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ABSTRACT 
This paper introduces a framework for the conceptualization 
and design of novel operator-aircraft/unmanned system 
automated interface concepts that will assist to enhance 
operator reliance on automated advisories. There is a need 
to explore new human-machine interface strategies 
stemming from the proliferation over the past years of 
accidents due to system complexity, failure modes and 
human errors. Concepts of autonomy establish the 
foundational elements of the work. We pursue a rigorous 
systems engineering process to analyze and design the 
tools and techniques for automated vehicle health 
monitoring, human-automation interface and conflict 
resolution enabled by innovative methods from Dempster-
Shafer theory and reasoning algorithms. The emphasis in 
this contribution is on conflict resolution arising between 
the human operator (pilot) and on-system automated 
apparatus. The enabling technologies for conflict resolution 
borrow from Dempster-Shafer evidential theory, 
probabilistic and Game Theory for improved system 
autonomy and reasoning paradigms. The efficacy of the 
approach is demonstrated via an application to major drive 
subsystems of a helicopter and an autonomous hovercraft 
laboratory prototype. 

1. INTRODUCTION 

There is an urgent need to improve the autonomy, safety, 
survivability and availability of such critical assets as 
aircraft and robotic (unmanned) systems that are subjected 
to internal and/or external threats in the execution of a 
mission. It has been well documented over the past years 
that human error is a major cause of class A aircraft mishaps. 
Moreover, on-board equipment malfunctions, incipient 
failures and environmental stresses contribute to aircraft 
accidents. (Hoc, 2000) Most complex systems of interest are 

now designed and operated with on-board capability to 
monitor and assess the health of their critical 
components/subsystems. Such automated processes issue 
appropriate advisories to the operator/pilot/ground station to 
take corrective action and avoid detrimental or even 
catastrophic events. These automated systems and the 
human operator are invariably exposed to different 
evidences that result in conflict or disagreement as to the 
“best” action required to remedy an emergency situation. 

A significant challenge for unmanned systems and manned 
aircraft relates to their ability to resolve conflicts between 
the human operator and automated advisories, learn from 
situational awareness cases, and support the operator/pilot in 
the execution of a mission.  It was suggested by an 
Autonomous Vehicle Operator (AVO) that, at times, “he’s 
been more overcome by the torrent of information pouring 
in during a drone flight than he was in the cockpit”. During 
the past decades, research has focused on human machine 
interface issues with an emphasis mainly on the human 
collecting information and controlling the system. 
Apparently, the operator is faced with the problem of 
“information overflow”. More recently, with systems 
becoming more complex and the information processing 
ability of machines/systems improving, the machine is 
called upon to perform the same dynamical and automatic 
functions as those the human was executing in the past. 
These processes could be affected by uncertainty in the 
system or the environment. Hence, there is a need to 
allocate appropriate functions between the human and the 
machine to reduce the effects of uncertainty. 

2. TECHNICAL APPROACH 

The Human-Automation Interface-Conflict Resolution 
and Decision Support-The constituent modules of the 
human-machine interface architecture pursued in this paper 
include an on-board automated system that provides to the 
human operator the most accurate and reliable information 
regarding the platform’s current and future health state 
through key performance metrics specific to the vehicle and 
onboard sensors.  These are presented to the operator in a 
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prioritized manner based on mission essential elements. A 
modified Dempster-Shafer formula is employed to combine 
conflicting and incomplete information.   

The proposed human-machine interface architecture 
is illustrated in Figure 1. In the top middle of the 
figure is the aircraft, the targeted test bed. The pilot 
or operator is shown on the left. The block under the 
pilot represents the estimation of current system 
status. The latter is aided by the knowledge base, 
which, in return, provides an input to the pilot for 
emergency actions. Similarly, the Data Acquisition 
(DAQ) module and aircraft health status estimation 
block are depicted on the right. There are two major 
information flows, i.e. information collected by the 
pilot and the automated system, respectively. The 
pilot observes current environmental conditions, 
reads the on-board displays, and communicates with 
the knowledge base. The Automated System (AS), on 
the other hand, gathers information from the 
available on-board sensor suite, represented by the 
DAQ module. The pilot and the AS apply then 
reasoning strategies based on the information 
collected and data/information available in the 
knowledge base. If there is a conflict between the pilot’s 
decision and the AS’s advisory, the conflict resolution 
module attempts to resolve such conflicts using tools from 
Dempster-Shafer Theory, probabilistic/fuzzy reasoning 
paradigms. The final recommendation is generated by the 
Decision Support System and sent back to the pilot as the 
final “decision maker” for the “best” action to mitigate the 
current emergency condition.  

Particle Filtering for Fault Diagnosis and Failure 
Prognosis- The proposed fault diagnosis and failure 
prognosis framework builds upon mathematically rigorous 
concepts from estimation theory – an emerging and 
powerful methodology in Bayesian theory called Particle 
Filtering that is particularly useful in dealing with difficult 
non-linear and/or non-Gaussian problems. Particle filtering 
facilitates the estimation of the state (fault) model over 
consecutive time instants as measurements become 
available. The particle filtering routines for diagnosis and 
prognosis are implemented and executed in near real-time 
and constitute an integrated framework where the results of 
diagnosis serve as the initial conditions for prognosis in a 
transparent and efficient manner.  

Fault Diagnosis- The particle-filter-based diagnosis 
framework aims to accomplish the tasks of fault detection 
and identification using a reduced particle population to 
represent the state probability density function (pdf). 
(Orchard, Wu and Vachtsevanos, 2005)This framework 
provides an estimate of the probability masses associated 
with each fault mode, as well as a pdf estimate for 
meaningful physical variables in the system. Figure 2 shows 
the anomaly detection results based on an RMS feature. The 

first plot depicts the progression of the feature as a function 
of time while the second is the probability of failure; the last 
one shows the baseline and fault pdfs at 5% false alarm rate. 
The Type II error is 1.1117% at that specific instant of time. 

Another performance metric is the Fisher Discriminant 
Ratio shown at the bottom of the figure. 

The “smart” Knowledge Base-A reasoning paradigm 
called Dynamic Case Based Reasoning (DCBR) that stores 
cases, matches new cases with stored ones and exhibits 
attributes of learning and adaptation will be used as the 
“smart” knowledge base to provide the human operator the 
ability to interpret automated system outputs correctly and 
to effectively control the decision making process.  

The Pilot/Operator-The pilot/operator, on the other hand, 
gathers information in a very different way. (Parasuraman & 
Mouloua, 1996) He/she can exploit a variety of 
data/information sources, such as displays, alarms - red 
lights, personal sensing capabilities- the pilot could sense 
vibrations, temperature rising, noise, etc., visual 

Figure 1. Architecture of human-machine interface 
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observations – look outside the window- rain/ snow, thunder, 
etc., experience, communication with ground or other 
aircraft. The pilot gathers information such as oil 
temperature, fuel pressure, etc. He/she uses this information 
to assess the current state of the system’s health status and 
to take “initial” actions in the event of an emergency. The 
operator at this stage may initiate a corrective action or 
communicate his/her intended actions to the knowledge base. 
It is understood that timing requirements and sequencing of 
events in near real-time on-platform are crucial in the final 
decision making process. The computational requirements 
burdening the AS are minimized thus allowing for the 
expedient assessment of the vehicle’s state and the 
application of conflict resolution results. 

The Automated System- The Health Management 
Module-The goal is an advanced integrated reasoning 
toolset that incorporates justified levels of automated fault 
accommodation based on prognostic information for 
enhanced vehicle safety and decision support. 

Health and Usage Monitoring Systems (HUMS) acquire on-
line in real-time appropriate data and to develop models, 
algorithms and software that can efficiently and effectively 
detect faults and predict the Remaining Useful Life (RUL) 
of failing components with confidence while minimizing 
false alarm rates. Although the pilot/operator is tasked to 
use his/her experience, observations and displays to decide 
on probable causes of an emergency condition and take 
appropriate initial action, the automated system must 
perform a series of computationally intensive processes in 
order to arrive at an advisory for the human operator as to 
the cause of current adverse conditions and appropriate 
mitigating strategies. We are introducing a rigorous and 
verifiable architecture for monitoring and health assessment 
of critical aircraft systems/components. We outline briefly 
the major modules of the architecture.  

Decision Support System-The decision support system 
combines these two mass structures derived from the pilot 
and the automated system using Dempster’s rule of 
combination to arrive at the belief and plausibility for the 
combined advisory. We are assuming that the final advisory 
is given to the pilot from the decision support system for 
action. Moreover, an explanation of how this advisory was 
derived, i.e. based on what evidence is also provided to the 
pilot.  

3. THE AUTOMATED SYSTEM-PILOT CONFLICT 
RESOLUTION METHODOLOGY 

Conflicts arise between the pilot’s intent/commands and 
automated system commands/advisories. They arise from 
the different perceptions of the pilot and the automated 
routines stemming from experience, current data and 
information available to the pilot and the control 
architecture which may differ in content, quantity and 
means for the expedient presentation and follow-up action. 

The principal task of the Conflict Resolution Module is, 
therefore, to resolve conflicts between the pilot’s actions 
and those recommended by the automated system.  

Conflict resolution is a challenging task that must be 
addresses methodically in the presence of incomplete 
evidence, ambiguity and noise. We may apply such 
methodologies as Dempster-Shafer Theory or Game Theory, 
among others. In this paper we pursue a conflict resolution 
method based on Dempster-Shafer theory and specifically 
Dempster’s rule of combination. 

Dempster-Shafer Theory-The Dempster-Shafer Evidential 
Theory is widely used in possibility combination, sensor 
fusion, artificial intelligence, and conflict resolution areas. 
(Paksoy & Gokturk, 2011) It allows one to combine 
evidence from different sources and arrive at a degree of 
belief that takes into account all the available evidence. 

In this formalism a degree of belief, which is also referred to 
as a mass, is represented as a belief function. Possibility 
values are assigned to sets of possibilities rather than single 
events. Dempster-Shafer theory assigns its masses to all 
non-empty subsets of entities. Application of the Dempster-
Shafer Theory requires first and foremost the calculation of 
the mass functions, as detailed in the sequel.  

Assume 𝑚! and 𝑚! are two belief function structures on X 
provided by the pilot and automated system, respectively. 
𝑚! has focal elements 𝐴!,⋯ ,𝐴! and 𝑚! has 𝐵!,⋯ ,𝐵!. We 
will introduce a modified form of Dempster’s rule (Yager, 
1987) to combine evidences and avoid counterintuitive 
results faced by classical methods. Consider two mass 
functions m1 and 𝑚! and define: 

𝑚 = 𝑚! ⊥ 𝑚!                                 (1) 

where ⊥ denotes the direct sum and m is calculated as: 

𝐾 = 𝑚! 𝐴! 𝑚! 𝐵!
!!,!!

!!∩!!!∅

 

𝑚 ∅ = 0 

𝑚 𝐴 = 𝑚! 𝐴! 𝑚! 𝐵!
!!,!!

!!∩!!!!

, 𝐴 ≠ ∅,𝑋 

𝑚 𝑋 = 𝑚! 𝐴! 𝑚! 𝐵!!!,!!
!!∩!!!!

+ 𝐾                 (2) 

In Dempster’s rule, the quantity k is a measure of the degree 
to which the combined structures disagree with each other. 
Shafer defines K=log(1-k) as the weight of conflict. So, in 
Dempster’s rule, 1-k represents the normalizing factor 
needed to assure that the resulting possibility mass satisfies 
the necessary conditions, i.e.   𝑚 𝐴 = 1.  

Mass function Evaluation- The mass function is the 
foundation for applying Dempster-Shafer theory to the 
conflict resolution problem. The estimation of the mass 
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functions is a challenging problem addressed by several 
investigators without a satisfactory solution from an 
analytical and computational perspective. The following 
sections detail its principal components.  

Probability based reasoning-Several assumptions are 
stipulated for this method: (Basir & Yuan, 2007) 

1) There are N types of faults, and M features 

2) All features are independent from each other 

We employ initially the same formulation as in the previous 
section.  

We use the existing data to fit a two-dimensional normal 
distribution. In this case, as the two features are independent, 
𝜌 is equal to 0. So the distribution now becomes: 

𝑓 𝑥, 𝑦 =
1

2𝜋𝜎!𝜎!
𝑒
!!!

!!!! !

!!!
!
!!!!

!

!!!          

= !
!!!!

𝑒
! !!!! !

!!!! ∙ !
!!!!

𝑒
!

!!!!
!

!!!
! = 𝑓 𝑥 ∙ 𝑓 𝑦             (3)  

Thus, it is written as the product of two independent one-
dimensional normal distributions. 

For each fault mode, the histogram is generated and then a 

normal distribution is fitted. Consider next the hypotheses 
where multiple elements are present. For each hypothesis j 
we have the label vector  𝐿!. Based on this, the distribution is 
generated by the following criteria: 

𝜇!"
𝜇!" =

!!!
!!! ⋯

!!"
!!" !!!

!! !
! =

!!!
!!! ⋯

!!"
!!"

!!
!!
⋮
!!

!! !
!          (4) 

 

σ!"
σ!" =

!!"!

!!"
! ⋯

!!"
!

!!"
! !!

!

!!
! =

!!"!

!!"!
⋯

!!"
!

!!"
!

!!
!!
⋮
!!

!!
!               (5)  

Thus, all the distributions are generated as in Figure 3. For 
any given states, the actual state vector generated from the 
sensor suite is represented as: 𝑆 = [𝑠!, 𝑠!,… , 𝑠!] As in our 
case, there are only two features, then the S=[x!, y!]. Define 
P in a vector form as: 𝑃 = 𝑝!, 𝑝!,… , 𝑝!!!!  

 Each element in P is generated by the likelihood S for  each  
distribution:  

p! = f! x!, y! =
1

2πσ!σ!
e
!!!

!!!!! !

!!!
!
!!!!!

!

!!!     ,    

𝑖 = 1,2,… 2! − 1                                                                                        (6)  

Normalizing the P vector, the mass vector is derived by: 

𝑚! =
𝑝!
𝑃 !

   , 𝑗 = 1,2,… , 2! − 1  

𝑀 = 𝑚!,𝑚!,… ,𝑚!!!!                                                   (7)  

Thus, the mass functions are generated. 

We introduce the following Mean Error Bar (MEB) metric: 

𝑀𝐸𝐵 = (𝑃𝑙 𝑡 − 𝐵𝑒𝑙(𝑡))𝑑𝑡!!
!!!                                   (8)  

Or, in discrete form: 

𝑀𝐸𝐵 = (𝑃𝑙 𝑛 − 𝐵𝑒𝑙(𝑛))!
!!!                                     (9)  

As shown, the belief and plausibility functions give the 
lower and upper bounds of the possibility function, 
respectively. The value Pl(t)-Bel(t) stands for the ignorance 
of the possibility at time t. Usually the possibility is given 
by the mean of the plausibility and belief functions. If the 
two values are close, a precise estimate of the possibility 
function could be given with a small error. Another word, 
smaller MEB values stands for a more precise estimation. 
The MEB is, therefore, an appropriate performance metric.   

4. THE APPLICATION DOMAINS: HELICOPTER DRIVE 
SYSTEM 

The application domain (in simulation) for the conflict 
resolution configuration is the Oil-cooler & Intermediate 
Gearbox (OC-IGB) subsystems of the UH-60 helicopter 
drive system. The complete drivetrain is shown in Figure 4. 
The OC-IGB subsystem is highlighted by the red 
rectangular area. The components include the oil-cooler, the 
intermediate gearbox, and the tail shaft connecting these 
components. We define appropriate fault modes and suggest 
data/observations/displays available to the operator (pilot). 
On the other hand, we configure the automated system to 
accomplish sensor data collection and analysis including the 

Figure 3. Distributions of fault modes 
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diagnostic, prognostic and control modules introduced 
previously.   

An illustrative example-The proposed human-machine 
interface framework and the conflict resolution routines may 
be applied at various levels of the system hierarchy. For 
example, at the system/subsystem level, the pilot and the 
automated system may disagree (due to different evidence 
sources presented to each module) as to which subsystem is 
experiencing a fault/failure mode. Specifically, may be 
considering with certain confidence that the Intermediate 
Gear Box (IGB) of the helicopter’s drive system is subjected 
to a fault. The pilot’s conclusion stems from his/her 
perception/experience, the sensed vibration levels, panel 

indicators, displays, etc. On the other hand, the automated 
system is suggesting that the faulty component is the oil 
cooler. Sensor measurements collected and analyzed by the 
automated system include oil cooler temperature levels, 
vibration signals, etc. Shaft coupling in the drive system is 
one of the main causes for ambiguity/uncertainty corrupting 
the evidence and resulting in inaccurate allocation of faults. 
At the component level, the pilot may be surmising, on the 
basis of the current evidence, that a bearing in the oil cooler 
assembly is subjected to a fault while the automated system 
is concluding that the rise in the oil cooler temperature is 
causing another component to fail. 

Features or Condition indicators (CIs) are extracted from the 
data presented to the automated system. The “best” feature(s) 
constitute the mass function for the automated system 
expressed in appropriate probabilistic or fuzzy form. A 
similar approach is pursued to express the pilot’s assertion 
as a mass function. 

We employ the crack level evaluation as a demonstration of 
the possibility combination for conflict resolution.  Consider 
the crack level as the fault mode for the automated system.  
We break it down for simplicity into three categories: Light 
(wear level 0-1inch), Medium (wear level 1-2 inches) and 
Severe (wear level 2-3 inches). The automated system 
applies the distance-based algorithm. On the other hand, the 

pilot senses the vibration in Area 1 (oil cooler) and 2 (IGB). 
This possibility can be represented as a mass value as well. 
For instance, the pilot decides:  the probabilities of vibration 
in Areas 1 and 2 are 70% and 90%, respectively. Thus, the 
possibility of vibration in the oil cooler bearing area 
is  70%×90% = 63%. Based on the Bayesian allocation 
theorem, this possibility value is allocated uniformly to 
medium, severe, medium/severe, by: 

m Medium = m Severe = m(Medium/Severe) =
p
3

 

So the mass function for the pilot is shown in the Table 1. 
Then, the decision support system combines these two mass 
structures using Dempster’s rule of combination to arrive at 
the belief and plausibility functions using the MEB metric, 
as suggested previously. 

Table 1.  The mass function for the pilot 

Hypothesis M(H) 

Light 0.37 

Medium 0.21 

Severe 0.21 

Light/Medium 0 

Light/Severe 0 

Medium/Severe 0.21 

Any 0 

 

It is evident that the combined result decouples the oil 
cooler bearing and IGB. Meanwhile, it could provide 
rigorous estimates of the probabilities for each fault mode. 

5. RESULTS 

The data used in this case study is generated by a MATLAB 
routine. It consists of sensor values and status evaluations 
for 37 time indexes. The features discussed above and the 
status evaluations are extracted from the data set. The pilot’s 
judgment is based on his perception while the Automated 
System collects the pre-processed data and provides the 
advisories. Then, the decision support system reads the 
estimations and gives the combined reasoning result. The 
simulation procedure is also carried out in MATLAB.  

5.1 Oil Cooler Bearing Crack Level Prognosis 
(Dempster-Shafer Result) 

The pilot and the automated system can both do the 
prognosis based on the information they collected. For 
instance, in our case, the pilot and the automated system can 
collect information from time 0 to time 3.2. And based on 
these information to predict the 3.2 to 15 system situation，
as shown in Figure 5.  

Figure 4. Drivetrain of the UH-60 helicopter 
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The upper figure is generated by the pilot and the lower one 
belongs to the automated system. The lower edge of the 
figure is the threshold of severe crack. So the pilot believes 

the time for severe crack could be between 4.5 and 6.5. 
However, the Automated System says the time should be 
between 5.5 and 8, with a confidence level of 90%. Here 
comes the conflict between the two reasoning route. So we 
apply the conflict resolution here to get a combined result, 
as shown in the Figure 6. In this figure we can see at the 
time 6 the crack level should be severe with a confidence 
level higher than 50%. However at time 5 the condition 
should be light or medium with a confidence level higher 
than 70%, with is higher than both the pilot and automated 
system’s judgment. This is an example of resolving the 
conflict.  

The MEB is calculated as shown in the Table 2. The table 
illustrates that the combined result has much smaller MEB 
than the pilot or AS separately implying that the combined 
result reduces the risk, or ignorance, significantly.   

Table 2. MEB result for each reasoning Routine 

MEB Pilot AS Combined 

estimated estimated Result 

Light 0.2237 0.0805 0.0480 

Medium 0.3037 0.0842 0.0751 

Severe 0.2152 0.0841 0.0486 

Average 0.2475 0.0829 0.0572 

 

5.2 Game Theory Result 

First, we map the status evaluation to the action set based on 
the following table. Here, Action 1 stands for “continue 
flying” implying that no action is required. Action 2 stands 
for “prepare to land”, which means that maintenance action 
must be taken after the vehicle reaches its destination. 
Action 3 stands for “land the aircraft immediately”, which 
means that the aircraft’s condition is severe and the pilot 
must land the vehicle immediately. 

Since the automated system monitors the pilot’s suggested 
action(s) automatically, it knows only what action the pilot 
is taking but not why he takes this particular action and its 
corresponding probability. Thus, the automated system will 
evaluate the current status and will estimate the 
corresponding probability. For example, we are to evaluate 
the risk for the automated system suggesting Action 1 but 
the pilot takes Action 3. There are four conditions that 
recommend Action3 to be taken by the pilot: 

Table 3. Conditions which Recommend Action 3 

Condition IGB Oil cooler 
bearing Probability 

1 Faulty Light Pr! = p!"×p!" 

2 Faulty Medium Pr! = p!"×p!! 

3 Faulty Severe Pr! = p!"×p!" 

4 Normal Severe Pr! = p!"×p!" 

 

Then, referring to the risk table below: 

Table 4. Risk Table 

Components Status Risk for 
Action1 

Risk for 
Action2 

Risk for 
Action3 

Oil cooler 
bearing Crack 

Light 0 0 0 

Medium 16 0 0 

Severe 31 14 0 

IGB 
Normal 0 0 0 

Faulty 42 17 0 

Figure 5.  Particle Prediction result by pilot and 
automated system 

 

Figure 6. Probability estimated by the pilot, Automated 
System and the Combined Result 
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The risk for taking Action 1 is: 

R!" = Pr!

!

!!!

r! = 42Pr! + 58Pr! + 73Pr! + 31Pr! 

The cost corresponding to each action is estimated as 
follows: 

Table 5. Cost Table 

Action Action 1 Action 2 Action 3 

Cost 0 25 50 

 

The cost for taking Action 1 is, of course, zero. The 
proposed formulation provides thus both cost and risk 
information. The pilot’s suggested action and the AS’s 
advisory are illustrated in Figure 7.  

 
Figure 7 Suggested actions given by the pilot and 

Automated System 

 
Figure 8 Combined Advisory 

Generally, the situation estimated by the automated system 
is more severe than that of the pilot. Thus, the action 
suggested by the automated system tends to cost more and is 
more likely to avoid some severe risks. The combined result, 
which is the optimum under the given payoff function, is 
shown in Figure 8.  

6. CONCLUSION 

In this paper we have described a novel human machine 
interface framework for conflict resolution. The 
methodologies applied are modified Dempster-Shafer 
Theory and Game Theory based conflict resolution 
methodology. The result shows that the combined result has 
a better performance than the assessment provided by the 
pilot or the automated system. 
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