability, Availability and Maintainability) 

RAM / (Integrated Logistics Support) ILS should be based 

on operationally determined RAM parameters rather than 

the design parameters. Design parameters are normally 

sourced from third party references that do not account for 

concept of operations, environment, etc. Thus it is important 

to document the source of the information, and list 

associated assumptions or else quality issues will occur. 

 Isolated system analysis 

Historically individual technical risk assessments associated 

with the deferral of maintenance or acceptance of technical 

defects are conducted in isolation using spreadsheets and 

therefore do not take into account the potential 

dependencies across the platform. This could lead to either 

safety issues or equipment breakdown and thus additional 

efforts to mitigate risk. Integrating isolated analysis on the 

higher system level by merging different spreadsheets is 

almost impossible due to potential taxonomy and hierarchy 

issues. This impacts the quality of the aggregated analysis 

performed at the system level.  

3. MAINTENANCE AWARE DESIGN ENVIRONMENT (MADE) 

MADe (Rudov-Clark S., Stecki J. & Stecki C. (2011)) is a 

model-based engineering software tool for conducting risk 

assessment (FMECA, RAM, RCM, FTA) – where each 

element in the model is associated with a number of key 

attributes such as its functional description, the specific 

physics of failure information (cause, mechanism, fault, 

symptoms) – as shown on Figure 1- and their relevant 

criticality based on the system performance requirements. 

 
Figure 1. MADe Failure diagram - mapping of failure 

concepts 

 

MADe utilizes simulation to propagate and trace the 

dependencies and impacts of any fault injected into the 

system as shown on Figure 2. This data is used to generate a 

functional risk assessment based on the associated physics 

of failure. Simulation is an important feature of the tool, as 

with highly complex systems it is difficult to identify how 

the impacts of a failure will propagate – without this 

knowledge it is impossible to accurately determine the 

criticality of a specific failure mode. 

MADe automates the dependency mapping of a system 

using the functional path propagations that are generated in 

the model. The system model is easily updated, modified 

and MADe enables to conduct ‘what-if’ analysis for an 

actual or proposed design and its constituent systems, 

components and parts. 

As it is simulation based, the software is fundamentally and 

significantly different from spreadsheet/databased tools 

because the model and therefore the analysis is extensible, 

objective and repeatable. As a Model Based Engineering 

(MBE) tool, MADe offers a number of advantages over 

available spreadsheet/database FMEA/RAM toolsets.  

 Knowledge capture, reuse and transfer 

All knowledge about the system and its components is 

captured in models which can be saved and reused for any 

other project. These user developed models are stored in a 

re-usable directory called a Library.  
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Models of components/systems can be loaded from the 

Library and re-used to represent a new system 

(dependencies will be automatically established). The key 

benefit is the improved quality of analysis, as knowledge is 

captured and re-usable for future projects. 

 Standardized taxonomy 

MADe uses standardized taxonomy of functions/failure 

concepts to ensure that there is consistency of terminology 

(and therefore understanding) within the organization and 

currency of data at each stage of the platform life-cycle 

(Rudov-Clark, S.D. & Stecki, J. (2009).  

Audit and validation are based on the input of references for 

the sources of data. A standardized taxonomy brings 

objectivity in the performed analysis.

 Concurrent engineering 

Model-based Engineering (MBE) enables concurrent 

engineering features such as functional simulation which 

means that the development of a system model can be 

associated with the functional requirements of a system 

rather than a specific design. This enables the ability to 

generate the model - and conduct modelling analyses - at the 

conceptual stage of the design process to evaluate the 

impact of changes to the design and mitigate risk at an early 

stage in the platform life-cycle. 

 Integrated capabilities 

MADe uses a single model (a Single Source Of Truth 

(SSOT)) as basis for other analysis tasks. A model of the 

system is used for reliability analysis (both functional and 

hardware), sensor selection (sensors coverage),   Reliability 

Centered Maintenance (RCM) etc. This eliminates the need 

to export data or results of analysis as the same model is 

used for all the analysis.  

 

 

 Configuration management of the analysis  

Because MADe generates each analysis based on the 

common system model, the impacts of any changes made by 

other functional groups within the organization are 

automatically reflected in the model (and thus future 

analyses). This considerably improves the quality of 

analyses as data come from a  SSOT model. 

 Integrated system analysis 

The toolset uses automated dependency mapping which 

eliminates the manual determination of the impacts of 

failures across the system. This enables risk analysis to be 

based on objective and verifiable data. MADe automatically 

establishes these connections and updates them when the 

system model is modified. This is a major benefit for 

increasingly complex and integrated systems. The level of 

details and dependency mapping enable risk identification at 

the platform level down to the component level leading to 

enhanced traceability of data.

 Dependencies mapping 

A functional model represents a flow of energy, material or 

signal in the system. Based on  (SSOT) model of the system, 

functional relationships and failures/effects dependencies in 

a system for both functional and physical failures are 

defined using standardized taxonomies.  

 What if..” and “As is..” analysis 

“What if...” analyses are often focused on the rearrangement 

of connections between models and/or inclusion of different 

components. This capability is normally too time consuming 

to be achieved using a database approach, but can be 

expedited using a MBE approach (e.g. copy-paste and 

library re-use) leading to otherwise unachievable options.  

Figure 2. MADe functional diagram of landing gear - showing failure propagation 
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MADe has the ability to update the parameters in the model 

based on operational data in order to conduct analysis of the 

system based on an ‘as-is’ performance state rather than 

‘expected’ (design) state. This has a significant impact on 

the supportability posture for equipment.  

 Objective analysis audit  

An objective approach to conduct risk analysis is beneficial 

for audit purposes and quality checking. A good example of 

efficient risk analysis verification is FMECA. Using an 

AQI, the analyst can easily check the completeness of the 

analysis based on the quality and quantity of the data inputs. 

When it comes to project management, an AQI can provide 

a means to evaluating the confidence level of a system 

globally or a particular risk analysis in order to validate a 

project.  

 Effective integration with the organization IT 

architecture (specifically PLM). 

Current challenges in PLM consist in using a single point of 

truth for the RAM / ILS analysis that can be shared by the 

design / supportability engineering communities. As a 

simulation based model, MADe offers the ability to 

configuration manage the associated ILS analysis and 

outputs for a system and automatically regenerate the 

artefacts that result from any modification to the design or 

changes to the maintenance regime. 

4. ANALYSIS QUALITY ASSESSMENT  

For any analysis or simulation based analysis, poor quality 

inputs or improperly defined scenarios create meaningless 

results. How then to assess the quality of risk analysis? 

Analysis Quality Index (AQI) is the process of determining 

that an analysis provides a correct outcome or solution. An 

AQI may be applied to numerous different analyses or 

algorithms (e.g. FMEA, Criticality, Reliability) to evaluate 

and document the accuracy of the results. An AQI process is 

implemented in MADe to increase data quality and enable 

objective audit of risk analysis.  The main function of an 

AQI is to enable the modeler to capture the assumptions 

used during the process of creating the model. A work flow 

assessing an AQI is shown in Figure 3. In MADe the 

process starts with setting up annotation policy Figure 4.  

The findings from an AQI can be used to document an 

analysis or query the effectiveness of another analysis. An 

example of this is performing an AQI on a FMEA to 

determine the confidence of a particular subsystem, which 

when integrated to the system level can identify high-risk 

areas in a project. 

When carrying out engineering functions, assumptions may 

not be listed, or listed after the fact leading to poorly 

documented work.  

 

 

Figure 3. AQI workflow implemented in MADe 

 

 

Figure 4. Annotation policy setting 
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The quality of the assumptions, data and parameters used in 

a model directly affects the integrity of any analysis output. 

The solution for this issue in MADe a user enters 

assumptions for each piece of data, Figure 5.  

 

Figure 5. Editing/entering assumptions 

 

However, it is difficult to keep track of the data sources and 

assumptions that support any parameter used in a model, 

particularly if multiple stakeholders (including departments, 

groups, teams and external suppliers) are involved in system 

development. Therefore a structured approach to 

documentation and assessment of data quality is essential.  

Considering the evolutionary nature of a model, it becomes 

necessary to capture this information concurrently as the 

user is modelling. Using this facility will allow more 

accurate models based on listing of the relevant 

assumptions, detailed entries including narratives and more 

consistent processes by capturing considerations. Shown in 

Figure 6, each parameter edited or changed in the model can 

be tracked and assessed using an annotation feature that 

requires each stakeholder to document his data. 

 

 

To summarize the data quality assessment of a model-based 

risk analysis such as FMEA/FMECA, requires evaluation of 

two key metrics: 

 Completeness of Data (Data Coverage) 

 Data Quality 

Once those two metrics are assessed, they can be aggregated 

to determine the overall confidence level of a particular risk 

analysis or completeness of a model. An AQI becomes 

increasingly important as the analysis or models become 

more complex, thus requiring greater control and 

management of a larger set of data. The quality assessment 

concept is especially beneficial for model-based risk 

analysis.  

4.1. Data Coverage 

The AQI is a metric that may be used to determine the 

completeness of data used in the analysis. Missing data 

regarding the system can result in poor coverage of the risk 

analysis, especially in a complex analysis where there are 

numerous inputs required. If any of these inputs are missing 

then the completeness of the analysis is weakened. 

Completeness can be considered as the ratio the amount of 

data entered / the amount of data required. Therefore if all 

data for a process/analysis is entered then the completeness 

would be 100%, providing a high confidence with the 

process/analysis. A higher completeness will improve 

confidence during an audit and prove better traceability of 

the analysis. Although it is important to note that while an 

analysis/process is complete, it may not be high quality. 

4.2. Data Quality 

Data quality involves documenting the source, confidence 

level and assumptions underlying each piece of data that is 

used as an input parameter for the analysis.  

This process aims at documenting critical questions 

regarding a model or a particular analysis: 

 Where does a particular parameter or data set come 

from? 

 

  
Figure 6. Annotation summary 
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 Who sourced this data?  

 Why was it set to this particular value?  

 Which confidence to assign to a particular data? 

The quality of data can range from conceptual 

(brainstorming) to collected data (operation) and is 

important in defining the quality of the data used in the 

analysis. Previous articles on the quality of analysis (Evans 

J. (1992).) explain that in order to avoid poor data quality, 

“it is essential for everyone with a real-word problem to 

insist on an adequate, numbered, list of assumptions, where 

the assumptions are in reasonably plain language”. To rank 

quality, different categories can be assigned which 

correspond to different sources (e.g. engineer, database, 

etc.). By defining a data source type, a confidence level can 

be assigned to each type which may be aggregated to 

provide an overall level of confidence. As the quality of the 

data sources increases so does the quality of the analysis. 

The categories and weightings of sources can be adjusted 

for specific environments or applications. It is also 

important to track the source where data is obtained from, 

note the source of the information, time/date of data entry 

and allow annotation of a particular entry. This information 

is automatically updated as data is being annotated in the 

model to provide the percentage of annotated data, data 

quality, as well as an overall confidence level in the model 

as shown in Figure 7 and Figure 8. 

 

 

Figure 7. Coverage, quality and confidence level 

 

5. CONCLUSION 

This paper has outlined a unique approach to assess the 

quality of risk analysis in a model based engineering 

environment. In current industry approaches, the extensive 

usage of spreadsheet/database based tools to conduct risk 

analysis generates a number of significant issues in terms of 

cost of conducting analysis, quality and objectivity of the 

analysis, as well as system level analysis. To solve those 

issues, it is essential to conduct data quality assessment 

focusing on the quality and quantity of data used as 

parameters in the analysis. A good example of assessing the 

quality of analysis is to apply data quality assessment to 

model-based risk analysis. The quality assessment process 

implemented in the MADe software provides objective 

auditability of all relevant information regarding a particular 

analysis or a whole system. The confidence level in analysis 

outputs and thus the quality of analysis are optimized by: 

 Documenting and reviewing all parameters used in the 

model / analysis. 

 Mitigating posting cycle issues as expert knowledge to 

a project file is retained.  

 Ensuring that all relevant supporting assumptions are 

captured. 

 

 
Figure 8. Pie chart showing origin of data 

6. FUTURE WORK 

While this paper has focused on presenting the application 

of data quality assessment to a model-based risk analysis 

(AQI) there are other possible applications of data quality 

assessment. 

 Model Quality Index (MQI) 

This is the process of assessing the manner and degree to 

which data used in a model is an accurate representation of 

the real world and of establishing the level of confidence of 

this assessment. This index would be useful in model or 

simulation environments to determine the validity and 

correctness of a model compared to the system it is based 

upon. The findings from an MQI could be useful in learning 

how to create a more accurate or correct model of a system. 

 Process Quality Index (PQI) 

This is the process of assessing the confidence and 

adherence to a particular workflow or process. This could be 

applied to an engineering process and used to assist learning 

of a new process or even the audit of an existing process 

within a company. Findings from a PQI could be applied 

back into the process to optimize it for its function within a 

company. 
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