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ABSTRACT 

A Planetary gear can transmit high torque ratio stably and, 
therefore, the gear is widely used in industrial applications, 
i.e., wind turbines, automobiles, helicopters. Unexpected 
failure of the planetary gear results in substantial economic 
loss and human casualties. Extensive efforts have been made 
to develop the fault diagnostic techniques of gears; however, 
the techniques are mostly concerned about spur gears. This is 
mainly because understanding of complex dynamic 
behaviors of a planetary gear is lacking, such as multiple gear 
contacts, non-stationary axis of rotation, etc. This study thus 
proposes model-based fault diagnostics for a planetary gear 
that is based upon its dynamic analysis. Instead of vibration 
signals, this study uses transmission error (TE) signals for 
fault diagnostics of the planetary gear because TE signals (a) 
are directly related to the dynamic behaviors of gear mesh 
stiffness and (b) increase as damages on a gear mesh reduce 
the gear mesh stiffness. A lumped parameter model was used 
for modeling dynamic behaviors of the planetary gear. For 
more precise modeling, mesh phase difference–between sun, 
ring, and planet gear– and contact ratio were taken into 
account in the lumped parameter model. After acquiring 
transmission error signals from the model, order analysis and 
data processing were executed to generate health related data 
for the planetary gear. Consequently, it is concluded that the 
use of transmission error signals helps gain understanding of 

complex dynamic behaviors of the planetary gear and 
diagnose its potential faults. 

1. INTRODUCTION 

A planetary gear is a kind of gear system composed of a ring 
gear, sun gear, planet gear and carrier as shown in Figure 1. 
While the ring gear is covering the whole gearbox, multiple 
planet gears connected by a carrier are rotating around the sun 
gear. As planet gears are distributing the loads a gear system 
delivers, the planetary gear can transmit high torque ratio in 
a stable way. So it is commonly used in many huge 
engineering applications like wind turbines, automobiles, 
helicopters. As unexpected failure of the planetary gear can 
result in substantial economic loss and human casualties, 
fault diagnostics for various gear system including the 
planetary gear has been developed.  

 
Figure 1. Cross-sectional view of a planetary gear. 
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Zheng, Li, and Chen (2002) developed fault diagnostics of a 
spur gear based on continuous wavelet transform. Samanta   
(2004) presented a comparative study for the performance of 
fault diagnostics for a spur gear between artificial neural 
networks (ANNs) and support vector machines (SVMs) 
which classify the normal and fault condition.  Saravanan, 
Cholairajan, and Ramachandran (2009) used fuzzy classifier 
with vibration signal to detect the fault of a spur bevel gear 
box. Fault diagnostics for a planetary gear is relatively less 
developed (Lei, Kong, Lin, and Zuo, 2012). Barszcz and 
Randall (2009) applied spectral kurtosis technique to detect a 
tooth crack of the planetary gear. Lei et al. (2012) proposed 
two new diagnostics parameters for the planetary gear, root 
mean square of the filtered signal (FRMS) and normalized 
summation of positive amplitudes of the difference spectrum 
between the unknown signal and the healthy signal (NSDS). 
Feng and Liang (2014) exploited the adaptive optimal kernel 
(AOK) method to deal with the non-stationary signal of the 
planetary gear. Above literatures used vibration signals to 
detect the faults of the gear system. In recent years, Acoustic 
emission signals has been used to detect the faults of a gear 
due to the sensitivity to early faults than vibration signal. Qu, 
He, Yoon, Van Hecke, Bechhoefer, and Zhu (2014) 
performed comparative study between vibration signal and 
acoustic emission signal. They found that acoustic emission 
signal is more sensitive to small tooth damage in the low 
speed range. 

However, previous signals used for fault diagnostics of gears 
have defects because they didn’t utilize the physical meaning 
of gear dynamics. Gear system is a very well organized 
system, especially a planetary gear has its own peculiarity 
due to the gear dynamics arising from pitch, contact ratio, 
phase difference. Therefore, we introduced new fault 
diagnostics signal, Transmission Error (TE) in a lumped 
parameter model. TE is defined as “the angular difference 
between the position that the output shaft of a gear drive 
would have if the gearbox were perfect (without errors or 
deflections) and the actual position of the output shaft” 
according to Remond and Mahfoudh (2005). This signal is 
deeply related with gear mesh stiffness. So, it has physical 
meaning in gear dynamics and could have potentials which 
could classify the fault condition in gear system. In this paper, 
we compared the TE signal from simulation model in both 
normal and faulty planetary gear and demonstrated the 
validity of TE for fault diagnostics of a planetary gear. 

This paper is organized as follows. The development of the 
planetary gear lumped model is described in Section 2. In 
section 3, Description about how TE could have physical 
meaning and relation with fault is followed. Section 4 
presents the way we processed the signal to effectively 
observe the fault symptom and results are shown. In section 
5, health indices used for fault diagnostics of a planetary gear 
are introduced and they are calculated from TE signal for 
normal and faulty gear obtained from simulation model. 

Finally, section 6 states the conclusion and future work of this 
research. 

2. PLANETARY GEAR MODELING 

A Planetary gear used in this paper is constructed using 
DAFUL 4.2. Basic lumped parameter modeling strategies for 
planetary gears in DAFUL 4.2 are based on a thesis from Kim 
(2001). 

2.1. Basic Specification of a Planetary Gear 

Basic gear specification used in this paper is as shown in 
Table 1. These parameters are used as input parameters for 
lumped parameter model. For example, numbers of teeth for 
each gear are used for calculating the gear ratio (4.06:1), and 
pressure angle information is used for indicating the direction 
of interacting force, and so on. The system input is a low 
speed shaft connected with a carrier and the system output is 
a high speed shaft connected with a sun gear. 

 

2.2. Gear Mesh Stiffness 

Another important parameter used in DAFUL is gear mesh 
stiffness. Gear mesh stiffness is defined as the ratio between 
the input torsional load and the total angular rotation of the 
gear (Sirichai, Howard, Morgan, and The, 1997). As mesh 
stiffness is closely related to the TE, which we would use as 
a fault signal, it is carefully parameterized in DAFUL. In 
DAFUL, gear mesh stiffness can be parameterized based on 
(a) one mesh, (b) all mesh, or (c) constant value.  

2.2.1. Magnitude of Gear Mesh Stiffness 

The magnitude of gear mesh stiffness has repeating patterns 
due to the repeating contact condition (single, double contact) 
in path of contact of gear mesh. This gear mesh stiffness can 
be obtained analytically (Cornell, 1985). However, in this 
paper, it is calculated by finite element analysis code, 
ABAQUS, and the result is as Figure 2. The Figure 2 is for 
ring-planet gear mesh stiffness calculated from ABAQUS 
code. Then, this values were parameterized as two values, 

Table 1. Planetary gear specification. 
 

Gear data Sun Ring Planet 
Number of teeth 31 95 31 

Pressure angle (deg) 20 20 20 
Module (mm) 1.5 1.5 1.5 

Pitch circle diameter 
(mm) 46.5 46.5 142.5 

Dedendum circle 
diameter (mm) 43.643 146.25 43.409 

Tip diameter (mm) 50.693 139.5 50.459 
Whole depth (mm) 3.525 3.375 3.525 
Face width (mm) 16 16 16 
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448900 and 536700N/mm for simplicity. Sun-planet gear 
mesh stiffness is achieved in the similar way and they were 
also parameterized as two values, 210600 and 274000N/mm.   

Figure 2. Ring-planet gear mesh stiffness result from finite 
element analysis. 

 

We can also notice that ring-planet gear mesh stiffness is   
bigger than sun-planet gear mesh stiffness about two times. 
This is because ring-planet gear is an internal gear which 
shows high contact ratio. 

2.2.2. Phase of Gear Mesh Stiffness 

Parker and Lin (2003) calculated phase difference of gear 
mesh stiffness not only among planets with a ring gear and 

sun gear but also between ring-planet gear mesh stiffness and 
sun-planet gear mesh stiffness in a planetary gear.  

For the case of gear mesh stiffness among planets with a ring 
gear and sun gear, the phase difference can be calculated by 
the following equation when the planet rotation is counter-
clockwise. 

2 2
s n r n

sn rn
Z Zψ ψγ γ
π π

= − =  (1) 

where 𝛾𝛾𝑠𝑠𝑠𝑠 is relative phase difference between nth sun-planet 
gear mesh stiffness and the reference sun-planet gear mesh 
stiffness, 𝛾𝛾𝑟𝑟𝑠𝑠  is relative phase difference between nth ring-
planet gear mesh stiffness and the reference ring-planet gear 
mesh stiffness, 𝑍𝑍𝑟𝑟,𝑠𝑠 is ring and sun gear tooth numbers and 
𝜓𝜓𝑠𝑠 is circumferential angle measured at reference planet gear. 
In this equation reference planet gear can be selected 
arbitrarily as 1st planet gear in Figure 1. For our case, 𝑍𝑍𝑟𝑟, 𝑍𝑍𝑠𝑠  
are 95, 31 and 𝜓𝜓1,2,3  are 0, 2π /3, 4π /3 respectively. So 
𝛾𝛾𝑟𝑟1 ,𝛾𝛾𝑟𝑟2 ,𝛾𝛾𝑟𝑟3  are 0, 2/3, 1/3 and  𝛾𝛾𝑠𝑠1 ,𝛾𝛾𝑠𝑠2 ,𝛾𝛾𝑠𝑠3  are 0, -1/3, -2/3 
respectively, which means same phase difference to the same 
planet with a ring gear and sun gear as phase difference of 
2/3, 1/3 is identical to phase difference of -1/3, -2/3. 

 For the case of gear mesh stiffness between ring-planet gear 
mesh stiffness and sun-planet gear mesh stiffness in a 
planetary gear, the phase difference (= 𝛾𝛾𝑟𝑟𝑠𝑠) can be calculated 
analytically based on pitch contact point which is the 
midpoint of the lower stiffness region. It is indicated as a red 

 

 

 

 

 

 

 

(a)                                                            (b)                                                              (c) 

 

 

 

 

 

 

       (d)                                                             (e)                                                             (f) 

Figure 3. Gear mesh stiffness of (a) 1st sun-planet gear, (b) 2nd sun-planet gear, (c) 3rd sun-planet gear,  

                                                     (d) 1st ring-planet gear, (e) 2nd ring-planet gear, (f) 3rd ring-planet gear. 
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circle in Figure 3 and it is applied to in the phase of a 
planetary gear. 

It is proved that no phase difference in sun-planet gear mesh 
stiffness could make equal load distribution at planets, and 
differing phase difference could have significant effect in 
reducing vibration and noise. (Parker & Lin, 2003) In our 
case, as phase difference is equally distributed at each planet, 
we could guess our planetary gear is designed to reduce the 
noise and vibration rather than to distribute the loads the 
system carries.  

2.3. Mesh Stiffness of a Faulty Gear 

In this paper, we define gear fault as a crack in a planet gear 
tooth. Chaari and Haddar (2009) studied the relationship 
between crack size and mesh stiffness reduction. In above 
literature, gear mesh stiffness for a spur gear gets smaller and 
smaller as a crack in a gear tooth gets larger. And this 
literature showed that 1/4 of tooth thickness- cracked gear 
induces 10% mesh stiffness reduction to the one of whole 
gear mesh stiffness. In this research, therefore, as each ring-
planet gear and sun-planet gear interaction can be thought as 
a spur gear interaction, mesh stiffness reduction would 
happen to the both ring-planet and sun-planet gear mesh 
stiffness by 10% in the same way if we assume a crack in a 
gear tooth is 1/4 of tooth thickness. However, in the planetary 
gear, we should also consider the fault phase difference 
between ring-planet gear mesh stiffness reduction and sun-
planet gear mesh stiffness reduction. The planet gear makes 
one rotation around a sun gear while it is meshing with a ring 
gear and sun gear repeatedly. So for the crack in a gear tooth, 
it contact with a sun gear, ring gear, sun gear at 0, 1/2, 1 
rotation of planet gear like Figure 4. So, the mesh stiffness 
phase difference in fault condition is 1/2 rotation of a planet 
gear like Figure 5. So this stiffness values were parameterized 
for the faulty gear mesh stiffness of the planetary gear. 

 
Figure 4. A cracked planet gear rotation behavior.  

 

3. SIGNALS FOR FAULT DETECTION 

This section will discuss TE, the signal used for fault 
detection in this research. First, we explain about why TE is 
related with health condition and how TE varies when the 

fault is seeded into gear sets. And then, TE behavior of a 
planetary gear in normal condition will be discussed. 

 
Figure 5. Ring-planet and sun-planet gear mesh stiffness for 

a cracked planetary gear. 
 

3.1. Transmission Error 

TE can be simply defined as “the output gear difference 
between the expectation and reality”. TE occurs due to many 
sources like tooth profile error, tip relief error, mesh stiffness, 
etc. In our case, we only consider the effect from mesh 
stiffness. Let’s say the gear is rotating clockwise and inverse 
torque is applied to output gear counterclockwise. Then the 
gear teeth will deflect counterclockwise due to inverse torque. 
This is the reason TE happens in a gear. That is, for the single 
contact condition, gear mesh stiffness is low, and TE would 
show higher value. Then, for the double contact condition, 
gear mesh stiffness is high, and TE would show lower value. 
In this way, TE fluctuates repeatedly along the stiffness 
fluctuation. Then, what would happen if a gear tooth is 
cracked? As we discussed in section 2, crack in a gear tooth 
makes gear mesh stiffness reduction. So, TE would increase 
as the stiffness is reduced. In this way, TE signal can be a 
physically meaningful signal differently from other signals in 
relation with mesh stiffness. Also, as stiffness reduces 
gradually along the crack size propagation, TE signal can be 
a more useful signal for fault prognostics.  

3.2. Transmission Error in a Planetary Gear 

Transmission error in a planetary gear can be calculated as  

 . . . .TE h s s rotation gear ratio l s s rotation= − ×  (2) 

where h.s.s denotes high speed shaft connected with a sun 
gear and l.s.s denotes low speed shaft connected with a carrier. 
Differently from a spur gear, TE in a planetary gear shows 
complicated behavior due to the effect from multiple meshing 
condition from ring, planet, and sun gear as in Figure 1. 
Figure 6 shows a TE signal result from DAFUL when input 
velocity is 20rad/s, inverse torque is 2×106 Nmm with 
sampling frequency 1000hz. 3 peaks in one fluctuation are 

1/2 planet revolution 
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repeatedly appearing. We could guess this could happen due 
to the effect from three planets.  

 
Figure 6. Simulated transmission error signal from a   

planetary gear.  
 

4. SIGNAL PROCESSING 

To effectively observe the fault characteristics of a planetary 
gear, TE signals were processed with three steps like Figure 
7, (1) DC component subtraction, (2) Time synchronous 
averaging (TSA), (3) Order analysis. In this section, we 
discuss the principles of each procedure for signal processing 
and explain why each procedure was performed. 

4.1. DC Component Subtraction 

The first step for signal processing is to subtract DC 
component in raw TE signal. TE fluctuates while the DC 
component is shifted due to the deflection like Figure 6. To 
effectively analyze the TE in a frequency domain, mean value 
of the TE should be subtracted from original signal. 
Comparing with Figure 7 (a) and 7 (b), you can see TE value 
is shifted along y-axis.  

4.2. Time Synchronous Averaging (TSA) 

Time synchronous averaging (TSA) for gear signal analysis 
was originally proposed to suppress the noisy signal - (a) non-
synchronous coherent signal, (b) non-coherent random signal 

(Hochmann & Sadok, 2004.). However, in this research, TSA 
was adopted to effectively observe the gear mesh frequency 
of interest in TE signal. Eq. (3) is the equation used for TSA 
in this paper. 

1

1 N

k
k

x x
N =

= ∑  
 

(3) 

where �̅�𝑥 is time synchronous averaged data, N is number of 
planet rotation and 𝑥𝑥𝑘𝑘  is TE data in time domain for kth 
planet rotation.   

By calculating equation (3), we can observe the only planet-
oriented behavior of TE signal. In Figure 7 (c), there are 31 
fluctuations which contain 3 peaks in a fluctuation as in 
Figure 6. 31 is the number of a planet gear and we can observe 
how the TE is varying for the 1 rotation of a planet gear by 
performing TSA.   

4.3. Order Analysis 

Then the order analysis was performed to analyze the effect 
from the planet gear mesh frequency. This can be performed 
by transforming time-domain TE data into frequency domain 
by Fast fourier transform (FFT) code in MATLAB.  As TSA 
data were averaged with planet rotation, we can observe the 
planet gear tooth number component and its harmonic in 
order analysis result in Figure 7 (d). 

4.4. Results from Normal and Cracked Gear 

After following these procedures, simulated TE results from 
normal and cracked planetary gear were obtained like Figure 
8, 9. Figure 8 shows the TSA of TE from normal and cracked 
planetary gear. In advance, we can see the two sparks in 
Figure 8 (b). In Figure 4, we showed that a crack in a planet 
gear contacts with a ring, sun gear repeatedly while planet 
gear makes one rotation. So, this behavior makes TE in a 
planetary gear spark from normal TE. Also there is 
magnitude difference in TE sparks. As there are difference in 
stiffness between ring-planet and sun-planet gear mesh 
stiffness, TE sparks, which arose from stiffness, also has 
difference in magnitude. 
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x 105
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-0.255

-0.2545

-0.254
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(d

eg
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(a)                                           (b)                                           (c)                                             (d)    

Figure 7. Procedures for TE signal processing. 
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 Figure 9 shows the order analysis results. In Figure 9 (b), we 
can observe the sub-harmonic and sideband near the main 
harmonic. 

 

 

 

 

 

 

1(a)                                         (b) 

Figure 8. TSA results of TE in a (a) normal and (b) cracked 
planetary gear. 

 

 

 

 

 

 

 

1(a)                                           (b) 

Figure 9. Order analysis results of TE in a (a) normal and 
(b) cracked planetary gear. 

 

5. HEALTH INDEX CALCULATION 

TE results from section 4.4 need to be quantified to properly 
represent health state of the system. Lebold, McClintic, 
Campbell, Byington, and Maynard (2000) organized health 
index frequently used for gearbox diagnostics. In section 5, 
we adopted two health index and compared the results from 
normal and cracked gear. 

5.1. Health Index 

In this study, we adopted root mean square (RMS) and FRMS 
to quantitatively classify a cracked gear from a normal gear.  

First, RMS can be formulated as 

2

1

1 N

k
k

RMS x
N =

= ∑  
 

(4) 

where 𝑥𝑥𝑘𝑘 is kth time data point and 𝑁𝑁 is number of total data. 
By calculating RMS, overall noise level can be easily 
detected. 

Secondly, FRMS can be formulated as 

2

1

1 ( ( ))
T

t
FRMS s t

T =

= ∑  
 

(5) 

where s(t) is the ith data of data point of the filtered signal S 
and T is the number of total data. Filtered signal is obtained 
by filtering out the shaft frequency and its five-order 
harmonics and gear mesh frequency and its three-order 
harmonics in frequency domain. Then the signal is 
transformed into time domain again. This signal is effective 
in planetary gear analysis because shaft frequency and its 
harmonics, gear mesh frequency and its harmonics mainly 
dominates the vibration signal of planetary gear (Yaguo, et 
al., 2012). 

5.2. Health Index from Various Condition 

To verify the validity of the TE as a fault diagnostics signal, 
health indices proposed from section 5.1 are calculated using 
TE in various conditions.  

First, RMS, FRMS were calculated from various input speed 
at 1~20 rad/s like Figure 10. Then, RMS, FRMS were 
calculated from various inverse torque at 1~10×105 Nmm 
magnitude like Figure 11. We can observe that at faster input 
speed and higher inverse torque magnitude we can more 
easily differentiate the cracked gear from a normal gear. 

 

 

 

 

 

 

 

Figure 10. RMS, FRMS values from a normal, cracked 
planetary gear at various input speed. 

 

 

 

 

 

 

 

Figure 11. RMS, FRMS values from a normal, cracked 
planetary gear at various inverse torque. 

 

Also, we observed the RMS and FRMS change along the 
relative stiffness like Figure 12. Relative stiffness means the 
ratio of the stiffness to the stiffness from normal planetary 

0 500 1000 1500 2000
-1

-0.5

0

0.5

1 x 10-3

samples

TE
(d

eg
)

TSA of TE

0 500 1000 1500 2000
-1

-0.5

0

0.5

1 x 10-3

samples

TE
(d

eg
)

TSA of TE

0 100 200 300
0

1

2

3

4x 10-4

Order [Planet]

A
m

pl
itu

de

Order analysis of TSA

0 100 200 300
0

1

2

3

4x 10-4

Order [Planet]

A
m

pl
itu

de

Order analysis of TSA

0 5 10 15 20
0

2

4

6

8 x 10-5 FRMS

input speed(rad/s)

he
al

th
 in

de
x

 

 

cracked
normal

0 5 10 15 20
0

1

2

3

4x 10-4 RMS

input speed(rad/s)

he
al

th
 in

de
x

 

 

cracked
normal

0 5 10
x 105

0

1

2

3

4 x 10-3 RMS

torque(Nmm)

he
al

th
 in

de
x

 

 

cracked
normal

0 5 10
x 105

0

2

4

6

8x 10-4 FRMS

torque(Nmm)

he
al

th
 in

de
x

 

 

cracked
normal

6 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

gear. As bigger crack size indicates larger gear mesh stiffness 
reduction, we tried to estimate health index from different 
crack size from relative stiffness. From Figure 12, we can 
notice that as crack size is getting bigger, health indices 
indicates larger values. 

 

 

 

 

 

 

 

Figure 12. RMS, FRMS values from different crack size. 

6. CONCLUSION 

This paper proposed a new signal, TE for model-based fault 
diagnostics of the planetary gear. First, we developed a 
planetary gear with lumped parameter model. In this step, we 
closely studied phase difference in ring-planet gear mesh 
stiffness and sun-planet gear mesh stiffness considering pitch 
contact point. To simulate the fault condition in a gear as a 
crack in a gear tooth, we studied the relationship between 
crack size and gear mesh stiffness, which is directly related 
with TE signal. We also considered the fault phase occurring 
from planet gear rotation. Then we analyzed the TE signal in 
an organized signal processing procedures and calculated 
health indices. By calculating health indices from various 
condition, we could conclude that TE can be a good signal 
for diagnosing the fault in a planetary gear. Moreover, as TE 
is a physically meaningful   signal related with stiffness, it 
can not only differentiate fault level but also be a signal for 
fault prognosis. 

Future work will include development of lumped parameter 
model and validation using test-bed data. As we considered 
many things in modeling the planetary gear, it can be 
developed more precisely to simulate a real planetary gear. 
Then, finally, validation using a real planetary gear TE data 
should be performed. To accurately measure the TE signal, 
many methods have been developed using encoder. So, by 
obtaining and analyzing the TE data, proposed idea could be 
validated. 
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